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ABSTRACT We develop a hybrid model-based data-driven seizure detection algorithm called Mutual
Information-based CNN-Aided Learned factor graphs (MICAL) for detection of eclectic seizures from
EEG signals. Our proposed method contains three main components: a neural mutual information (MI)
estimator, 1D convolutional neural network (CNN), and factor graph inference. Since during seizure the
electrical activity in one or more regions in the brain becomes correlated, we use neural MI estimators
to measure inter-channel statistical dependence. We also design a 1D CNN to extract additional features
from raw EEG signals. Since the soft estimates obtained as the combined features from the neural MI
estimator and the CNN do not capture the temporal correlation between different EEG blocks, we use them
not as estimates of the seizure state, but to compute the function nodes of a factor graph. The resulting
factor graphs allows structured inference which exploits the temporal correlation for further improving the
detection performance. On public CHB-MIT database, We conduct three evaluation approaches using the
public CHB-MIT database, including 6-fold leave-four-patients-out cross-validation, all patient training;
and per patient training. Our evaluations systematically demonstrate the impact of each element in MICAL
through a complete ablation study and measuring six performance metrics. It is shown that the proposed
method obtains state-of-the-art performance specifically in 6-fold leave-four-patients-out cross-validation
and all patient training, demonstrating a superior generalizability.

INDEX TERMS Epilepsy, mutual information, factor graphs, convolutional neural network, deep learning,
seizure, EEG, neural mutual information estimator.

I. INTRODUCTION
Epilepsy is a chronic neurological disorder that is accom-
panied by the sudden and unforeseen occurrence of signs
or symptoms resulting from abnormal electrical activity in
the brain that may cause seizures [2]. According to World
Health Organization, about 50 million people worldwide are
diagnosed with epilepsy [3]. The extensive sudden discharges
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in neural brain activity due to epileptic seizures can lead
to life-threatening impacts such as involuntary movements,
sensations, and emotions and may cause a temporary loss of
awareness and even death [4].

A. DIAGNOSTIC TESTS FOR EPILEPSY
There are many different physiological tests as well as
imaging and monitoring techniques used to evaluate if a
person has a form of epilepsy, and the type of seizure
the patient is experiencing. The physiological tests include
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reviewing medical history [5], performing blood tests to
observe the metabolic or genetic disorders associated with
the seizures [6], [7], or monitoring other health conditions
that could trigger epileptic seizures [7]. Imaging and
monitoring are the most popular tools for detecting epileptic
seizures. In this regard, various screening techniques such
as magnetoencephalogram (MEG) [8], computed tomogra-
phy (CT) [9], positron emission tomography (PET) [10],
and magnetic resonance imaging (MRI) [11] have been
employed. Among these techniques, electroencephalogram
(EEG) is considered to be the most powerful method as it
shows clear rhythmic electrical activities of the neurons [12].

There are two types of EEG recordings: the invasive
Electrocorticography (ECoG) [13], and the non-invasive
scalp EEG. ECoG is typically used when a patient is
diagnosed with refractory surgery as it provides direct mea-
surement of brain electrical activity by implanting electrodes
on the cortex [14]. In scalp EEG, multiple electrodes are
placed on the scalp of individuals for recording electrical
activity [13]. This technique is widely preferred as it is non-
invasive, economical, and portable.

From a clinical point of view, a neurologist can analyze
abnormalities in EEG signals through visual inspection to
understand the presence or the type of epileptic seizures.
However, this diagnosis is time-consuming as it requires
careful inspection of data from long recording sessions
by a neurologist [15], and is subject to inter-observer
variability [16]. Moreover, EEG measurements are usually
contaminated by undesired artifacts and noise that can
interfere with neural information and cause misdiagnosis of
epileptic seizures [17]. To address these issues, an automatic
seizure detection algorithm is desirable.

B. AUTOMATED SEIZURE DETECTION FROM EEG SIGNALS
Since scalp EEG signals are non-invasive and pain-less
with fewer side effects, they have been broadly used in
diagnosing neural disorders such as stroke [18], [19], sleep
disorders [20], and epilepsy. In this work, we focus on
detecting epileptic seizures.

Several different methods for automatically detecting
seizures from EEG recordings have been proposed in the
literature. These techniques can be categorized into two
different approaches: Machine learning and signal processing
approaches based on engineered features extracted from the
recordings, and machine learning approaches applied to raw
EEG recordings.

1) FEATURE-BASED DETECTION
Spike detection is the most popular feature-based method
that aims to identify seizure spikes in the multichannel
EEG recording with high sensitivity and selectivity [21].
Generally, spike detection methods are divided into different
categories including template matching [22], [23], mimetic
analysis [24], [25], power spectral analysis [26], wavelet
analysis [27], and techniques based on artificial neural
networks [28], [29], [30].

Most of the recent feature-based designs use the extracted
features as input to deep learning (DL) algorithms for
seizure detection. The authors in [31] first generated three
different features based on Fourier, wavelet, and empirical
mode decomposition transforms. They then applied a shallow
2D convolutional neural network (CNN) and concluded
that Fourier transform achieved the best results. Another
wavelet-based deep learning approach was performed in [32].
In this method, discrete wavelet transform (DWT) was
used to extract time-frequency domain features in five sub-
band frequencies, and then, a 2D CNN architecture was
employed to learn the features from predefined coefficients.
Applying 1D CNN to time-frequency features was observed
in [33], [34]. In the proposed method, first DWT of signals
was processed, and a 1D CNN architecture then performed
detection.

Feature-based design mainly depends upon the expert
definition of EEG characteristics such as slop, duration,
height, and sharpness, which are not sufficient enough to
represent an epileptic seizure spike, and it can result in
high false detection rate [35]. Moreover, using a different
transforms such as Fourier or wavelet transform as input
to DL models requires careful engineering and considerable
domain expertise to design a feature extractor that transforms
the raw data into a suitable representation [36]. However,
this strategy is difficult since various types of patterns appear
when a seizure occurs [37]. Moreover, many interfering
artifacts in the signal, for example due to blinking or muscle
activity, can have structures similar to the seizure patterns.

2) SIGNAL-BASED DETECTION
In the past decade, different DL models have been investi-
gated and tested in the area of seizure detection and analysis
of time series EEG signal. For example, in [38], after using
a notch filter, a 1D CNN with few convolutional layers
was employed to detect interictal epileptiform spikes due
to seizures. Acharya et al. [39] applied a 3-layer CNN
architecture to the normalized EEG signals. A 2DCNN archi-
tecture was implemented in [40] and applied to a multi-class
classification problem, where the EEGwas labeled according
to different stages of seizure. Boonyakitanont et al. [41]
proposed a detection scheme using raw EEG records divided
into 4-second blocks followed by a deep 2DCNNarchitecture
to learn the features from EEG signals. They showed state-
of-the-art performance based on the detection accuracy when
per-patient training was employed.

To capture the temporal dependencies, some prior work
have explored recurrent neural networks (RNNs) [42], [43].
Hussein et al. [44] used a deep RNN, particularly an
Long-Short Term Memory (LSTM) to the segmented EEG
signals to learn the most robust features from recordings.
Aristizabal et al. [45] developed another LSTM-based seizure
detection technique for six pairs of EEG signals. The
performance of GRU was explored in [46]. In this model,
the GRU-hidden unites were used to classify EEG into
three different classes: healthy, inter-ictal and ictal (i.e.,
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seizure) states. Roy et al. [47] proposed an architecture
termed ChronoNet by stacking multiple 1D convolution
layers followed by GRU layers.

While signal-based designs are widely used in the litera-
ture, training models that are generalizable and perform well
across different patients requires large networks and very
large datasets. This is due to patient-to-patient variability and
the fact that EEG recordings are inherently very noisy. Hence,
end-to-end training on raw EEG data may not achieve the best
performance in practice due to lack of access to large datasets,
as well as limitations imposed by computational complexity,
both during training or during inference. The challenges
associated with previous works motivate the formulation
of a reliable automatic seizure detection algorithm which
generalizes to different patients, benefits from both temporal
and inter-channel correlation, and is computationally efficient
facilitating its application in real-time.

C. CONTRIBUTIONS
In this paper, we propose Mutual Information-based CNN-
Aided Learned factor graphs (MICAL), which is a hybrid
model-based/data-driven approach [48] for automatic seizure
detection. This algorithm contains three main novel aspects:

• In contrast to prior works, we carefully design a 1DCNN
to process the EEG signals with a higher receptive field
and minimal preprocessing. This results in extracting
features that capture longer-term dependencies from raw
EEG signals.

• We use a neural mutual information (MI) estimator to
compute the inter-channel dependence between EEG
channels during the seizure. When a seizure occurs
in one or more EEG channels, the patterns of other
channel recordings are affected, and the signals between
the channels become correlated at the beginning and
during ictal (i.e., seizure) state [49], [50]. Compared
to the traditional methods for evaluating levels of
dependence, including cross-correlation, MI can capture
higher-order statistical dependence between recordings.
This is helpful in seizure detection since non-linear
relationships often exist between EEG channels during
a seizure.

• We propose an inference method that uses the estimates
obtained from the extracted features at each time interval
to form a learned factor graph [51], which captures the
temporal correlations in EEG recordings. By applying
message passing over the learned factor graph, seizures
can be detected more efficiently than deep learning
approaches based on RNNs.

The performance of MICAL is comprehensively explored
via six performance measures as well as three evaluation
strategies. Using an extensive ablation study we system-
atically show that each component of MICAL contributes
positively to its performance. Comparing MICAL with
prior works, we demonstrate that our proposed method
achieves state-of-the-art results in terms of performance and
generalizability, with the gains being most notable when
given access to medium sized datasets. It should be noted that

a dataset with more than 1000 patients is considered large
here, while a dataset with less than 100 patients is considered
small. A data set with 100s of patients is considered a
medium-sized dataset.

The rest of this paper is organized as follows. In Section II,
we discuss the seizure detection problem as well as the chal-
lenges related to traditional approaches for seizure detection.
Section III describes the proposedMICAL. A comprehensive
numerical evaluation of MICAL is reported in Section IV.
Finally, we conclude the paper with summary discussions and
future research direction in Section V.

II. EEG-BASED SEIZURE DETECTION SYSTEM MODEL
As mentioned in Section I-A, automatic seizure detection
can improve the traditional approach, which is based on
time-consuming visual inspection by neurologists. Moreover,
for some patients, long-term monitoring is required for
diagnosis. In these cases, the patients or their families are
asked to report the number of seizures that occur during
their daily lives. However, this approach has considerable
limitations due to inaccurate descriptions of seizures and
their frequency. Hence, automatic seizure detection can
also provide a more elaborate and accurate technique for
quantifying the number/type of seizures during long-term
patientmonitoring, resulting in better research, diagnosis, and
selection of appropriate treatment options.

In this paper, seizure detection refers to the identification
and localization of the ictal time intervals from EEG record-
ings of patients with epileptic seizures [52]. To formulate
this mathematically, let X = {X1,X2, · · · ,XN } be the
EEG recordings of a patient, where N represents the number
of channels. Each measured channel X i is comprised of n
consecutive blocks, e.g., blocks of 1-second recordings, and
we write X i = [x(i)t1 , x(i)t2 , · · · , x(i)tn ], where x

(i)
t is the signal

corresponding to the i-th EEG channel during the t-th block.
The seizure state for each block is represented as a binary
vector s = [st1 , . . . stn ], where st ∈ {0, 1} models whether or
not a seizure occurs in the t-th block. Our goal is to design a
system that maps the EEG recordings X into an estimate of s,
which is equivalent to finding the time indices where seizure
occurs.

To model the relationship between the EEG signals X and
the seizure states s, one must consider both inter-channel
dependence as well as temporal correlations underlying the
recordings. The former stems from the fact that when the
seizure starts, the epileptic activity propagates to other areas
in the brain [50], which affects the patterns of other channel
recordings [53]. Thismanifests as a high dependence between
different channels, i.e., between x(i)t and x(j)t , i ̸= j, when t is
at the beginning and during ictal phase. Fig. 1 demonstrates
the signal patterns during seizure vs. no-seizure states. Our
proposed solution, detailed in Subsection III-A, uses neural
MI estimators to capture this dependency.

Temporal correlation results from the fact that seizures typ-
ically spanmultiple recording blocks. Thus, the probability of
observing a seizure at time instance t depends on the presence
of a seizure in the previous block, and as a result the entries
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FIGURE 1. Inter-channel correlation during seizure vs. no-seizure.

of s can be approximated by a Markovian structure [54]. Our
proposed solution, detailed in Subsection III-C, exploits this
statistical structure using factor graphs.

In the next section, we describe our proposed approach to
automatic seizure detection in detail.

III. PROPOSED MICAL ALGORITHM
In this section we present the proposed MICAL seizure
detector. Our design of MICAL is based on the following
considerations:

1) The level of statistical dependence between different
channels provides an indication for the presence of a
seizure.

2) Direct processing of the signal is preferable as it avoids
the need for careful feature engineering.

3) The temporal correlation between different blocks can
be approximated as obeying a Markovian structure.

4) The detection algorithm must be operable with low
complexity and should not require massive data sets for
its training.

Based on these consideration, we propose MICAL, whose
structure is illustrated in Fig 2. In the rest of this section,
we describe each component of MICAL. To account for the
inter-channel dependence 1, we employ a neuralMI estimator
block described in Subsection III-A; To extract more features
from the EEG recordings directly following 2, we design
a 1D CNN architecture detailed in Subsection III-B. These
two blocks are used to estimate seizure probability for a
given block. Finally, to account for temporal correlations
following 3 and do so in computationally efficient manner 4,
we use estimates over different blocks to form a learned factor
graph, as detailed in Subsection III-C.

A. NEURAL MUTUAL INFORMATION ESTIMATION
In order to compute inter-channel correlation among record-
ings, the most popular approach is cross-correlation, which
is a measure of similarity between one signal and the
time-delayed version of other signals. However, this method
cannot capture the nonlinear relationship between samples,
which are likely to occur in EEG signals during the seizure.
Unlike cross-correlation, MI represents higher-order joint
statistics and is thus able to capture arbitrary statistical
dependence between samples, even in the presence of

nonlinear relationship between the signals. Mathematically,
MI can be formulated as:

I (X1;X2) =

∫
X1×X2

log
(

dPX1X2
dPX1 ⊗ PX2

)
dPX1X2 (1)

where PX1X2 is the joint probability distribution and PX1 and
PX2 are marginals. The X1 and X2 represent two random
variables where in the case of seizure detection, they can be
interpreted as the recordings for two different channels.

The MI can be expressed as the Kullback-Leibler (KL)
divergence between the joint and the product of the marginals
of two random variables X1 and X2 [55]:

I (X1,X2) = DKL(PX1X2∥PX1 ⊗ PX2 ) (2)

where DKL is defined as:

DKL(P∥Q) := EP

[
log

dP
dQ

]
(3)

Although MI is a reliable measure to capture statistical
dependence, the exact calculation based on (1) and (3)
for finite continuous and non-parametric EEG samples is
challenging [56]. To facilitate MI computation we use the
Smoothed Mutual Information ‘‘Lower-bound’’ Estimator
(SMILE) of [57], which provides further improvements
on Mutual Information Neural Estimator (MINE) proposed
in [58]. Thus, to describe ourMI estimator, we briefly explain
the operation of MINE and that of SMILE.

A key technical aspect of MINE is dual representations
of the KL-divergence, which is based on Donsker-Varadhan
representation [59]. This representation leads to the following
lower bound where the supremum is taken over all functions
T such that the two expectations are finite.

DKL(P∥Q) ≥ sup
T∈F

EP [T ] − log
(
EQ

[
eT

])
(4)

Using both (3) and dual representation of KL-divergence,
the idea is to choose F to be the set of functions
Tθ : X1 × X2 −→ R parametrized by a deep neural network
with parameters θ ∈ 2, and the apply moving average
gradient ascent to find the optimal parameters. This network
is called statistics network, where the bound is calculated as:

I (X1;X2) ≥ Iθ (X1,X2) (5)

and the neural information measure, Iθ (X1,X2) is defined as:

Iθ (X1,X2) = sup
θ∈2

EPX1X2 [Tθ ] − log
(
EPX1⊗PX2

[
eTθ

])
(6)

An important limitation of MINE is the large variance of
the estimator, which can grow exponentially with the ground
truth MI value to be estimated from the samples. In order
to solve the variance problem, [57] proposes SMILE by
introducing a clipping function in (6), resulting in

Îθ (X1;X2) = EPX1X2
[Tθ ] − logEPX1PX2

[
clip(eTθ , e−τ , eτ )

]
,

(7)
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FIGURE 2. MICAL illustration including spatial processing via MI estimation and 1D CNN processing followed by factor graph inference for temporal
processing.

where clip(v, l, u) = max(min(v, u), l), and τ is a constant
parameter that provides a knob for better tuning the bias-
variance trade-off. In [57], it was shown that while τ can
be tuned to reduce the variance, it may not increase the bias
significantly.

In order to ensure MI is a good measure to compute
dependency between EEG channels, we compare SMILE
with three other popular correlation measures:

• The instantaneous phase synchrony measures the phase
similarities between signals at each time-point [60].

• The Pearson correlation measures the strength of the
linear relationship between two random variables [61].

• The distance correlation is a measure of association
strength between non-linear random variables [62].

Fig. 3 compares these three methods with SMILE. Specif-
ically, we evaluate the degree of dependence between all
pairs of channels for time blocks of 4 seconds during seizure
as well as during no-seizure regions. We then evaluate
average across all blocks for the seizure and no-seizure
zones. Based on these mean values, SMILE is the most
powerful indicator of highly inter-channel correlation during
the seizure compared to the other three correlation measures,
which was in agreement with manual inspection of the EEG
signals.

Based on the above observation, we use SMILE inMICAL
to estimate I (x(i)t ; x(j)t ) at each block t for each channel pair
i, j. Since MI is symmetric, i.e., I (x(i)t ; x(j)t ) = I (x(j)t ; x(i)t ),
we only estimate the MI for j > i. We set the parametric Tθ

to be a fully-connected network with two hidden layers with
ReLU activations, and we set τ = 0.9 in the objective (7).

B. 1D CNN
In parallel to MI estimation, we design and employ a
1D CNN in order to produce latent representation of raw
EEG signals. For having a similar configuration with the
baseline model [41], the same number of layers, including

convolutions, pooling, dropout, and fully connected layers,
are chosen. As shown in Fig. 2, we design the kernel size
to obtain a high receptive field compared to prior works.
Our proposed 1D CNN is able to cover almost 1 second of
data, while previous studies had a receptive field of only
30milliseconds. Having a high receptive field leads to captur-
ing long-term correlation as well as capturing low-frequency
components of EEG signals. Moreover, compared to 2D
CNN, 1D CNN can operate on all EEG channels at a given
time instance. Details of the proposed CNN are described in
Fig. 2.
The final set of features that are used for estimating

the probability of seizure over a given block is obtained
by combining the result of the 1D CNN extractor and the
estimated MI. Specifically, let Îtk be the estimated MI values
between channel pairs at time tk , and ztk be the features
extracted by the 1D CNN. The the final set of features used
for seizure detection is given by ytk = [Îtk , ztk ]. This feature
is then used as an input to a logistic regression layer for a soft
estimate of the seizure event.

C. FACTOR GRAPH INFERENCE
Predicting seizure solely based on combined features from
MI estimator and 1D CNN does not take into account past
and future EEG blocks. Therefore, we utilize the block-wise
soft decision not as a direct estimate of the corresponding
seizure state, but as learned function nodes in a factor
graph incorporating the presence of temporal correlation.
Our proposed approach follows the methodology of learned
factor graphs utilized for sleep stage detection in [63] and for
symbol detection in [64]. To describe this operation, we first
briefly recall factor graph inference, after which we explain
how it is incorporated by MICAL to account for temporal
correlation.

Factor graphs are a representation of the factorization
of local functions of several variables, typically of joint
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FIGURE 3. Four different correlation measures for seizure and non-seizure. (a) instantaneous phase synchrony, (b) Pearson correlation, (c) distance
correlation, and (d) SMILE.

distribution measures, forming a graphical structure [65].
In the Forney-style factor graph (adopted here) of a joint
distribution, the random variables correspond to edges, and
their statistical dependence is captured as a node in the
graph, referred to as the function node. As a result, a factor
node is connected to a variable edge if and only if the
factor is a function of the variable. The key advantage of
this representation is that it facilitates extracting quantities
which are typically complex to compute, such as marginal
probabilities, with a complexity that only grows linearly
with the number of variables via, e.g., the sum-product
method [66]. To implement factor graph inference, the
first step is to create the structure of the graph, i.e., the
interconnection between nodes. For this purpose, we use
the underlying property of seizure mechanism where the
generation of seizure is closely associated with abnormal
synchronization of neurons [67]. To incorporate this feature
in our model and following consideration 3, we approximate
the temporal relationship as obeying first-order Markovian
model.

To formulate this mathematically, the Markovian model
implies that the joint distribution of the extracted features
y and the latent seizure states s over all N blocks can be
factorized as

P(s, y) =

N∏
i=1

P(si|si−1)P(yi|si). (8)

Here, P(si|si−1) represents the seizure state transition
probability, which is a control parameter. Based on our
numerical experiments, we manually set it to be 89.54% for
switching from no-seizure to seizure and 17.9% for opposite

situation. The factorization in (8) results in the factor graph
representation of the joint distributionP(s, y) as the sequential
graph illustrated in Fig. 2
The classification of the sleep states requires to compute

marginal distribution P(si, y) from (8). The sum-product
algorithm allows to compute this desirable quantity in a recur-
sive manner via forward and backward message exchanges
over the factor graph. In particular, the sum-product method
computes the marginal probabilities via

P(sk , y) = µfj→sk (sk ) · µfj+1→sk (sk ), (9)

for each k ∈ {1, . . . ,N }. In (9), µfj→sk (sk ) is interpreted as
forward message

µfj→sk (sk ) =

∑
{s1,··· ,sk−1}

n∏
i=1

fi(yi, si, si−1), (10)

and µfj+1→sk (sk ) as the backward message is achieved by

µfj+1→sk (sk ) =

∑
{sk+1,··· ,sN }

N∏
i=n+1

fi(yi, si, si−1), (11)

where fi(yi, si, si−1) is the function node which is given by

fi(yi, si, si−1) = P(si|si−1)P(yi|si). (12)

The resultant marginal distributions (9) are compared to a
predefined threshold of T = 0.7 for detection.

According to (12), implementing sum-product algorithm
requires the knowledge of probability distribution P(yi|si).
In practice, obtaining this statistical model that relates
observations and time series is a highly complex process.
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Following [63], we use the joint features of MI estimator and
1D CNN as the soft estimate of probability distributions to
learn function nodes in factor graph. Algorithm 1 summarizes
the steps in MICAL seizure detection.

Algorithm 1MICAL Seizure Detection

1 Inputs: SMILE and 1D CNN networks, estimated
state transitions, EEG measurements X , threshold T
Feature extraction:
for k = 1, . . . n do

2 Apply SMILE to estimate Îθ (x
(i)
tk ; x(j)tk ), j > i;

3 Apply 1D CNN to obtain combined features ytk ;
4 Apply dense layer to obtain soft decision

P̂(stk |ytk );
5 end
Factor graph inference:
Compute {fi} from soft decisions via (12);

6 for k = 1, . . . n do
7 Compute µftk→sk ({0, 1}) via (10);
8 Compute µftn−k+2→sn−k+1 ({0, 1}) via (11);
9 end
10 Detect seizure at tk if µftk→sk (1)µftk+1→sk (1) > T .

IV. RESULTS AND DISCUSSION
In the following subsections, we describe our experimental
study of MICAL for seizure detection.1 We first explain
the data used, performance metrics, evaluation methods, and
hyperparameter tuning, in Subsections IV-A-IV-C, respec-
tively. We then present the numerical results along with a
discussion in Subsection IV-D.

A. DATA DESCRIPTION
1) EEG DATA
The dataset used in this work is publicly available CHB-MIT
Database collected at the Children’s Hospital Boston. CHB-
MIT consists of scalp EEG recordings from pediatric subjects
with intractable seizures [68].2 Recordings belong to 24 cases
with ages from 1.5 to 22. Each patient contains 9 to 42
EDF files from a single subject. All signals were sampled at
256 frequency with 16-bit resolution and seizure start and end
times are labeled. Table 1 represents the details of the dataset.

2) EEG PRE-PROCESSING
The dataset contains 664 EDF files from all patients. Signals
were already annotated by ‘‘seizure’’ and ‘‘no-seizure’’ labels
where each case has at least two seizures. Note that for the
CHB-MIT database, seizure types are not specified. Unlike
prior works, we consider simple pre-processing steps for
our proposed algorithm that makes it well-suited for real-
time applications. Since seizures duration (from 7 seconds to

1The source code and hyper-parameters can be found on GitHub.
2This database is available online at PhysioNet (https://physionet.

org/physiobank/database/chbmit/)

TABLE 1. CHB-MIT database details.

753 seconds) compared to overall recording (from 959 sec-
onds to 14427 seconds) is very short and to have a balanced
dataset; first, EDf files that include at least one seizure are
selected. Each recording is then shortened to 10 times the
seizure duration before and 10 times the seizure duration after
the seizure. Therefore, there are 20 seconds of non-seizure
data for every second of seizure data. Fig. 4 represetns the
electrode placement according to the international 10-20
system. From EEG channels, the 18 bipolar montages are
chosen: FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-T3,
T3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8,
F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ. In our proposed
method compared to previous studies, to reduce complexity,
we aim to use minimal pre-processing. Therefore, a notch
filter is applied to remove 60 Hz line noise from each EEG
signal. To estimate the probability of seizure over the t-th
second, the past 32 seconds of recording is used to solve
the optimization that estimates MI. This window size is large
enough to incorporate the correlation among measurements
during the ictal state and demonstrates the best results over the
dataset. In addition, the past 4 seconds of recording is used as
input to the 1D CNN for estimating meaningful features from
EEG blocks. The value of 4 seconds is selected to satisfy a
good trade-off between the number of samples in a block and
the stationarity of the observed signals over a block.

B. EVALUATION METHODS AND PERFORMANCE METRICS
To evaluate the performance of the models, six following
metrics are measured:

• AUC-ROC: is the area under receiver operating char-
acteristics (ROC) curve, which shows the capability of
the model to distinguish between seizure and no-seizure
samples.

• AUC-PR: is the area under the precision-recall curve that
represents success and failure rates meaning that a high
area under the curve shows a low false positive rate and
low false-negative rate.

• Precision: intuitively shows the ability of the classifier
not to label a sample as positive that is negative.

• Recall: represents the capability of the classifier to find
all the positive samples.

• F1 score: is a harmonic mean of recall and precision.
• Accuracy: implies the number of correct predictions over
the total number of predictions.
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FIGURE 4. International 10-20 electrodes system.

In our implementation, we consider three different strate-
gies for training the models:

• 6-fold-leave-4-patient-out evaluation: is a generalized
evaluation pipeline as it creates all the possible train and
test sets. We follow the rules to consider 80% of the
patients for the train and 20% for the test. Therefore,
in this approach for each fold, 20 patients are considered
as the train dataset and 4 different cases are kept out for
the test. This approach requires building six models.

• All patient evaluation: chooses one EDF file from each
patient as the test and trains on the remaining files of
all cases. Since one of the patients has only two seizure
files and each time a different random EDF session is
considered as the test, this algorithm creates twomodels.

• Per patient evaluation: selects an EDF file with
maximum length as the test and trains the model on
the remaining samples for each case separately. This
approach creates 24 models for every patient in the
dataset.

C. HYPERPARAMETER TUNING
As mentioned in Subsection IV-A, for every file, the ratio
between seizure and no-seizure classes is 1:20. This bias
in the training dataset can influence the model performance
and result in poor performance over the minority class
(seizure samples). One approach to address the problem of
class imbalance is to randomly duplicate examples from the
minority class, which is called oversampling. To incorporate
oversampling, we select half of the samples in the batch from
the non-seizure class and randomly sample the other half
from the seizure class.

One of the essential hyperparameters in training a neural
network is the learning rate. If the learning rate is too low, the
weights will be updated slowly. On the other hand, setting
the learning rate to significant values will cause undesirable

divergent behavior in the loss function. Therefore, we use
Learning Rate Schedules that adjust the learning rate during
training by reducing the learning rate according to a pre-
defined schedule. Here, we start with 0.0001, and the factor
of 0.5 reduces it until it reaches 10−5. We also use ADAM
optimizer, and the number of epochs for 6-fold-leave-4-
patient-out evaluation and all patient training is 100, and 20 is
selected as the number of epochs for per patient training. The
batch size for all methods is 256.

D. NUMERICAL RESULTS
In our experiment, we consider eight different configurations
for comparison, including two baseline models since they
showed the best results compared to previous studies. One
model is related to non-feature-based design, and the other
is based on a deep learning feature extraction algorithm.
The 2D CNN was employed to raw EEG signals in [41]
and Jana et al. [69] proposed an architecture comprised
of spectrogram features and a 1D CNN; however, we use
our proposed CNN model to have the same backbone.
To explore the effect of each individual element in MICAL
on the performance metrics, a complete ablation study is
conducted. Hence, it results in three different situations:
1) ignoring inter-channel and temporal correlations among
EEG recordings (1D CNN), 2) Excluding MI estimation
results (1D CNN-FG), 3) Removing temporal correlations
(1D CNN-SMILE). As another experiment for comparison,
we add GRU to 1D CNN and 1D CNN-SMILE to ensure
factor graph is strong enough to exploit temporal correlations
while it reduces the complexity compared to RNNs.

Table 2 to Table 4 as well as Fig 5 to Fig 8 summarize the
average results of all performancemetrics for three evaluation
pipelines. Since the oversampling approach is not used for
evaluation samples, this dataset is imbalanced. Therefore, the
accuracy is not a goodmeasure to investigate the performance
of the models, and as shown in the tables, the values for
this metric are inconsistent. For instance, in Table 2, and
Fig 6, MICAL shows the lowest accuracy score while it
achieves the best results for AUC-ROC, AUC-PR, F1 score,
and recall. As represented, although MICAL can exploit
inter-channel and temporal correlations, the accuracy score
for our algorithm is less than 1D CNN and 1D CNN-
SMILE. As such, in our experiments we mainly observe the
performance of other five metrics. As shown in Fig 5 to
Fig 8, MICAL indicates the highest state-of-the-art results
compared to the other models in ablation study. These results
are aligned with our expectation as the proposed method has
an efficient 1D CNN unlike baseline models. In addition,
considering factor graphs to capture temporal correlations
efficiently as well as adding MI estimator for inter-channel
correlations result in much higher performance outcome.
In the rest of this subsection, we explain the results for each
training approach in more details.

The average results for 6-fold leave-4-patients-out eval-
uation are listed in Table 2, and shown in Fig 6. We find
that compared to the baseline models, our proposed CNN
architecture improves the AUC-PR and recall by 9% and
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TABLE 2. Summary of results for 6-fold leave-4-patients-out validation.

TABLE 3. Summary of results for all patient training.

TABLE 4. Summary of results for per patient training.

FIGURE 5. F1 score for all patient training.

leads to a 5% increase in AUC-ROC, F1 score, and precision.
As shown in the table, adding or ignoring the features
through the ablation study has not considerably changed
the accuracy results. Incorporating temporal correlation for
evaluation is conducted via 1D CNN-GRU and 1D CNN-FG.
Unlike 1D CNN-GRU that decreases the AUC-PR by 3%,

FIGURE 6. AUC-ROC for 6-fold cross validation.

1D CNN-FG causes 2% improvement for all performance
metrics compared to our CNN architecture. This, in fact,
implies the strength of the proposed factor graph inference for
capturing temporal correlations. The reduction in AUC-PR
and F1 score for 1D CNN-SMILE compared to 1D CNN-
FG admits that incorporating only raw EEG features and
MI estimations is not sufficient for detecting the seizure.
Compared to baseline results, this is also proved by MICAL
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FIGURE 7. AUC-ROC for all patients training.

FIGURE 8. AUC-ROC for per patient training.

that it shows overall the best performance results of 15%
increase in AUC-ROC and AUC-PR, up to 10% for F1
score and 3% and 20% improvement for precision and recall,
respectively. Note that 1D CNN-SMILE-GRU represents a
higher precision value than MICAL as there is a trade-off
between precision and recall. Therefore, MICAL shows the
best evaluation result for recall while it achieves the lowest
precision score among other models in this study.

All patient training results in Table 3, Fig 5, and Fig 7
demonstrate that our proposed CNN design achieves almost
15% improvement compared to the baselines. MICAL in
comparison to 1D CNN-FG and 1D CNN-SMILE, where
only inter-channel or temporal correlation is captured indi-
cates the best results. MICAL enhances the performance by
almost 10% for AUC-ROC and 20% for remaining metrics.
We also find that adding GRU to the 1D CNN-SMILE leads

to decreasing the values for some of the performance metrics.
Since the models are training on the limited dataset from only
24 cases, including extra layers could result in overfitting.
The results for per patient training in Table 4, and Fig 8 also
emphasize that considering both temporal and inter-channel
correlations leads to the best performance. Since we average
the results across evaluation set from all 24 trained models,
and there might be some cases as outliers, GRU-based design
works slightly better thanMICAL in some of the performance
measures.

V. CONCLUSION
In this paper, we have developed MICAL, which is a
hybrid model-based/data-driven seizure detection algorithm.
MICAL enables capturing two essential features embedded
in the EEG recordings: inter-channel dependency during
seizures and temporal correlations. The former is extracted
through a neural MI estimator, and the latter is achieved
via factor graph inference. To implement MICAL, we first
carefully design a 1D CNN to extract features from raw
EEG signals. Then, soft estimates of common features from
CNN and MI estimator are used as the learned factor graph
nodes to capture temporal correlation at reduced complexity.
In this study, we also conduct a comprehensive evaluation
strategy and an ablation study. Although MICAL is not
purely based on DL and it is a hybrid and data-efficient
approach, it achieves state-of-the-art performance compared
to the previous seizure detection studies.
However, there are still a few challenges that need to be
addressed. While the neural MI estimator is a powerful tool
to capture the inter-channel correlation during seizure times,
it increases the computational complexity of the algorithm.
Although compared to prior work, our proposed approach
generalizes well on the 24-patient dataset, using more
patients for training and testing is required for understanding
the generalization properties of our algorithm across the
population. Therefore, future work will include optimizing
the neural MI estimator to address the issue of complexity
as well as incorporating large datasets such as TUH from
Temple University to improve over-fitting and a better
understanding of algorithmic generalization.
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