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ABSTRACT Radio tomographic imaging (RTI) is a technique for estimating spatial loss fields (SLFs),
which maps the quantified attenuation of radio signals at every spatial location within monitored regions.
In this study, we investigate RTI techniques in indoor factory environments, where the RTI techniques
deteriorate because of severe multipath channels. We propose the binary radio tomographic imaging (binary
RTI) method, where the attenuation level of each pixel in a SLF is defined as a binary value. The binary
RTI method is suited for factory environments, including metallic objects, because radio signals are almost
fully reflected rather than getting absorbed by such objects. In the proposed method, we suppose that
transmitted signals are modulated with an orthogonal frequency division multiplexing (OFDM) format,
and each receiver is equipped with multiple antenna elements. By adopting the two-dimensional multiple
signal classification (MUSIC), the proposed method identifies whether the signals are transmitted in a line-
of-sight (LOS) or a non-line-of-sight (NLOS) path. From the LOS/NLOS identification, we propose two
algorithms to estimate the binary SLF: a simple greedy algorithm and a relaxation algorithm with low-rank
approximation. We evaluate the performance of the proposed method via simulation experiments. To assess
the applicability of the proposed method to factory environments, we assume a severe multipath environment
where all the objects, wall, and ceiling are perfect electrical conductors, and show that by using an appropriate
threshold parameter for the LOS/NLOS identification, the proposed method can estimate the binary SLF in
the test environment.

INDEX TERMS Factory environment, LOS/NLOS identification, radio tomographic imaging.

I. INTRODUCTION
Reliable wireless communication technologies are manda-
tory for future smart factories [1], [2], [3], [4], and latest wire-
less network technologies, such as the fifth-generation (5G)
cellular network technology for supporting ultra-reliable low-
latency communication (URLLC), have garnered significant
attention. In this study, we consider industrial Internet of
things (IoT) environments based on intelligent vehicles,
such as automated guided vehicles (AGVs) and autonomous
mobile robots (AMRs) [5], and these vehicles are man-
aged remotely via access points (APs) placed in factory
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environments. Indoor environments such as office and living
spaces are usually open space, primarily because they are
designed for comfort. In contrast, factory environments
are crowded with objects, such as industrial equipment.
Therefore, wireless networks in indoor factory environments
must be designed based on different design methodologies.

In [6], an offline method was considered for the faculty
radio design using 3D laser scanning and physical optics.
In this method, the spatial data of a factory environment,
such as the positions and shapes of walls, ceiling, floor,
and other objects are first captured by 3D laser scanning.
From the scan data, the radio wave propagation is then
predicted using physical optics. It is an effective approach
in static factory environments in which physical objects and
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communication devices, such as APs are fixed; however, it is
not suitable for non-static environments where their positions
are altered, because 3D layer scanning should be conducted
each time the positions are changed. To efficiently generate
industrial products, facility layouts in factory environments
are occasionally reconfigured and optimized, which is
referred to as the factory layout planning problem [7], [8].
Furthermore, 3D laser scanning is based on physical optics
and does not necessarily reflect the characteristics of the
radio frequency (RF) signals used for communication, such as
diffraction and reflection. Therefore, in this study, we address
the factory radio design with RF signals.

We consider radio tomographic imaging (RTI) [9], [11],
[12], [14], [16], [17], [18], [19], [20], [21] in non-static
environments. RTI is a technique for estimating spatial loss
fields (SLFs), maps quantifying the attenuation of radio
signals at each spatial location within monitored regions, and
provides useful information for designing reliable wireless
networks considering obstructions. In RTI, the monitored
region is divided into pixels, and an SLF is represented with
a set of attenuation levels of the pixels. The relationship
between a measurement vector and an SLF is formulated
as a system of linear equations according to the positions
of the transmitters and receivers. As it does not require any
spatial information of the layout, it is suitable for non-static
environments. The formulation is based on an assumption
that the received power of a radio signal is dominated by the
direct path component in multipath components. However,
in factory environments, this assumption is inappropriate
because there are several highly reflective metallic objects
in the factory environments, which cause severe multipath
channels [4], [22].

In this study, we propose binary radio tomographic
imaging (binary RTI) for factory environments. In factory
environments with metallic objects, radio signals are almost
fully reflected rather than absorbed. Therefore, we model the
attenuation level of each pixel in an SLF with a binary value,
i.e., the pixel represents a perfectly reflective object if the
attenuation level equals to one, and it does not cause any
attenuation if the level is zero.

The proposed method comprises two steps: line-of-
sight (LOS)/non-line-of-sight (NLOS) identification and SLF
estimation. In the first step, a transmitted signal between
an AP and a mobile terminal is identified as a LOS
signal or NLOS signal via of multiple signal classifica-
tion (MUSIC) [23]. We suppose that transmitted signals
are modulated with an orthogonal frequency division multi-
plexing (OFDM) format and each receiver is equipped with
multiple antenna elements. By analyzing an OFDM signal,
a 2D MUSIC spectrum is developed as a function angle-
of arrivals (AoAs) and time-of arrivals (ToAs) of multipath
components (incident signals) in the OFDM signal. From
the MUSIC spectrum, the path of each incident signal is
identified as LOS or NLOS. In the second step, the SLF
is estimated from the results of the first step. The SLF
estimation is formulated as a combinatorial optimization

problem. First, we consider a greedy algorithm to solve the
problem. Furthermore, by relaxing the problem, we consider
a low rank approximation to estimate the SLF.

The influence of multipath fading is a well-known
problem in RTI and several techniques have been proposed
[10], [11], [15], [18], [19], [20] to address these problems.
These techniques are classified into (1) the extraction of the
direct path component using inverse Fourier transform [11],
(2) directional antennas and spatial diversity based on
multiple antennas [10], [18], and (3) Bayesian inference
[15], [19], [20]. These techniques are reviewed in Section II.
The main contributions of this study are as follows.
1) We propose the idea of the binary RTI, which is a

completely different approach from existing methods.
The proposed method formulates the RTI problem
as a combinatorial optimization problem, whereas
the conventional RTI methods formulate it as a
linear inverse problem. In the conventional methods,
a calibration technique, which sets adequate values to
parameters, such as the antenna gains and pathloss
exponent, is required to correctly retrieve measurement
vectors [16]. In contrast, the proposed method does
not require any calibration technique as it relies on the
LOS/NLOS identification and positions of transmitters
and receivers.

2) To estimate SLFs in the binary RTI, we consider
two methods: the simple greedy method and the low
rank optimization method, and evaluate these methods
through simulation experiments in an indoor wireless
channel assuming a factory environment.

The remainder of this paper is organized as follows.
In Section II, we review related studies. In Section III,
we describe the system model and problem formulation.
We propose binary RTI in Section IV, and evaluate the
performance of the proposed method in Section V. Finally,
we conclude the paper and provide directions for future
studies in Section VI.

II. RELATED WORK
RTI techniques have been studied for device free localiza-
tion [9], [11], [18], [19], [20] and obstacle mapping [12], [14],
[16], [17], [21]. In device free localization, target positions
are identified by the change in the SLF. Let x(t) and y(t)
denote an SLF and ameasurement vector obtained fromRSSs
between transmitters and receivers at time t , respectively. For
given t1 and t2 (t2 > t1), we define the change of 1t1,t2x
and 11,2y as 11,2x = x(t2) − x(t1), 11,2y = y(t2) − y(t1),
respectively, and the relationship between11,2x and11,2y is
given by

11,2y = A11,2x+ w,

where A and w represent a measurement matrix and a noise
vector, respectively. Since 11,2x includes only the change of
the SLF due to moving targets, the positions of the targets
can be identified by estimating 11,2x. However, obstacle
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mapping attempts to reveal obstacles within a measured
regions by estimating an SLF. The problem formulation of
obstacle mapping is described in Section III. In this study,
we focus on obstacle mapping.

As described in Section I, multipath fading deteriorates the
performance of RTI and several mitigation techniques of the
multipath fading effect have been studied in literature. Table 1
presents a summary of the related works. As mentioned in
Section I, these techniques are classified into four types.
Wang et al. [11] proposed a multipath mitigation technique
to extract the direct path component in each received signal,
which is referred to as the LOS component in Section III-D.
In this technique, the direct path component is extracted with
the chirp FFT. Each transmitter transmits a chirp signal and
the received signal is demodulated with a local chirp signal
at the receiver. The magnitude of the direct path component
is obtained from the fast Fourier transform (FFT) of the
demodulated signal.

In [10] and [18], multipath mitigation techniques using
directional antennas or spatial diversity are proposed.
Kaltiokallio et al. [10] proposed directional RTI (dRTI),
which mitigates the influence of multipath fading by using
electrically switched directional antennas. In [18], spatial
diversity was adopted to mitigate the influence of multipath
fading. Each wireless node contains multiple antennas, and
multiple links are established between transmitters and
receivers. The influence of the multipath fading is reduced
by averaging the RSS values on these links.

In [15], [19], and [20], Bayesian learning techniques are
employed to mitigate the influence of multipath fading.
In these techniques, Bayesian modeling is applied to SLFs
or noise variance due to multipath fading. In [19], a sparse
Bayesian learning approach with the Laplace prior is utilized
to enhance the robustness against multipath fading based
on the fact that SLFs in device-free localization are sparse.
In [15] and [20], a sparse Bayesian approach based on
noise adaptive optimization was applied and the influence of
multipath fading was modeled with a mixture of Gaussian
distribution.

The binary RTI method proposed in this study uses a
new approach where elements of SLFs are defined as binary
values, where each pixel in an SLF equals to one if there
exists some object on it, and it equals to zero otherwise.
To the best of our knowledge, this approach has not been
considered so far. By binarizing the SLFs, the SLFs can
be estimated with LOS/NLOS identification of measurement
paths. In other words, accurate levels of LOS components are
not required. In a severemultipath environment, the proposed
RTI method estimates a two-dimensional MUSIC spectrum
as a function of AoAs and ToAs of incident signals in received
signals [24], [25], [26], and each received signal is identified
as a LOS or a NLOS signal, where a LOS (NLOS) signal
implies that it is transferred over a LOS (NLOS) path. To the
best of our knowledge, the approach using the LOS/NLOS
identification in RTI techniques has not been studied to
date.

TABLE 1. Summary of related works on existing multipath mitigation
techniques in RTI.

The idea of binarization in network performance metrics
has been studied in binary network tomography (or Boolean
network tomography) [29], [30], [31], [32], [33]. Network
tomography is a technique for estimating network internal
characteristics such as link loss rates and link delays from
observable measurements. In binary network tomography
techniques, the relationship between end-to-end measure-
ments and links states is formulated as a group testing
problem [34], and link failures or congested links in a network
can be detected from end-to-end measurements. To the best
of our knowledge, the proposed binary RTI method is the first
technique that adopts this idea in RTI.

III. RADIO TOMOGRAPHIC IMAGING
A. NOTATION
The superscripts ()T and ()H represent the and conjugate
transposes, respectively. ∥ · ∥p (p = 1, 2) represents the ℓp
norm and for a vector x = (x1 x2 · · · xN )T ∈ CN×1, ∥x∥p is
given by

∥x∥p =

(
N∑
n=1

|xn|p
)1/p

.

For a matrix Z = [zn1,n2 ]1≤n1≤N1,1≤n2≤N2 ∈ CN1×N2 , ∥Z∥∗

and ∥Z∥F denote the nuclear norm and Frobenius norm of Z,
respectively, given by

∥Z∥∗ =

min{N1,N2}∑
i=1

ξi, ∥Z∥F =

N1∑
i1

N2∑
i2

|zi1,i2 |
2,

where ξi (i = 1, 2, . . . ,min{N1,N2}) denote singular values
of Z.

B. SYSTEM MODEL
Fig. 1 presents an example of the factory layout, where there
areNAP APs andNMT mobile terminals (MTs), such as AGVs
and AMRs. Let A3 ∈ R3 denote the entire area in the
factory environment, while A2 ∈ R2 denote the 2D space
obtained by projecting A3 onto the X -Y plane. Let r(AP)i =

(r (AP)i,1 r (AP)i,2 hAP)T ∈ A3 (i = 1, 2, . . . ,NAP) and r
(MT)
j =

(r (MT)
j,1 r (MT)

j,2 hMT)T ∈ A3 (j = 1, 2, . . . ,NMT) denote
the positions of the i-th AP and the j-th MT, respectively,
where (r (AP)i,1 r (AP)i,2 )T, (r (MT)

j,1 r (MT)
j,2 )T ∈ A2, and hAP and hMT

denote the heights of APs and MTs, respectively. We assume
that APs are placed at fixed positions and MTs are moving
within a restricted area in A3. Each AP is equipped with
NA antenna elements and each MT is equipped with a single
antenna element.We assume thatMTs can communicate only

22420 VOLUME 11, 2023



T. Matsuda et al.: Binary Radio Tomographic Imaging in Factory Environments Based on LOS/NLOS Identification

FIGURE 1. System model.

with APs and MTs cannot communicate with each other.
Moreover, we assume that radio signals are fully reflected by
objects in the area.

We define (im, jm) (m = 1, 2, . . . ,M , im = 1, 2, . . . ,NAP,
jm = 1, 2, . . . ,NMT) as the pair of the im-th AP and the
jm-th MT, where M denotes the number of pairs. Let Pim,jm
denote the received power of a radio signal on the (im, jm)
link. Pim,jm [dBm] is expressed as

Pim,jm = PTX − Ppath(∥r
(AP)
im − r(MT)

jm ∥2) − Sm − wm,

where PTX, Ppath(∥r
(AP)
im − r(MT)

jm ∥2), Sim,jm , and wim,jm denote
the transmission power, path loss, shadowing loss, and
multipath fading loss, respectively. With constant parameters
α and β, Ppath(∥r

(AP)
im − r(MT)

jm ∥2) is given by

Ppath(∥r
(AP)
im − r(MT)

jm ∥2) = 10α log10 ∥r(AP)im − r(MT)
jm ∥2 + β,

where α (α ≥ 2) denotes as the path loss exponent.

C. PROBLEM FORMULATION
If APs and MTs are placed at various heights, SLFs in
higher (three or four) dimensional spaces can be estimated
using tensor recovery techniques [14]. However, because the
heights of APs and MTs are fixed in this study, we focus on
the SLF estimation in 2D space A2.
We divideA2 into N pixels with the same size. Let xn (n =

1, 2, . . . ,N ) denote the attenuation of signals at pixel n. SLF
is then defined as x = (x1 x2 · · · xN )T. Assume that PTX,
positions r(AP)im and r(MT)

jm , and parameters α and β are known
beforehand. The measurement ym for (im, jm) is then given by

ym = Sm + wm
= PTX − Pim,jm − Ppath(∥r

(AP)
im − r(MT)

jm ∥2)

Sm can be approximated as a weighted sum of xn [9] and is
described as

Sm =

N∑
n=1

a
(
r(AP)im , r(MT)

jm

∣∣∣ r̃n) xn =

∑
n=1

am,nxn

am,n ≜ a
(
r(AP)im , r(MT)

jm

∣∣∣ r̃n)
where r̃n denotes the center position of pixel n. We define the
measurement vector y = (y1 y2 · · · yM )T. The relationship

FIGURE 2. Inverse area elliptical model [12], [16] for radio signals with
5 GHz frequency.

between y and x is described as

y = Ax+ w,

where A = [am,n]1≤m≤M ,1≤n≤N and w = (w1 w2 · · · wM )T.
Several models for am,n have been considered [12]. In the

inverse area elliptical model [12], [16], am,n is set to am,n =

0 if ∥r̃n − r(AP)im ∥2 + ∥r̃n − r(MT)
jm ∥2 > d + λ/2, where

d = ∥r(AP)im − r(MT)
jm ∥ and λ denote the wavelength of the radio

signals. Otherwise, am,n is set to

am,n =
4

πζβ

(
r̃n; r

(AP)
im , r(MT)

jm

)√
d2 + ζ 2β

(
r̃n; r

(AP)
im , r(MT)

jm

) ,
ζβ
(
rn; r1,im , r2,jm

)
=

√
max

{
β2,

(
∥rn − r1,im∥2 + ∥rn − r2,jm∥2

)2
− d2

}
.

Fig. 2 presents examples of weights when the inverse area
elliptical model is used.

D. INFLUENCE OF MULTIPATH FADING
In amultipath channel, the channel impulse response h(τ ) can
be described as

h(τ ) =

L∑
l=1

hlδ(τ − τl), (1)

where L, hl , and τl denote the number of paths, complex
amplitude of the l-th path, and delay of the l-th path,
respectively. Without loss of generality, we set τ1 < τ2 <

· · · < τL . The first path then corresponds to the direct path.
Let PTX denote the transmission power of radio signals. The
received power PRX of a radio signal and the power PLOS of
the direct path are given by

PRX = PTX
L∑
l=1

|hl |2, PLOS = PTX|h1|2,

respectively. We refer to PLOS as the LOS component of
the channel. To represent LOS and NLOS signals in a
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unified manner, we consider that NLOS signals have the LOS
component with h1 = 0.

Fig. 3 presents the received powers of radio signals mea-
sured in the simulation environment in Section V. Figs. 3a
and 3b exhibit received powers of LOS signals and NLOS
signals vs. the distance between transmitters and receivers,
respectively. We observe that NLOS signals have comparable
received powers even though they have no direct path
component. As demonstrated by the inverse area elliptical
model in Section III-C, each element in measurement vector y
is dominated by the LOS component. Therefore, these figures
indicate that the SLF is underestimated, particularly in pixels
that these NLOS signals pass through. Fig. 3c presents LOS
components vs. received powers for LOS signals. We observe
that some signals have significantly smaller received powers
although the direct path components are included in the
signals. These LOS signals trigger the overestimation of the
SLF in some pixels because RTI considers that the signals are
highly attenuated.

In summary, highly reflective areas such as factory
environments deteriorate the performance of RTI. In the
proposed method, we address this problem by LOS/NLOS
identification.

IV. BINARY RADIO TOMOGRAPHIC IMAGING BASED ON
LOS/NLOS IDENTIFICATION
Fig. 4 presents the overview of the proposed binary RTI.
Let Y (m)

= [y(m)nA,k
]1≤nA≤NA,1≤k≤NSC ∈ CnA×NSC denote the

OFDM signal transmitted from the jm-th MT and received at
the im-th AP, where NSC represents the number of subcarriers
of the OFDM signal. Path state qm (m = 1, 2, . . . ,M )
represents the type of the (im, jm)-th path, where qm = 0 if
the path is LOS and qm = 1 otherwise. From Y (im,jm), qm is
estimated via the two-dimensional MUSIC method, which is
described by Section IV-A.
In the binary RTI, SLF x = (x1 x2 · · · xN )T is defined

as a vector with binary elements, where xn = 1 if there is
an object to attenuate the signal power in the pixel n, and
xn = 0 otherwise. x is estimated from the estimated path
states q̂ = (q̂1 q̂2 · · · q̂M )T. The algorithms to estimate x
are described in section IV-B. We assume that SLF x does
not change when estimating it. Therefore, x is estimated after
all qm (m = 1, 2, . . . ,M ) are obtained. Sequential or adaptive
estimators of x are not considered in this study.

A. LOS/NLOS IDENTIFICATION
Let hnA (t) denote the channel impulse response of signals
received at the nA-th antenna element (nA = 1, 2, . . . ,NA).
From (1), hnA (τ ) can be expressed as

hnA (τ ) =

L∑
l=1

clanA (θl)δ(τ − τl),

where cl θl denote the complex channel gain and AoA of the
l-th path, respectively. When adopting a uniform linear array

FIGURE 3. Received powers of LOS and NLOS signals.

with nA antenna elements spaced by d , anA (θ ) is given by

anA (θl) = exp
(

−j
2π (nA − 1)d sin(θl)

λ

)
,

where λ denotes the carrier wavelength. Let fk = (k −

1)f0 denote the k-th subcarrier frequency, where f0 represents
the subcarrier spacing. Subsequently, the t-th received
coefficient y(m)nA,k

(t) (t = 1, 2, . . . ,T ) of the k-th subcarrier
at the nA-th antenna element is then given by

y(m)nA,k
(t) =

∑L
l=1 s

(m)
k (t)c(m)l (t)anA (θl) exp (−j2π fkτl)

+ η
(m)
nA,k

(t),
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FIGURE 4. Overview of binary RTI.

where η(m)nA,k
(t) and T denote the noise and number of received

signals, respectively. s(m)k (t) (|s(m)k (t)| = 1, k = 1, 2, . . . ,K )
are transmitted symbols at sub-carrier fk and we define
y(m)(t) = (y(m)1,1(t) y

(m)
1,2(t) · · · y(m)NA,K

(t))T. In this subsection,
we focus on the LOS/NLOS identification for the (im, jm)-th
path, and omit the superscript (m) to simplify the notation.

We define steering vector b(θl, τl) as

b(θl, τl) = (b1,1(θl, τl) b1,2(θl, τl) · · · bNA,K (θl, τl))
T

bnA,k (θl, τl) = anA (θl) exp(−j2π fkτl),

= exp
(

−j
2π (nA − 1)d sin(θl)

λ

)
· exp(−j2π fkτl).

y(t) is then expressed as

y(t) = S(t) (b(θ1, τ1) b(θ2, τ2) · · · b(θL , τL)) c(t) + η(t)

= S(t)Bc(t) + η(t),

S(t) = diag(s(t) s(t) · · · s(t))

s(t) = (s1(t) s2(t) · · · sK (t))

B = (b(θ1, τ1) b(θ2, τ2) · · · b(θL , τL)) ,

c(t) = (c1(t) c2(t) · · · cL(t))T

η(t) = (η1,1(t) η1,2(t) · · · ηNA,K (t))
T.

Since S(t) represents a diagonal matrix and |sk (t)| = 1,
we obtain

S(t)Bc(t)cH(t)BHSH(t) = Bc(t)cH(t)BH.

By assuming that ηnA,k (t) (nA = 1, 2, . . . ,NA, k =

1, 2, . . . ,K ) are zero mean uncorrelated complex Gaussian
variables with variance σ 2

η , the correlation matrix R is
obtained as

R = E(y(t)yH(t))

= BE(c(t)cH(t))BH
+ σ 2

η INAK ,

where INAK denotes the NAK × NAK identity matrix.
Let µp and up (p = 1, 2, . . . ,NAK , µ1 ≥

µ2 ≥ · · ·µNAK ) denote the p-th eigenvalue of R and the

eigenvector associated with µp. We define a column span
S = span{u1,u2, . . . ,uNAK } and divide S into a signal
subspace SS = span{u1,u2, . . . ,uNS} and a noise subspace
SN = span{e1, e2, . . . , eNN}, where NS + NN = MK and
ep = up+NS (p = 1, 2, . . . ,NN). The MUSIC spectrum
PMUSIC(θ, τ ) is then defined as

PMUSIC(θ, τ ) =
bH(θ, τ )b(θ, τ )

bH(θ, τ )ENEH
Nb(θ, τ )

,

where EN = (e1 e2 · · · eNN ). We assume that all the MTs are
perfectly localized by adopting a localization method without
RF signals such as light detection and ranging (LiDAR)
[36], [37], [38]. Recall that r(AP)im and r(MT)

jm represent the
positions of AP im and MT jm (m = 1, 2, . . . ,M ),
respectively. We define θ̂LOS(im, jm) as the direction of
the direct path on (im, jm), which can be computed from

r(AP)im − r(MT)
jm , and τ̂LOS(im, jm) as

τ̂LOS(im, jm) =
∥r(AP)im − r(MT)

jm ∥2

c
,

where c denotes the speed of light.
With threshold Pth, qm is given by

qm =

{
0 if PMUSIC(θ̂LOS(im, jm), τ̂LOS(im, jm)) ≥ Pth
1 otherwise

Since ENEH
N has NN eigenvalues of 1,

zHENEH
Nz

zHz
≤ 1,

for arbitrary complex vector z ∈ CNAK×1. Therefore, we set
Pth > 1.

In general, for AoA estimation problems, to identify AoAs,
it is necessary to search peaks in the MUSIC spectrum with a
peak search algorithm [39], or to solve a polynomial equation
in Root-MUSIC methods [40]. However, in the proposed
method, the above LOS/NLOS identification method is
advantageous in terms of computational complexity because
it does not require such a peak search technique.

B. BINARY RADIO TOMOGRAPHIC IMAGING
We define Qm ⊂ {1, 2, . . . ,N }, where n ∈ Qm if the
line between AP im and MT jm crosses the pixel n. The
relationship between x and q can be described as

qm =

∨
n∈Q(m)

am,n ∧ xn

= (am,1 ∧ x1) ∨ (am,2 ∧ x2) ∨ · · · (am,n ∧ xn),

am,n =

{
1 n ∈ Qm
0 n /∈ Qm,

(2)

where ∨ and ∧ represent OR and AND operations, respec-
tively. The binary RTI attempts to estimate x from q̂, and
from the above relationship, this problem can be formulated
as a combinatorial optimization problem. In this study,
we consider two methods to solve the binary RTI problem:
a simple method and low rank approximation method.
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Algorithm 1 Greedy Algorithm for Binary RTI
Input: ym, Qm (m = 1, 2, . . . ,M )
Output: xn (n = 1, 2, . . . ,N )
1: xn := 1 (n = 1, 2, . . . ,N )
2: for m = 1 to M do
3: if ym = 0 then
4: for all n ∈ Qm do
5: xn := 0
6: end for
7: end if
8: end for

1) SIMPLE METHOD
Algorithm 1 outlines the algorithm of the simple method,
which is a type of greedy algorithms. Initially, all elements
of x are set to one, which implies that there are objects in
all pixels. If the path (im, jm) is identified as LOS (that is,
q̂m = 0), xn for ∀n ∈ Qm are changed to xn = 0. Although
this algorithm is very simple, pixels that are not included in
any path are estimated to be one.

2) LOW RANK OPTIMIZATION METHOD
The low rank approximation method comprises optimization,
filtering, and binarization. In optimization, the SLF is
estimated from estimated path states q̂. The estimated SLF
includes impulsive noise, also known as salt-and-pepper
noise in image processing. Specifically, there is a small
number of pixels with valuesmore than zero in areas thatmost
pixels have zero values. The impulsive noise is discarded by
filtering. Finally, the filtered SLF is binarized by comparing
each pixel with threshold.

a: OPTIMIZATION
In the low rank optimization method, xn (n = 1, 2, . . . ,N )
are relaxed to real values satisfying 0 ≤ xn ≤ 1. From (2), xn
satisfies the following equations:∑

n∈Qm

am,nxn = 0 if qm = 0,

∑
n∈Qm

am,nxn ≥ 1 if qm = 1.

We assume that A2 is a rectangular area with W1 ×

W2 [m2] and it is divided it into N1 × N2 pixels with a
size of δ × δ [m2]. We define Z = [zn1,n2 ]1≤n1≤N1,1≤n2≤N2

as zn1,n2 = xn1+(n2−1)N1 , i.e., Z is a matricization of x.
We assume that Z is an approximately low rank matrix.
For a given q̂, Z can be estimated by using a nuclear norm
optimization with total variation [41]:

min
Z

(1 − γ )∥Z∥∗ + γ (∥8Z∥F + ∥Z9∥F)

subject to
∑

n1+(n2−1)N1∈Qm

am,nzn1,n2 = 0 if q̂m = 0,

∑
n1+(n2−1)N1∈Qm

am,nzn1,n2 ≥ 1 if q̂m = 1,

FIGURE 5. Factory environment for simulation experiments.

TABLE 2. Parameters for simulation experiments.

0 ≤ zn1,n2 ≤ 1

n1 = 1, 2, . . . ,N1, n2 = 1, 2, . . . ,N2, (3)

where 8 = [φi1,i2 ]1≤i1,i2≤N1 and 9 = [ψj1,j2 ]1≤j1,j2≤N2 are
given by

φi1,i2 =


1 if i1 = i2, 1 ≤ i1, i2 ≤ N1 − 1

−1 if i2 = i1 + 1, 1 ≤ i1 ≤ N1 − 1
0 otherwise,

ψj1,j2 =


1 if j1 = j2, 1 ≤ j1, j2 ≤ N1 − 1

−1 if j2 = j1 − 1, 2 ≤ j1 ≤ N1
0 otherwise.

b: FILTERING
To discard impulsive noise, we apply a two dimen-
sional median filter to the estimated SLF Z(LR) =

[z(LR)n1,n2 ]1≤n1≤N1,1≤n2≤N2 with the nuclear norm optimiza-
tion (3). The median filtered SLF Z(Med)

= [z(Med)
n1,n2 ] is given

by [42]

z(Med)
n1,n2 = median{z(LR)n1−i1,n2−i2

| (i1, i2) ∈ W},

where W represents a window. In this study, we adopt the
(3 × 3) window. The median filter is a non-linear filter and is
beneficial for eliminating impulsive noise.
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FIGURE 6. MUSIC spectrums for LOS and NLOS environments. Red lines
correspond to (θ̂LOS(im, jm), τ̂LOS(im, jm)).

FIGURE 7. FPR and FNR vs. threshold P(dB)
th .

c: BINARIZATION
Each element in Z(Med) is binarized by comparing z(Med)

n1,n2 with
zth, and finally Z(Bin) = [z(Bin)n1,n2 ] is obtained, i.e.,

z(Bin)n1,n2 =

{
1 z(Med)

n1,n2 ≥ zth

0 z(Med)
n1,n2 < zth.

To obtain zth, we apply the Otsu’s threshold selection
method [43].

V. PERFORMANCE EVALUATION
A. SIMULATION ENVIRONMENT
In this section, we evaluate the performance of the proposed
binary RTI method with simulation experiments. Fig. 5

FIGURE 8. Estimated SLF with the simple method.

presents the factory environment for simulation experiments,
where W1 = W2 = 100 [m] and 12 APs were placed
at hAP = 5 [m]. We set δ = 2.5 [m]; hence, N1 =

N2 = 40. Bärring et al. [6] adopted a simplified simulation
model for factory environments, where only flat and slowly
curved surfaces of scatters are supported. Moreover, the
materials of the walls, floor, and ceiling are assumed to be
perfect electrical conductors (PECs). In this study, we adopt
a similar simplified model with simple shaped objects in
the rectangular area, and assume that all the objects, walls,
and ceiling are PECs, and the floor is concrete. MTs are
randomly placed within the movable area in the figure and
we set hMT = 2.0 [m]. Radio channels between APs andMTs
are generated with EEM-RTM [44], which is a ray-launching-
based radio propagation simulator.

Note that the localization error affects the perfor-
mance of the proposed method because θ̂LOS(im, jm) and
τ̂LOS(im, jm) (m = 1, 2, . . . ,M ) are computed from position
r(MT)
jm of MT jm, as described in section IV-A. However,
in this study, we do not consider the localization error. More
specifically, we assume an ideal situation where all MTs are
perfectly localized. The reason is that the aim of this study
is to demonstrate the basic performance of the binary RTI.
In the future research, we will consider a joint localization
and RTImethod, which combines the binary RTImethodwith
a localization algorithm.
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FIGURE 9. Estimated SLFs with low-rank approximation method for P(dB)
th = 20 [dB] (upper) and P(dB)

th = 30 [dB] (lower).

Table 2 presents the parameters for radio signals. For each
received signal, we added a noise with power BkB × T0 ×

NF, where B represents the bandwidth of the signal, kB =

1.381 × 10−23, T0 = 290 K, and NF = 9 dB. We implement
the proposed RTI method using MATLAB R2022b [45].

Note that we do not compare the performance of the
proposed binary RTI method with other RTI methods because
to the best of our knowledge, there are no RTI methods
with binarized SLFs. Instead, we compare two approaches
for the binary RTI method, i.e., the simple and low rank
approximation methods.

B. SIMULATION RESULTS
1) PERFORMANCE OF LOS/NLOS IDENTIFICATION
We first evaluate the performance of the LOS/NLOS
identification method with 2D MUSIC. The number T of
received signals to compute a correlation matrix R is set
to T = 30. The LOS/NLOS identification is conducted
for Nall = 6000 AP-MT pairs of an AP and MT,
where MTs are randomly placed within the area. Fig. 6
presents examples of the MUSIC spectrum P(dB)MUSIC(θ, τ ) =

10 log10 PMUSIC(θ, τ ) for LOS (Fig. 6a) and NLOS (Fig. 6b)
environments. In both figures, there are peaks which

corresponds toAoAs and ToAs ofmultipath components. The
red lines represents (θ̂LOS(im, jm), τ̂LOS(im, jm)). In Fig. 6a,
we observe that there is a peak at the same AoA and
ToA as the red line, which means that there is a peak at
(θ̂LOS(im, jm), τ̂LOS(im, jm)) in the case of the LOS environ-
ment. Therefore, we can identify LOS/NLOS by comparing
the spectrum at (θ̂LOS(im, jm), τ̂LOS(im, jm)) with threshold
Pth.

LetNLOS andNNLOS denote the number of LOS and NLOS
paths, respectively, where NLOS + NNLOS = Nall, and NFP
and NFN denote the number of NLOS paths identified as LOS
paths and the number of LOS paths identified as NLOS paths,
respectively. We define the false positive rate FPR and false
negative rate FNR as

FPR =
NFP

NNLOS
, FNR =

NFN

NLOS
.

Fig. 7 presents FPR and FNR vs. P(dB)th = 10 log10 Pth. The
number of antenna elements is set to NA = 1, 2, 4, 8, where
PMUSIC(θ, τ ) with NA = 1 corresponds to the 1D MUSIC
spectrum. We observe that FPR for NA = 2 is significantly
improved as compared with FPR forNA = 1, which indicates
that the 2DMUSIC is effective for LOS/NLOS identification.
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Additionally, we also observe that FPR for NA = 2, 4, 8 are
almost the same and FNR are slightly increased with NA.
Therefore, in the following simulation results, we setNA = 2.
We evaluate the performance of the SLF estimation methods
for P(dB)th = 20 and 30. When P(dB)th = 20, both FPR and FNR
are smaller than 10−1. On the other hand, when P(dB)th = 30,
FPR is smaller than 10−2, but FNR is larger than 10−1.

2) PERFORMANCE OF SLF ESTIMATION
We conduct the simple and low rank approximation methods
by randomly selectingM = 700AP-MT pairs. Fig. 8 presents
SLFs estimated with the simple method. Figs. 8a and 8b
correspond to the SLFs for P(dB)th = 20 and 30, respectively.
By comparing Figs. 5 and 8, we observe that the simple
method can estimate the SLF. However, the estimated
SLF includes impulsive noise because some pixels are not
included on any measurement path. We also observe that the
estimated SLF for P(dB)th = 30 includes impulsive noise in
more pixels than that for P(dB)th = 20. The reason is that
when P(dB)th = 30, more false negative errors are included
in the LOS/NLOS identification, as illustrated in Fig. 7.
Specifically, many LOS paths are identified as NLOS paths.

Estimated SLFs with the low rank optimization method
with P(dB)th = 20 are presented in upper subfigures of
Fig. 9, where Figs. 9a, 9b, and 9c correspond to Z(LR),
Z(Med), and Z(Bin), respectively. We set γ = 0.1 for
the nuclear optimization. We observe that Z(LR) is similar
to the SLF in Fig. 8a, which is an estimated SLF by
the simple method. However, the impulsive noise can be
reduced via median filtering because the SLF is relaxed to
real values. As depicted in Fig. 9b, almost all pixels with
impulsive noise are discarded in Z(Med). Fig. 10a presents
the empirical probability density function (EPDF) of Z(Med).
As illustrated in the figure, EPDF is a bimodal distribution,
where the lower clump corresponds to pixels without any
objects and the higher clump corresponds to pixels that may
include physical objects. Therefore, we can apply the Otsu’s
threshold selection, to binarize the pixels. Fig. 9c presents
the binarized SLF Z(Bin). We observe that the low rank
approximation method can obtain a finer SLF than the simple
method.

Estimated SLFs with the low rank optimization method
with P(dB)th = 30 are presented in lower subfigures of Fig. 9,
where Figs. 9d, 9e, and 9f correspond to Z(LR), Z(Med), and
Z(Bin), respectively. Since the LOS/NLOS identification with
P(dB)th = 30 exhibits a higher false negative rate and the
nuclear optimization reduces the rank of Z(LR), Z(LR) in
Fig. 9d includes more pixels with smaller non-zeros values
than in Z(LR) in Fig. 9a. Therefore, although impulsive noise
can be removed by median filtering, Z(Med) in Fig. 9e also
includes pixels with smaller values than Z(Med) in Fig. 9b.
The result affects the performance of binarization. Fig. 10b
presents the EPDF of Z(Med) for P(dB)th = 30, which is a
bimodal distribution as Z(Med) for P(dB)th = 20. However,
because it is a more spread distribution, it is difficult to

FIGURE 10. Empirical probability density function of median filtered
estimated spatial loss field.

discriminate the two clumps with an adequate threshold.
Therefore, as shown in Fig. 9f, most of the pixels are decided
to be zero.

VI. CONCLUSION
In this study, we have investigated SLF estimation in factory
environments, where there are several metallic objects,
metallic walls, and a metallic ceiling, which cause a severe
multipath fading channel. To estimate the SLF in such a
severe environment, we proposed the binary RTI method,
where elements in a SLF are binarized. The simulation results
demonstrate that the binary RTI method can estimate the
SLF by combining it with the 2D MUSIC-based LOS/NLOS
identification. We have evaluated the estimated SLFs for
threshold parameter P(dB)th = 20 and 30. Both FPR and
FNR are smaller than 10−1 when P(dB)th = 20. Meanwhile,
FNR is larger than 10−1 when P(dB)th = 30. From the
simulation results, we have observed that the estimated SLFs
with P(dB)th = 20 are better than those with P(dB)th = 30. The
result indicates that the LOS/NLOS identification is a key
component in the binary RTI method, and should be further
investigated in the future research.
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Since the purpose of this study is to propose the idea of
the binary RTI method and evaluate its basic performance,
certain unresolved issues remain in this research:

• Although we adopt the 2D MUSIC method, there
have been some techniques for LOS/NLOS identifica-
tion [46], [47]. The LOS/NLOS identification is a crucial
and difficult research topic that should be investigated by
considering these existing techniques.

• In the LOS/NLOS identification, we assumed that MTs
are perfectly localized by a localization scheme, such
as a LiDAR-based localization technique. However,
this is not cost-effective because additional hardware
for LiDAR is required. We will consider localization
techniques based on radio signals for the binary RTI
method.

• We have two methods to estimated SLFs: the simple
greedy method and the low-rank optimization method.
The former method is simple; however, it cannot
completely remove impulsive noise in the estimated
SLF. On the other hand, the latter method can obtain a
finer SLF than the former method; however, it requires a
significant computational cost especially for the nuclear
optimization. To implement a more cost-effective
and accurate estimator, we need to investigate other
approaches.

• The estimated binarized SLF can be adopted for
designing wireless networks in factory environments
such as relay node placement techniques [48].

• More sophisticated network designs can be realized if
3D SLFs are obtained. To do so, the binary RTI problem
should be formulated in the 3D space.

We will address these technical issues in our future research.
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