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ABSTRACT Experimental investigation of Tin Oxide (SnO) film has been performed to analyse the effect
of oxygen ratio variation on its optical and electrical properties. The oxygen composition in SnO film has
been varied and correspondingly its extinction coefficient and band gap have been obtained. Also, density
functional theory (DFT) study of SnO film has been carried out in order to obtain its optical properties
such as extinction coefficient and corresponding bandgap. The experimental and theoretical trends related
to its optical properties are in good agreement with each other. The SnO film may be used as a prospective
light absorber layer in various opto-electronic sensor devices, solar cell in particular, and its optoelectronic
properties can be tuned with change in oxygen mole fraction ratio of SnO films which are detailed out in
this paper. Further, some important electrical parameters of such as Hall mobility, carrier concentration and
resistivity of SnO films for its different Sn and O ratios have been obtained. The investigation of tunable
optical and electrical properties of SnO thin film will pave the way for a wide range of opto-electronic
devices.

INDEX TERMS Oxide semiconductors, optical properties, SnO, DFT, e-beam.

I. INTRODUCTION
In order to be used in wide range of photonic devices, metal
oxide semiconductors have been the subject of intensive
research for many years. This is due to their extraordinary
versatility in opto-electronic properties and their ability to
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grow at low temperatures [1]. Metal oxides (MOx) are one
type of material that has piqued the interest of optoelectronic
researchers due to their scalable development techniques and
customizable material properties such as band gap and con-
ductivity [2], [3]. Metal oxides can operate as semiconductors
exhibiting either n- or p-doped nature, depending on whether
they are intrinsically or extrinsically doped. Metal oxides are
also appealing because they are stable, non-toxic, and can be
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manufactured using low-temperature techniques. Moreover,
use of metal-oxides as carrier selective contacts namely TiO2,
ZnO, SnO2 etc. as electron transport layer and V2O5, WO3,
MoO3, NiO as hole transport layer for organic solar cells has
also been reported. But, somemetal-oxides have the potential
to be used as light absorber layer which can be used for
opto-electronic devices. Owing to the tunable band gap these
oxides may be made suitable for absorbing visible spectrum
of light. However, there are just a few oxide semiconductors
with good hole transport characteristics, configurable band
gaps, and light absorption in the solar spectrum [4], [5].
Copper oxide (CuO), Cobalt oxide (CoO) and Iron oxide
(FeO) are among the few binary compound oxide semicon-
ductors capable of absorption of visible solar spectrum light.
Furthermore, its extensive application in the opto-electronic
sectors is constrained by the need for high growth temper-
atures (600 oC for the growth of CuO film) and expensive
procedures like ALD and MBE (for the growth of CoO
and FeO film) [2]. Researchers must therefore focus on tin-
oxide-based semiconductors since they demand low growth
temperatures as well as an easy and affordable fabrication
procedure. Over the decades, tin-dioxides (SnO2) have been
explored to reveal its potential to be used in a wide range
of applications, including electro catalysis, transparent con-
ductive electrodes, electrochromic devices, and solar energy
conversion [6], [7], [8]. Furthermore, tin-oxides (SnO) have
been studied recently by a few researchers for use in organic
solar cells, thin film transistors, hole transport layers, etc., [9].
According to studies, important SnO features like band gap,
carrier concentration, mobility, etc., vary drastically with
the increasing oxygen compositional ratio in SnO film [10],
[11], [12]. Wavelength dependent extinction coefficient and
bandgap of SnO are some of important parameters owing
to its application as light absorber layer for photosensitive
devices. Generally, excessive increase in oxygen (O) or tin
(Sn) vacancies lead to localized states lying around the Fermi
level which are often terms as structural defects [13], due to
which some important parameters such as carrier mobility
get reduced [14], which may leads to increase in electrical
resistivity of SnO samples. Also, some unwanted intra-band
photon absorption in a SnO crystal increases due to which
photo generation rate may be affected [15]. However, owing
to oxygen vacancies in metal oxide semiconductors often
results in change in its carrier concentration and nature (n-
type or p-type). Therefore, vacancies, oxygen (O) vacancy
in particular, in a metal oxide (here SnO) semiconductor
should be optimized in order to get optimum value of carrier
concentration, resistivity, mobility along with desired optical
absorption. Moreover, dependency of tin and oxygen ratio on
its extinction coefficient and band gap studies of the SnO
film needs to be explored in order to find its usage in wide
range of optoelectronic devices [8], [16], [17]. In this work,
optical properties such as extinction coefficient and band
gap studies of the SnO thin film have been theoretically and
experimentally studied.

II. DESIGN CONSIDERATION
In this work, the CASTEP toolkit package were employed to
perform the band structure and optical properties calculation
of SnO super cell [18].The calculations were performed using
generalized gradient approximation (GGA) with the Perdew-
Burke-Ernzerhof (PBE) functional by norm-conserving pseu-
dopotentials of Cambridge Sequential Total Energy Package
code (CASTEP) tool kit of Material Studio. The convergence
tolerance parameters value were set to be as 830 eV as cutoff
energy for the k-point finemesh of 5× 5× 8,maximum force,
maximum stress and maximum displacement were set to be
0.03 eV/A0, 0.05 GPa and 0.001 A0, respectively. The SCF
tolerance value was considered to be fine, i.e., 10 −6 eV/atom.
The optical properties (extinction coefficient), XRD and band
gap of SnO films for its different tin and oxygen compo-
sitional ratio have been extracted using CASTEP toolkit of
Material Studio by using aforementioned parameters. The
structure of SnO (tetragonal; P4/nmm; 129) super cell as
shown in Figure 1(a) has been imported from the inorganic
crystal structure database of material studio. In Figure 1, Tin
(Sn) atoms are represented by gray colored balls and oxygen
(O) atoms are shown by red balls. Some additional interstitial
oxygen atoms have been incorporated in the SnO super cell at
its lattice sites of in order to relatively increased the oxygen
content in SnO super cell as shown in Figure 1(b). Similarly,
the oxygen content of SnO super cell at its lattice sites is
further increased by incorporation some additional oxygen
atoms as shown in Figure 1(c) which shows relatively highest
amount of interstitial oxygen atoms in SnO super cell as
compared to Figure 1(a) and (b). Thus, qualitatively assuming
the SnO super cell as shown in Figure 1 (a) to have tin and
oxygen (Sn:O) ratio as 1:1, Sn:O ratio of Figure 1 (b) as 1:2
and Sn:O ratio of Figure 1 (c) as 1:3.

III. GROWTH OF SnO THIN FILMS
The experimental works related to the growth of tin-oxide
(SnO) have been carried out using customized e-beam
(electron-beam) deposition system (shown in Figure2(a)) by
regulating the growth oxygen pressure through mass flow
controller (MFC) of e-beam chamber as shown in Figure2 (b).
Tin (Sn) pellets (purity of 99.9 %) are placed in Molybdenum
crucible which were evaporated by e-beam and reacts with
oxygen atoms present inside the chamber to form SnO film
in the vicinity of glass substrate at room temperature. Qualita-
tively, the compositional ratio of Sn and O have been altered
during experimental growth of SnO film by varying growth
oxygen pressure inside e-beam chamber, e.g., 1:1 ratio of Sn
and O denotes the flow rate of O (oxygen) inside chamber
to be 1 sccm (standard cubic centimetres per minute), 1:2
denotes the flow rate ofO (oxygen) to be 2 sccm and similarly,
1:3 denotes the flow rate of O (oxygen) to be 3 sccm.

IV. RESULTS AND DISCUSSION
The structural property such as XRD patterns, optical prop-
erties (extinction coefficient, transmittance) and band gap
of SnO films for its different tin and oxygen compositional
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FIGURE 1. (a) SnO super cell (b) SnO super cell having interstitial oxygen atoms (c) SnO super cell having relatively higher
interstitial oxygen atoms.

FIGURE 2. (a) Customized e-beam chamber (b) Schematic layout of e-beam process.

ratio have been extracted experimentally as well as it have
been simulated using CASTEP toolkit of Material Studio
according to aforementioned parameter details as mentioned
in section II.

Figure 3(a-f) shows the room temperature XRD patterns of
SnO films for its different Sn:O compositional ratios. Exper-
imentally, XRD patterns were obtained by X-ray diffrac-
tometer (Rigaku, SmartLab). The experimentally obtained
XRD patterns were compared with simulated results of XRD
patterns (shown in Figure 3(d-f)) obtained from XRD toolkit
of material studio. From experimental as well as simulated
XRD pattern, it is found that maximum peak is obtained
at 2θ = 30.50 and 48.140 which corresponds to SnO peak
which confirms the existence SnO phase. As the oxygen ratio
in SnO increases, then along with some SnO peaks, there
are also existence of few SnO2 peak at 2θ = 65.50 and
74.140 as shown in Figure 3(b-c). It is primarily because of
increase in rate of oxidation of SnO film due to increment
in oxygen flow inside e-beam chamber during growth of

SnO film. The enhanced rate of oxidation converts Sn2+

to Sn4+ oxidation states which corresponds to formation
of SnO2 phase [27], thus some amount of SnO2 are also
formed along with SnO peak as shown in Figure 3(b-c)
which corresponds to experimental XRD patterns of SnO
films. For the sake of clarity to identify the important peaks,
XRD patterns of SnO films as mentioned above, have been
compared with standard (JCPDS-Joint Committee on Pow-
der Diffraction Standards) SnO, and SnO2 diffraction pat-
terns [28], as shown in Figure 3(a-f). It may be mentioned
here that as per the technical reports available in literatures,
it is shown that SnO are thermally stable under normal
atmospheric condition at room temperature [29]. The exis-
tence of Sn2+ ion of SnO at room temperature can also be
confirmed by our XRD pattern of SnO thin film as shown
in Figure 3(a-c), which has been carried at room tempera-
ture under normal atmospheric condition. Moreover, at ele-
vated temperatures, i.e., beyond 300oC, Sn2+ state of SnO
has high probability of getting converted to Sn4+ oxidation
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FIGURE 3. XRD patterns of SnO films for its different Sn;O compositional ratios: (a-c) Experimental and (d-f) Simulation.

state but at room temperature Sn2+ state of SnO remain
stable [29].

The density functional theory (DFT) results of SnO film
shows that with an increase in Sn:O ratio, i.e., relative
increase in amount of oxygen atoms with respect to Sn atoms
in crystal, the extinction coefficient of SnO decreases (shown
in Figure 4), whereas the bandgap of SnO film (shown in
Figure 5) increases with an increase in Sn:O compositional
ratio. In order to verify the trend of extinction coefficient and
band gap variation of SnO film with change tin and oxygen
composition ratio, the results obtained from DFT study of
SnO film have been compared with experimentally obtained
extinction coefficients and band gaps of SnO film.

The optical characterization of SnO samples having dif-
ferent Sn:O compositional ratios have been carried out
using UV-VIS-NIR spectrophotometer. Extinction coeffi-
cient (k) (shown in Figure 4(a) are calculated from measure
values of reflectance spectra R(λ) and transmittance spectra
T(λ) by UV-VIS spectrophotometer, using the following for-
mulae Eq. 1 and Eq. 2 [26].

k =

[
α(λ)λ
4π

]
(1)

α(λ) =
1
d

∗ [ln
{
(1 − R(λ))2/T (λ)

}
] (2)

where d is thickness of SnO film, R(λ) and T(λ) are wave-
length dependent reflectance and transmittance spectra of
SnO film, respectively.

Simulated as well as experimental value of extinction
coefficient of SnO films for its different composition of Sn

and O ratios have been shown in the Figure 4. From the
Figure 4, it is observed that the extinction coefficient of
SnO samples, firstly increases with increase in wavelength
of light, particularly at shorter wavelength ( 500 nm <) and
thereafter extinction coefficient decreases at higher wave-
length. Theoretically, it can be stated that photons having
higher wavelengths have lower energy than that of pho-
tons having shorter wavelengths. Therefore, absorption of
shorter wavelengths photons for a given band gap of SnO
are more as compared to longer wavelength consequently
extinction coefficient increases for shorter wavelength and
decreases with increase in wavelength of photons as shown
in Figure 4(b). However, from the experimentally obtained
extinction coefficient (shown in Figure 4(a)) graph, it can be
observed that first, the value of extinction coefficient firstly
increases and then decreases after a particular wavelength
that is beyond 500 nm. Practically, thickness of thin film
plays important role in constructive and destructive inference
phenomenon of incident photons on the surface of thin film,
due to which the thin film absorption and hence extinction
coefficient shows maximum value at particular wavelength
due to constructive interference [30]. Both experimental and
simulated results of extinction coefficient of SnO sample
shows that extinction coefficient decreases with increase in
its compositional (Sn:O) ratio. This is mainly due to the fact
that with an increase in Sn:O ratio, oxidation process inside
the growth chamber is proportionally increased, and thus
transparency of SnO film increases as shown in Fig. 6(a) and
hence, extinction coefficient of SnO film decreases. But at
shorter wavelength, i.e., wavelength less than 500 nm, trend
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FIGURE 4. Extinction coefficient (k) of SnO films for its different tin and oxygen compositional ratios:
(a) experimental and (b) simulated.

of variation in extinction coefficient is somewhat different.
The SnO film having the Sn:O ratio as 1:2 shows the highest
extinction coefficient as compared to other two ratios of SnO.

The bandgaps obtained from DFT results of SnO film is
shown in Fig. 5(a-c) shows that with an increase in Sn:O ratio,
i.e., relative increase in amount of oxygen atoms with respect
to Sn atoms in SnO crystal, the bandgap of SnO increases
with an increase in Sn:O compositional ratio. Figure 5(a)
denotes the band gap of SnO film obtained using CASTEP
toolkit package of material studio for Sn:O compositional
ratio as 1:1, Figure 5(b) represents the bandgap of SnO film
for Sn:O compositional ratio as 1:2 and Figure 5(c) shows
the band gap of SnO film for Sn:O compositional ratio as
1:3. Experimentally, the band gap in a semiconductor, which
corresponds to indirect (non-zero momentum) transitions,
can be determined using absorption characteristics by using
the Tauc Method which can be expressed as Eq. 3 [19], [20].

(αhν)2 = B(hν − Eg) (3)

where hν is the photon energy, α is the absorption coefficient
and B is constant that depends on material. Band gaps are
obtained by extrapolating the linear region of the (α h ν)2

versus hν plot to intercept hν-axis to get the direct band
gap value [21]. In order to get the indirect band gap value,
linear region of (α h ν)1/2 versus hν plot are extrapolated to
intercept the hν-axis. Band gap of SnO films for its different
tin and oxygen ratio have been extracted by Tauc plot as
shown in the figure 6 (b). From figure, it is observed that
band gap increases with an increase in the Sn:O ratio, which
is mainly due to the fact that with an increase in oxygen ratio
of SnO film, its properties highly tends to toward the SnO2
(Tin-dioxide) nature [12], [22], [23].

Figure 6(a) shows the transmittance of SnO film obtained
experimentally for Sn:O compositional ratio as 1:1,1:2 and
1:3 using UV-VIS-NIR spectrophotometer. As seen from the
Figure 6(a), it is observed that transmittance of SnO film
increases with an increase in wavelength of light. Since at
higher wavelength, energy of photons or light are much lower
than the bandgap value of SnO films, theretofore they are
not absorbed at this higher wavelengths and thus transmitted

through SnOfilms. Figure 6(b) represents the band gap values
based on experimental data using Tauc plot of SnO film for
its different Sn:O compositional ratio as 1:1, 1:2 and 1:3.

We extended the experimental study further to investigate
the electrical parameters of SnO films for its different com-
position of Sn and O ratios using Hall measurement in order
to find out nature of SnO films, its carrier concentration, Hall
mobility and sheet resistivity using equations given below.
The Eq. 4 represents the formula for calculation Hall coeffi-
cient, Eq. 5 represents the formula for calculation of carrier
concentration and Eq. 6 represents the formula for calculation
of Hall mobility.

RH =
(d ∗ VH )
(I ∗ B)

(4)

p =
1

(RH ∗ q)
(5)

µh = (
RH
q

) (6)

The resistivity of SnO films is given by Eq.7.

ρ = Rs ∗ d (7)

where ρ is resistivity of SnO film, d is the thickness of SnO
films coating on glass substrate. RS is sheet resistance of
SnO films. It is important to note that all the experimentally
grown SnO films shows p-type nature. The hole carrier con-
centration SnO films were obtained to be 9.6 x 1018 cm−3,
4.3 x 1018 cm−3, 2.4 x 1017 cm−3, respectively. It is observed
that hole carriers concentration in SnO films reduces as
the oxygen ratio, i.e., Sn:O ratio, increases. This is mostly
owing to the fact that the oxidation process in SnO films is
proportionately improved with an increase in oxygen mole
fraction, resulting in the development of a greater number of
SnO2 phases than SnO. One of the key reasons for reduced
hole concentration would be insufficient availability of SnO
phase at higher growth-O2 condition. The acquired carrier
concentration values (1017 - 1018 cm−3) of SnO films pro-
duced under various growth-O2 conditions accord well with
previously published values [8], [9]. However, Hall mobility
of a SnO films, increases with an increase in Sn:O ratio.

VOLUME 11, 2023 23351



M. Kumar et al.: Experimental Investigation and DFT Study of Tin-Oxide for Its Application

FIGURE 5. (a-c) Band gap of SnO films obtained from DFT simulation for its different tin and oxygen composition ratio.

FIGURE 6. (a) Transmittance of SnO films obtained experimentally (b) Band gap extraction of SnO films using Tauc plot for
its different tin and oxygen composition ratio..

TABLE 1. Some important parameters of SnO samples obtained using
Hall measurement.

This is mostly due to the previously indicated results which
shows a decrement in carrier (hole) concentration with higher
growth-O2 condition. In general, Hall mobility and carrier
concentration have an inverse relationship in a semiconductor
resulting in a trade-off between hole concentration and Hall
mobility of SnO films grown at varied growth-O2 condi-
tions [24], [25]. Consequently, the resistivity of SnO films
were obtained to be 8.8×10−4 �-cm, 2.9×10−3 � -cm, and
5.8×10−3 �-cm.
The Hall measurement of SnO films for its different com-

positional Sn:O ratios have been tabulated in Table 1 as ready
references.

V. CONCLUSION
This work can be concluded by stating that sufficient light
absorption property or extinction coefficient in the visible
range of solar spectrum and possibility of band gap engi-
neering of SnO film may be a good choice of material
for photosensitive devices. The theoretical and experimental
trends related to its bandgaps and extinction coefficient are in
good agreement with each other. Thus, SnO films of desired
characteristics for its use as good material for photosensitive
devices can be developed using e-beam evaporation tech-
nique by controlling the tin and oxygen ratio in SnO film.
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