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ABSTRACT This paper attempts to use a delta robot’s structure and reliable coordinates to develop a
self-learning Chinese calligraphy-writing system that requires precise control. Ideally, to achieve human-
like behavior, a delta robot can learn stroke trajectories autonomously and present the stroke beauty of
calligraphy characters. Unfortunately, state-of-the-art approaches have not yet considered the presentation
of stroke beauty resulting from angles of rotation and tilt of the brush. This paper presents an integrated
system consisting of a stroke processing module, a hypothesis generation net (HGN) learning model with
self-learning capability, a delta robot, and an image capture module. Our approach utilizes both the stroke
trajectories from the stroke processing module and angles information from the HGN learning model to
automatically produce five degrees of freedom action instructions. Based on the instructions, the delta robot
completes calligraphy writing. Then, the image capture module provides feedback to the writing system
for error calculation and coordinate correction. We utilize the mean absolute percentage error to verify the
performance of the writing results. A correction algorithm and linear regression were used to improve the
error correction results (less than 2% error). After several cycles, the written results approached the target
sample finally. Consequently, the written results produced by the delta robot prove that our proposed system
with learning ability can write Chinese calligraphy aesthetically.

INDEX TERMS Chinese calligraphy, hypothesis generation net, image-to-action translation, robotic
calligraphy system.

I. INTRODUCTION
In general, a common method of robot learning is through
human demonstrations. After a robot records the trajectory
and behavior required to complete a given task, it can perform
fixed and repetitive actions through reproducing the given
trajectory. To go a step further, a new generation of robots
can autonomously complete learning actions through image
recognition and human-programmed strategies. However,
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correcting errors in behaviors during the learning process
requires more time to perform multiple tasks accurately.
In recent years, the learning system of the Chinese character
writing robot has the following approaches: generating
the stroke trajectory by using a generative adversarial
network (GAN) [1], [2], [3] or by using a control poly-
gon [4], [5], converting the stroke trajectory from the
image [6], modeling the stroke trajectory according to the
font image [7], [8], [9], [10], and using the perception system
to obtain the course of the stroke [11], [12], [13], [14],
and so on.
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FIGURE 1. (a) The apparatus of a calligraphy-writing system.
(b) Mechanical length of delta robot.

Most Chinese calligraphy robots first model human
sample fonts [15] and then acquire data such as stroke
features [16], [17], stroke decomposing [18], [19], [20],
and stroke recognition [21]. The Chinese calligraphy-
writing robots trained by humans execute the writing action
according to the coordinates of the stroke trajectory database.
According to the accuracy of the robotic arm and the
characters that humans want to write, the robotic arm can
be adjusted to precise coordinates of the writing position.
That is, the robotic arm can write ideal calligraphy, according
to the accurate coordinate trajectories set by the human.
If the writing coordinates remain unchanged, the writing
results remain the same. This learning model is mainly based
on artificially established standard operating procedures,
allowing the control program to be executed step by step.
Unfortunately, both the intrinsic and extrinsic parameters of
these written methods must be unchanged. Thus, the learning
system cannot actually learn and has no self-learning ability.

A self-learning robot can learn and complete the required
target actions by itself according to the tasks given by
humans. A learning model is designed regarding the human
cognitive system so that the robot has the ability to think,
develop and try a new strategy based on its experience.
In order to evaluate the strategy, an estimation system
is used to compare the target sample and output results.
Therefore, the self-learning robot arm requires a model for
formulating a strategy generation system and an estimation
system, such as hypothesis generation net (HGN) [22], [23].
The HGN is a novel neuron-based learning model which
consists of two parts: a hypothesis model and an evaluation
model. When these two models interact, the learning system
can generate hypotheses to solve complex tasks based on
historical experience. Therefore, a robot with HGN possesses
a self-learning ability which enables it to learn intrinsic and
extrinsic parameters by itself.

The cognition system of a virtual robot allows it to
learn how to write Chinese calligraphy in a simulation
environment [24], which can observe the process of the
virtual robot in a virtual environment. In the process of
practicing, humans can analyze the learning results and
easily adjust the internal parameters. After these internal
parameters are obtained, a delta robot [25] with an HGN
learning model can be designed. Fig. 1(a) illustrates the
testing environment of the writing system. Fig. 1(b) shows

the mechanical length of the delta robot, such that the fixed
base equilateral triangle side is 41.57cm, the under platform
equilateral triangle side is 10cm, the upper arm length is
15.06cm, and the lower arm parallelogram length is 39.13cm.
The control processing of the Chinese calligraphy-writing
system comprises seven switches that can manipulate the
operation program. Different operation modes are used to
implement the Chinese calligraphy-writing robotic system
and verify the performance of the written results.

This paper mainly aims to propose self-learning methods,
such as an HGN application, a closed-loop structure using
twowebcams, stroke disassembly, coordinate transformation,
and error correction methods. The advantages of these
methods include enabling self-learning and an image-to-
action translation that can autonomously generate five
degrees of freedom (5-DOF) action instructions. In generally,
the stroke trajectories of most calligraphy-writing systems
are often described as two-dimensional coordinates [8], [9],
or three-dimensional coordinates [1], [7], [10], [11]. These
represent a relatively simple stroke trajectory planning
method. In contrast, our robotic arm considers the posture
angle of the brush, which is an important feature of the
calligraphy-writing system. The posture of action instruction[
Z , θ, θ

]
consists of three elements: the pressure (height),

rotation, and tilt of the brush bundle. Through the posture
of action instruction, the calligraphy-writing system can
precisely control the posture and angle of the brush. The
high-dimensional coordinate strategy of stroke writing is the
current trend for future calligraphy writing systems.

The contributions of this paper focus on using five-
dimensional action instructions Dv to execute stroke trajec-
tories. The action instructions Dv consist of two-dimensional
position coordinates T v and three-dimensional posture coor-
dinates Qv. T v denotes [X , Y ] and Qv denotes

[
Z , θ, θ

]
.

Through 5-DOF action instructions, the stroke aesthetics
of calligraphy can be better presented. Our experimental
architecture utilizes two webcams for the input of writing
results and feedback, respectively. By designing a closed-
loop structure with a webcam, the system can obtain
the writing results to calculate errors and perform self-
correction. The input calligraphy image is translated from
image to action translation, so that the robotic arm can
imitate human handwriting and write various calligraphy
characters flexibly. Through the self-learning of the proposed
method, we can reduce the amount of reprogramming
required when the human wants the robot to write different
unlearned calligraphic characters. The aesthetic evaluation of
the Chinese calligraphy method [17] consists of three parts:
stroke coordination, balance, and distribution. Aesthetic
evaluation [17] generates or corrects the next stroke trajectory
based on the current reference image. It is worth mentioning
that the stroke trajectory instructions in [17] only have two-
dimensional coordinates, while our proposed system includes
five-dimensional coordinates.

This paper is organized as follows: Section II presents
the methods of writing processing and architecture of the
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FIGURE 2. The architecture of the Chinese calligraphy-writing system.

Chinese calligraphy-writing system. Section III reveals the
experimental results of the delta robot manipulator. The
errors, data and aesthetic analysis of the writing results and
a comparison of writing systems are provided in Section IV.
The conclusions are drawn in Section V.

II. CHINESE CALLIGRAPHY-WRITING SYSTEM
To develop a Chinese calligraphy-writing system, we design
a delta robot as a type of robot that effectively performs the
proposed method. As shown in Fig. 2, the architecture of the
Chinese calligraphy-writing system contains four modules,
i.e., (a) the image capture module consisting of twowebcams,
(b) the stroke processing module mainly dealing with the
processes that convert stroke images into action instructions,
(c) the writing processing module with a delta robot as the
main structure, and (d) the HGN as a learning model of the
Chinese calligraphy-writing system.

A. IMAGE CAPTURE MODULE
This module involves pre-processing for capturing stroke
images. It consists of twoweb cameras, one captures the input
stroke images I v, and the other captures thewriting results I v

+

of the delta robot. The output image format is a BMP file,
and the region of interest (ROI) image size isW by H pixels.
Some strokes comprise one word. We input one stroke and
then the next stroke is written. First, this module converts the
input image into a binarized image. Then, the binarized image
of the stroke can be defined bymathematical equation Eq. (1).

The matrix of the binarized image of the vth image of the
input stroke is defined as:

M v
= B(I v) =

 mv0,0 . . . mv0,H−1
...

. . .
...

mvW−1,0 · · · mvW−1,H−1


W×H

=

[
mvi,j

]
W×H

(1)

where i = 0. . .W -1, j = 0. . .H -1, i, j ∈ N, v, W , H ∈ N+.
The function B(·) denotes the binarized translation, i and j

FIGURE 3. Example of the ‘‘L’’ stroke of the character. (a) The image size
is 10 pixels x 10 pixels. (b) The matrix of a binarized image is shown in
Fig. 3(a).

denote the ith row and jth column of the pixel coordinates,
and v denotes the index of the input images. mvi,j denotes
one of the elements of the matrix Mv. The value of mvi,j is
either 1 or 0. If each pixel exceeds the grayscale threshold,
the matrix element is set to ‘1’ (mvi,j = 1); otherwise it is ‘0’.
Each ‘1’ element in the matrix represents a stroke pixel in the
image. Fig. 3(a) depicts an example of the ‘‘L’’ stroke of the
character. The ROI image size is 10 pixels by 10 pixels. For
example, Fig. 3(b) presents the matrix of Fig. 3(a).

B. STROKE PROCESSING MODULE
The stroke processing module is an image-to-action transla-
tion process as shown in Fig. 4. The purpose of this module
is to convert the input stroke images into action instructions.
It includes five processing methods: (a) stroke skeleton
extraction, (b) stroke disassembling, (c) skeleton coordinate
sorting, (d) coordinate conversion, and (e) error correction.
The details of the image-to-action translation process are
presented in Fig. 4.

1) STROKE SKELETON EXTRACTION
Since calligraphy writing requires the planning of a stroke
trajectory, the stroke skeleton must first be extracted from
the input stroke image. We utilize the Zhang-Suen thinning
algorithm [26] to extract the skeleton of human handwritten
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FIGURE 4. Image-to-action translation process.

FIGURE 5. Input images of the Chinese calligraphy examples. (a) Previous
stroke image. (b) Current stroke image. (c) New single-stroke image.

Chinese calligraphy strokes. The image of each skeleton can
be defined as the following mathematical equation.

The matrix of a skeleton of the vth image of input strokes
is defined as:

Sv = F(M v) =

 sv0,0 . . . sv0,H−1
...

. . .
...

svW−1,0 · · · svW−1,H−1


W×H

=

[
Svi,j

]
W×H

(2)

where i = 0. . .W -1, j = 0. . .H -1, i, j ∈ N, v, W , H ∈ N+.
The function F(·) denotes the Zhang-Suen thinning algorithm.

2) STROKE DISASSEMBLING
A human writes the strokes one by one on the paper, as the
input I v of the stroke processing module. When the input
image has overlapping strokes (as shown in Fig. 5(b)), the
stroke disassembling algorithm can be used to extract a
newly separated stroke (see Fig. 5(c)). The process of stroke
extraction is described below.

The stroke image I v can be converted into a stroke matrix
M v, and it can then be converted into a skeleton matrix Sv

through the Zhang-Suen thinning algorithm. The elements
of the matrix K v are composed of skeleton coordinates from
matrix Sv.
The skeleton matrix of the pixel coordinates of the vth

matrix of the input skeleton is defined as:

K v
= ψ(Sv) =

 jv1
...

jvpv

iv1
...

ivpv


pv×2

=

 kv1
...

kvpv

 (3)

where i, j ∈ N, v, pv ∈ N+. The functionψ(·) denotes the row
and column translation, while pv denotes the order number
of coordinates. The value of pv depends on the length of the
skeleton. (jvpv , i

v
pv ) denotes the p

vth pixel coordinate of the vth
skeleton matrix Sv and jvpv denotes the jth column of the pvth

pixel coordinate of the elements (Svi,j = 1) of the vth matrix
Sv, ivpv denotes the ith row of the pvth pixel coordinate of the
elements (Svi,j = 1) of the vth matrix Sv, and kvpv denotes the

pvth row vector
[
jvpv i

v
pv

]
of the vth matrix K v.

To facilitate the description of the stroke decomposition
process. The pseudo-code of the stroke disassembling
algorithm is illustrated below:

The circular integral method [27] is described below.
As mentioned in Eq. (3), the elements of the skeleton matrix
K v consist of the pixel coordinates obtained from the row and
column index of the skeleton matrix Sv. However, we added
the element of the radius into the vector [jvpv i

v
pv ] in the circle

matrix Cv.
The circle matrix Cv of the vth image of input strokes is

defined as:

Cv
=

 Cv
1
...

Cv
pv

 =

 jv1
...

jvpv

iv1
...

ivpv

rv1
...

rvpv


pv×3

(4)

where i, j, r ∈ N, v, pv ∈ N+. Cv
pv denotes the pvth

row vector
[
jvpv i

v
pvr

v
pv

]
of the vth matrixCv and rvpv denotes the

radius of a circle in which the center is at (jvpv , i
v
pv ) as shown

in Fig. 8(b). Fig. 8(a) is an image sample of a stroke. The
function O(·) is executed to draw a circle according toCv

pv and
converted to aW -by-H matrix. The function A(·) executed an
area calculation. For example, the count of the pixels of the
image is as shown in Eq. (5).

A(M v) =

W−1∑
i=0

H−1∑
j=0

mvi,j (5)

Fig. 8(c) shows the intersection of the stroke image (Fig. 8(a))
and the circle image (Fig. 8(b)).

A
(
M v

∩ O
(
Cv
pv

))
A

(
Cv
pv

) = U v
pv (6)

If rvpv increases gradually, the area of the circle does not
exceed the contour of the stroke, and so the value U v

pv in
Eq. (6) is 1 as shown in Fig. 9(a). If the area of the circle
exceeds the contour of the stroke, the value U v

pv in Eq. (6) is
less than 1 as shown in Fig. 9(b). The threshold value is set to
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Algorithm 1 The Process of Stroke Disassembling

Input: I v−1 (Previous stroke) and I v (Current stroke) images.
Output: A new single stroke imageOv(as shown in Fig. 5(c)).
1: Step 1
2: Initial parameter pv−1

= pv =1, G = 2 (Pixel threshold)
3: Input images I v−1 and I v.
4: Step 2
5: Execute the binarized translation from function B(I v−1)

and B(I v) to binarized matrixM v−1 and M v.
6: Step 3
7: Execute stroke skeleton extraction from F(M v−1) and

F(M v) to skeleton matrix Sv−1 and Sv.
8: Step 4
9: for i = 0 to W do
10: for j = 0 to H do

//Execute the matrix type to pixel coordinates translation
ψ(Sv−1) and ψ(Sv) from skeleton matrix Sv−1 and Sv to
pixel coordinates matrix K v−1 and K v.

11: IF Sv−1
i,j equal ‘1’.

12: Then Store the row and column index
[
jv−1
pv−1 i

v−1
pv−1

]
in vector kv−1

pv−1

13: pv−1
= pv−1

+ 1
14: IF Svi,j equal ‘1’.

15: ThenStore the row and column index
[
jvpv i

v
pv

]
in

vector kvpv
16: pv = pv+ 1
17: end for
18: end for
19: Step 5

//Calculate the distance pixel by pixel then delete the
pixel coordinates vectors of the previous skeleton.
The result is shown in Fig. 6(c).

20: for b = 1 to pv−1 do
//Parameter pv−1 is the count of the vector (kv−1

pv−1 )
21: for q = 1 to pv do

//Parameter pv is the count of the vector (kvpv )
22: IF the two-norm distance kv−1

b − kvq less than G.
23: Then remove the vector kvq of K

v.
24: end for
25: end for
26: Step 6
27: Restore the stroke by using the circular integral

method R (K v). The result is shown in Fig. 7.
Output image Ov = R (K v).

28: Finally, we get the new single-stroke image as shown
in Fig. 5(c).

29: END

0.99. When the value U v
pv in Eq. (6) is equal to the threshold

value, rvpv is the circle radius that matches the contour of the
stroke and the circle radius rvpv corresponds to the contour of
the stroke corresponding to each skeleton coordinates. The

FIGURE 6. Skeleton results of the input images. (a) Previous skeleton
image. (b) Current skeleton image. (c) Exclusive-OR result of the images
(a) and (b).

FIGURE 7. Stroke restoration for a new single skeleton.

FIGURE 8. (a) The Image of the stroke. (b) A circle with radius rv
pv

centered at (jv
pv , iv

pv ). (c) Intersection of the stroke image.

FIGURE 9. Threshold of circle radius. (a) The value of Uv
pv is 1. (b) The

value of Uv
pv is less than 1.

method is used to update the radius of the circle matrix Cv

from rv1 to rvpv . Therefore, we can obtain the radius rvpv of the
circle in which the center is at (jvpv , i

v
pv ) and meet the contour

of the stroke. The (jvpv , i
v
pv ) denotes the coordinates of the

skeleton. Then each coordinate point of the skeleton can draw
a circle according to the vectorCv

pv again. Finally, the skeleton
can be restored to the original strokes by using the circular
integral method.

3) SKELETON COORDINATE SORTING
After the skeleton of a single stroke had been obtained
through the previous processing, skeleton coordinate sorting
is used to complete the coordinate ordering of the stroke
skeleton. Different strokes would have different stroke orders,
so the coordinate order of the skeleton must conform to the
stroke order of the strokes. First, we convert the skeleton
image into a skeleton coordinate matrix and then use the data
structure ‘‘Graph’’ to describe the correlation (Edge) of each
point (Vertex). Each skeleton coordinate is a Vertex, and the
angle corresponding to each coordinate is an Edge. Finally,
a single-direction directed graph can be used to describe the
coordinate ordering of the entire skeleton.

4) COORDINATE CONVERSION
In addition to the above-mentioned stroke path planning,
another important process is the coordinate conversion.
The purpose of coordinate conversion is to convert the
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FIGURE 10. The (xv
p , yv

p ) part of image-to-action translation. (a) A single
skeleton of pixel coordinates. (b) Action instruction of Cartesian
coordinates.

input stroke I v or I v
+

from pixel coordinates to the actual
coordinates T v that the writing processing module can
execute. The conversion method involves converting the
length of the stroke image I v or I v

+

captured by the webcam
to the stroke length on the actual Cartesian coordinates plane.
After the coordinate conversion, the position coordinates
corresponding to the actual writing strokes can be obtained.
The final coordinate matrix updates each coordinate through
the scale value and offset value, and completes the conversion
of the image I v or I v

+

into Cartesian coordinates. The pixel
coordinates are shown in Fig. 10(a). The origin of the pixel
coordinates is in the upper left corner, and it differs from the
of Cartesian coordinates. The pixel coordinates correspond to
the matrix type, so the horizontal axis is the j column and the
vertical axis is the i row. The Cartesian coordinates are shown
in Fig. 10(b).

The function of the handwriting stroke skeleton of the vth
matrix Sv is defined according to Eq. (3). However, the count
of the skeleton coordinates pv could be normalized into p;
sampling normalization as shown in Eq. (7). Subscript (2 ·

pv

p )
denotes the approximation value rounded to a positive integer.
We utilized the Eq. (7) to normalize the count of each skeleton
coordinate point.


jv1
jv2
...

jvp

iv1
iv2
...

ivp


p×2

=


jv1

jv
(2· p

v
p )
...

jvpv

iv1
iv
(2· p

v
p )
...

ivpv


pv×2

(7)

where i, j ∈ N, v, p, pv, (2 ·
pv

p ) ∈ N+.
The function of the handwriting stroke skeleton of the vth

matrix Sv is defined as:

H v
= ψ(Sv) =

 jv1
...

jvp

iv1
...

ivp


p×2

(8)

where i, j ∈ N, v, p ∈ N+. (jvp, i
v
p) denotes the pixel

coordinates of the vth skeleton.

FIGURE 11. Three stages of the error correction process.

The matrix of the writing coordinates of the vth skeleton
matrix of input strokes is defined as:

W v
=

 xv1
...

xvp

yv1
...

yvp


p×2

(9)

where xvp, y
v
p ∈ R, v, p ∈ N+. (xvp, y

v
p) denotes the actual

Cartesian coordinates of the vth skeleton.
The function χ (·) denotes the coordinate conversion from

pixel coordinates to Cartesian coordinates.

W v
= χ

(
H v) (10)

xvp = jvp · ϕx + τx (11)

yvp = ivp · ϕy + τy (12)

where ϕx , ϕy denotes the scale value and τx , τy denotes the
offset value. The scale value is used to adjust the length of
the stroke, and the offset value is used to adjust the position
of the stroke.

5) ERROR CORRECTION
In the process of converting the image into action, the input
stroke image I v or I v

+

is converted into the action instruction
T v of the motor through an image processing series. Finally,
the writing processing module writes the Chinese calligraphy
according to the action instruction. The result I+ may not
be consistent with the target stroke I v

∗

. At this time, these
methods must be used to calculate and correct the error of the
skeleton coordinates T v, as described below.
There are three stages for error correction: 1. the overall

adjustment, 2. the component correction, and 3. linear
regression, as shown in Fig. 11.
The target matrix of the handwriting skeleton of the vth

matrix of input strokes is defined as:

H v∗
= χ

(
H v)

=

 xv1
∗

...

xpv
∗

yv
∗

1
...

ypv
∗


p×2

(13)

where xv
∗

p , y
v∗
p ∈ R, v, p ∈ N+. (xv

∗

p , y
v∗
p ) denotes the

actual Cartesian coordinates of the vth target skeleton from
the coordinate conversion of the vth matrix H v.
The matrix of the writing result skeleton of the vth matrix

of input strokes is defined as:

Rv =

 xv1
...

xvp

yv1
...

yvp


p×2

(14)
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FIGURE 12. Illustration of the x-axis and y-axis components of a skeleton.

where xvp, y
v
p ∈ R, v, p ∈ N+. (xvp, y

v
p) denote the actual

Cartesian coordinates of a skeleton from the coordinate
conversion of the vth writing result image.
The function of the error matrix of the vth time calculation

is defined as:

Ev =

 xv1
...

xvp

yv1
...

yvp


p×2

(15)

where xvp, y
v
p ∈ R, v, p ∈ N+. (xvp, y

v
p) denote the Cartesian

coordinates of the vth skeleton error.

a: OVERALL ADJUSTMENT
The learning rate L and the error matrix Ev are used to update
and correct the coordinate matrixW v.

Ev = Rv − H v∗ (16)

xvp = xvp − xv
∗

p (17)

yvp = yvp − yv
∗

p (18)

Updating the next coordinate matrix forW v gives

W v
= Rv − L · Ev (19)

xvp = xvp − L · xvp (20)

yvp = yvp − L · yvp (21)

Loss
(
xvi , y

v
i
)

=

p∑
i=1

L · xvi +

p∑
i=1

L · yvi (22)

The learning rate L is defined as less than 1.

b: COMPONENT CORRECTION
The approximation algorithm is used to calculate the X axis
and Y axis slope changes of the skeleton at the vth input
strokes to obtain the angle φv, as shown in Fig. 12. Then, the
error matrix Ev and the angle φv are used to take the cosine
and sine components to update and correct the coordinate
matrix v of the delta robot for the next writing.

x̂vp = xvp − xvp · η · cosφv (23)

xvp = yvp − yvp · η · sinφv (24)

Loss
(
xvi , y

v
i
)

=

p∑
i=1

xvi · η · cosφv +

p∑
i=1

yvi · η · sinφv (25)

where (x̂vp, x
v
p) denotes the Cartesian coordinates of the vth

next writing matrix W v. η · cosφv, η · sinφv denotes the x-
axis and y-axis components matrix and η denotes a constant
of less than 1. The x-axis and y-axis component (η · cosφv

and η · sinφv) are both less than 1.

c: LINEAR REGRESSION
The linear regression equations can be calculated from the
coordinates of each point of the vth target handwriting
skeleton matrix H v∗ and the coordinates of each point of the
delta robot vth writing result skeleton matrix Rv, respectively.
The vth angle δv, the vth scaling αv, and the vth offset value
βv can thus be obtained. Finally, these values are utilized to
update and correct the coordinate matrix that the delta robot
could write next timeW v.

ˆ̂xvp = qvx + (x̂vp − qvx) · cos δv + (yvp − qvy) · sin δv (26)

xvp = qvy − (xvp − qvx) · sin δv + (yvp − qvy) · cos δv (27)

where (qvx , q
v
y) denotes the intersection of two lines and δv

denotes the angle between two lines.

ˆ̂
x̂vp = ˆ̂xvp · αvx (28)

yvp = yvp · αvy (29)

where (αvx , α
v
y) denotes the scale values.

xv
+

p =
ˆ̂
x̂vp + βvx (30)

yv
+

p = yvp + βvy (31)

where (βvx , β
v
y ) denotes the offset values. (xv

+

p , y
v+
p ) denotes

the Cartesian coordinates of the next vth writing matrixW v+
p .

C. WRITING PROCESSING MODULE
The writing processing module consists of two parts, i.e.,
an inverse kinematic model [28] of the delta robot and amotor
control system. Thismodule canmake thewriting brushmove
with 5-DOF. After running the stroke processing program, the
stroke image I v or I v

+

input by the image capture module
can be converted into a complete set of writing 5-DOF
action instructions Dv or Dv+ (i.e.,

[
X ,Y ,Z , θ, θ

]
) that

can be executed by the writing processing module. Then,
the inverse kinematics of the delta robot can be used to
obtain the output rotation angle required by each motor. The
motor completes the movement of the under platform and
the change of the posture of the brush according to the input
rotation angle. Finally, the delta robot completes the writing
action of Chinese calligraphy. The summary of the action
instructions of the stroke1 (dian) is shown in Table 1. There
are 100 samples on each stroke, i.e., 100 action instructions
for a stroke. The unit of distance coordinates is in centimeters
(cm). The unit of the angle is in degrees.

The center coordinate of the under platform (x, y) which
is shown in Fig. 13. can be extended to the coordinates of
the brush nib (X, Y ). Eqs. (32) and (33) show the center
coordinates of the under platform (x, y). Fig. 13 illustrates the
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FIGURE 13. Brush nib coordinates of the relationship between (X , Y ) and (x, y ).

relationship between (X, Y ) and (x, y). The Z-axis height is
from the paper to the under platform. Then the three rotation
angles of the motors are obtained from the inverse kinematics
formula of the delta robot [15], [18]. We also define the
posture range of the brush. The range of the rotation angle
θ is from 0 to 180 degrees and the range of the tilt angle θ is
from −3 to 3 degrees. The centeral coordinates of the under
platform (x, y) are calculated using the following equations:

x = X + L ′

2 × Sin(θ ) (32)

y = Y − L ′

2 × Cos(θ) (33)

D. SYSTEM CONTROL PROCESSING
The system control processing consists of seven switches
as shown in Fig. 2. There are seven switches to control
the system processing, i.e., an input image selection switch
(SW1), an HGN input switch (SW2 and SW7), a coordinate
feedback switch (SW3 and SW4), an instruction switch
(SW5), and a write-executing switch (SW6). Switch SW1
includes the human writing input switch (SW1-1) and
writing result feedback switch (SW1-2); SW2 is a switch
that can input the target image, the target skeleton, and
the target stroke number; SW3 includes the instruction
generation switch (SW3-1) and error calculation switch
(SW3-2); SW4 includes coordinates saving switch (SW4-
1) and error calculation switch (SW4-2); SW5 includes
the action instruction switch (SW5-1) and error calculation
switch (SW5-2); SW6 is a write-executing switch; and SW7
is a writing result feedback switch. According to the different
training modes, various switches can be used to adjust the
operating procedure and finally complete the required target
action. Fig. 14 illustrates these functional switches in two
modes. One is an HGN training mode and the other is a

TABLE 1. Example of the 5-dof action instructions of the stroke1 ‘‘dian’’.

Chinese calligraphy writing mode. In Fig. 14, the horizontal
axis shows the different stages and the vertical axis shows
the different switches. There are three types of stages in each
mode, i.e., the input strokes stage, first attempt stage, and
robotic writing stage.

1) HGN TRAINING MODE
The main purpose of using the HGN is to help the robot
generate appropriate 5-DOF coordinates for brush posture
learning, which is a non-trivial task for 3-DOF methods.
In the HGN training mode, 5-DOF action instructions are
divided into the 2-dimensional coordinates T v, which are
related to the pixel in the image and the complex 3-DOF
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FIGURE 14. System control switches for two training modes. (a) HGN training mode. (b) Chinese calligraphy writing mode.

writing posture Qv. This mode comprises three stages as
shown in Fig. 14(a). Described in detail as follows.
Stage 1. Input strokes
There are three switches involved in this stage, namely

SW1-1 human writing input switch, SW2 HGN input
switch, and SW3-1 action instruction generation switch.
The operating procedure in stage 1 is described below. The
handwriting stroke image I v is obtained from the image
capture module through the SW1-1 input to the stroke
processing module. After passing the stroke processing
module, the target image I v

∗

, skeleton coordinate Sv, and
stroke number N v are output through SW2 to the HGN.
The stroke processing module outputs the actual skeleton
position coordinates T v (i.e., [X ,Y ]) and combines the
posture instructions Qv (i.e.,

[
Z , θ, θ

]
) of the brush from the

HGN, thus resulting in complete action instructions Dv (i.e.,[
X ,Y ,Z , θ, θ

]
).

Stage 2. First attempt
There are two switches involved in this stage, SW5-1

action instruction switch and SW6 write-executing switch.
The operating procedure in stage 2 is described below.
The complete action instructions are input to the writing
processing module through SW5-1 and SW6, and the delta
robot completes the calligraphy writing for the first attempt
through the writing processing module.
Stage 3. Robotic writing
There are five switches involved in this stage, SW1-2

writing result feedback switch, SW7 writing result feedback
switch, SW3-1 instruction generation switch, SW5-1 action
instruction switch, and SW6 write-executing switch. The
operating procedure in stage 3 is described below.

The image capture module sends the writing result image
I v

+

back to the stroke processing module through SW1-2,
and then sends it back to the HGN through SW7. The stroke
processing module continues to output the actual coordinates
of the skeleton T v through SW3-1 and combines with new
posture instructions Qv for the brush which are updated
from the HGN, and completes the next action instruction
Dv. The complete action instructions are input to the writing
processing module through SW5-1 and SW6, and finally,
the delta robot completes calligraphy writing through the
writing processing module. Stage 3 is repeated until training

is finished and the error correction is then executed in
HGN [22].

2) CHINESE CALLIGRAPHY WRITING MODE
The purpose of Chinese calligraphywritingmode is to correct
the skeleton coordinates and reduce environmental errors
such as mechanism errors and coordinate conversion errors.
This mode consists of three stages as shown in Fig. 14(b).
Described in detail as follows.
Stage 1. Input Strokes
There are four switches involved in this stage, namely

SW1-1 human writing input switch, SW2 HGN input switch,
SW3-1 action instruction generation switch, and SW4-1
action coordinate saving switch. The operating procedure
in stage 1 is described below. The pre-processing is the
same as stage 1 of the HGN training mode. Then the stroke
processing module saves the action instructions and skeleton
coordinates of the handwriting through SW4-1. Finally, the
actual Cartesian coordinates of the stroke skeleton and the
action instructions for each stroke of the entire Chinese
character are stored.
Stage 2. First attempt
There are two switches involved in this stage, the SW5-1

action instruction switch and SW6 write-executing switch.
The operating procedure in stage 2 is described below.
The complete action instructions are input to the writing
processing module through SW5-1 and SW6, and the delta
robot completes the calligraphy writing for the first attempt
through the writing processing module.
Stage 3. Robotic writing
There are five switches involved in this stage, the

SW1-2 writing result feedback switch, SW3-2 skeleton error
calculation switch, SW4-2 skeleton error calculation switch,
SW5-2 action instruction switch, and SW6 write-executing
switch. The operating procedure in stage 3 is described below.
The image capture module sends the writing result image I v

+

back to the stroke processing module through SW1-2. Then,
the stroke processing modules, SW3-2 and SW4-2, complete
the error calculation and update the actual coordinates T v

of each stroke skeleton. The action instruction Dv
+

of the
next writing stroke is then completed. Finally, the delta robot
completes the calligraphy writing of each stroke of the entire
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FIGURE 15. Seven fundamental strokes of the Chinese character ‘‘ ’’.

Chinese character through SW5-2 and SW6 in this robotic
writing stage. To sum up, the posture instructions of the
brush of the robotic arm for the first attempt comes from
HGN. Afterwards, the writing action instructions can be
modified by the writing system itself, repeating stage 3 until
the training is finished.

III. EXPERIMENTS AND RESULTS
The Chinese character ‘‘ ’’ includes seven fundamental
strokes, i.e., stroke1 (dian), stroke2 (heng), stroke3 (shu-
gou), stroke4 (ti), stroke5 (wan), stroke6 (pie), and stroke7
(na) as shown in Fig. 15. We utilized this character to
verify the performance of the Chinese calligraphy-writing
system. There are two critical approaches to writing Chinese
calligraphy: Stroke trajectory learning and brush posture
learning. Chinese calligraphy writing can only be completed
correctly through the correct coordinates of the skeleton.
The thickness and angle of the stroke determine the beauty
of the word. Therefore, the training process of the Chinese
calligraphy-writing system is divided into two modes. One is
an HGN training mode and the other is a Chinese calligraphy
writing mode.

The purpose of the HGN training mode is to train the
writer net [22] of the HGN for every single stroke. In the
process of writing calligraphy, there is not only one unique
writing posture corresponding to each stroke. At this point,
we need to utilizeHGN as a posture strategymaker, so that the
delta robot can learn the appropriate 3-DOF writing posture
through accumulated experience by itself. The purpose of the
HGN pre-training process is to train the writing posture of the
fundamental strokes. Each fundamental stroke is practiced
200 times. During practice, HGN learns the patterns of
calligraphy-writing posture through the learning mechanism
of hypothetical generation models in cognitive psychology.
HGN generates potential hypotheses through a Hypothesis
Net and then evaluates the feasibility of the hypothesis
through an Estimator Net to complete the thinking process,
which is similar to the psychological human thinking process.
Finally, the writer net of the HGN can learn to generate the
writing posture of the fundamental strokes.

In the Chinese calligraphy writing mode, the primary
purpose is to correct skeleton coordinates and reduce
environmental errors. Thismode can verify the learning effect

FIGURE 16. Writing results of the eight writing practices of Chinese
character ‘‘ ’’. (a) Target image. (b)-(i) Writing results from 1st to 8th.

of the writing system. First, the writing system captures
the input, i.e., the stroke order of Chinese handwriting,
via a webcam. The process of image-to-action translation
includes extracting stroke skeletons, disassembling strokes,
sorting skeleton coordinates, recognizing strokes, converting
coordinates, receiving HGN instructions, and obtaining the
angle instructions of motors

through inverse kinematic. The output 5-DOF action
instructions include the skeleton coordinates and the posture
instructions of a brush. The coordinate matrix of the
skeleton is obtained by image processing, and the posture
instructions of a brush are obtained through the HGN
learning model. The delta robot uses action instructions to
complete the Chinese calligraphy writing. Then, the other
webcam provides feedback to the writing system for error
calculations and coordinate corrections. The writing results
finally approach the given sample after self-modifications of
the proposed system. After several cycles and modifications,
the output results that approximate the target sample can
finally be obtained. Figs. 16-19 show the writing results and
error rates of the characters ‘‘ ’’ and ‘‘ ’’ using the self-
made delta robot.

IV. ANALYSIS AND DISCUSSION
A. ERROR ANALYSIS
The error sources of this experiment mainly include the
mechanical errors of the hardware structure, the visual
image difference generated by the webcam, the image size
resolution, the coordinate conversion, and the deformation
error of the brush bundle.

1) MECHANICAL ERRORS OF THE DELTA ROBOT
The mechanics of the delta robot cause these errors.
The mechanical errors in hardware architecture include
computational errors from dimensional measurements to
motion translation.

2) IMAGE CONVERSION ERROR
The image-to-action translation causes these errors. The
difference in the images produced by the webcam is due to
the relationship between the external light intensity and the
angle of the external light; the images captured at different
times were different. Multiple averaged results must be used
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TABLE 2. Error rates of strokes(%) of the character ‘‘ ’’.

FIGURE 17. Writing results and error rates of the eight writing practices
of the character ‘‘ ’’.

to reduce this difference. Currently, the size of the ROI image
is 200 pixels by 200 pixels. This resolution is difficult to
display for small stroke changes and it could affect the results
of stroke correction. The image-to-action translation requires
the conversion of pixel coordinates to Cartesian coordinates.
Therefore, the error ratio of the projection transformation to
the actual size measurement would affect the final writing
results.

3) DEFORMATION ERROR OF A BRUSH BUNDLE
The deformation of the brush bundle would be changed
after writing a character several times. This would affect the
difference in stroke thickness and length of the writing result.

B. DATA ANALYSIS
Table 2 and Table 3 show the error correction results for
the delta robot using a learning rate of 0.3 during each
stroke training process. The calculationmethod uses themean
absolute percentage error (MAPE) between the target image
and the writing result images. The error rate can converge
gradually after eight practice sessions.

1) ERROR RATE OF EACH STROKE
Fig. 20 and Fig. 21 show the writing results of the Chinese
characters ‘‘ ’’ and ‘‘ ’’, the MAPE for each stroke, and
the relationship between the error percentage and the writing

FIGURE 18. Writing results of the eight writing practices of Chinese
character ‘‘ ’’. (a) Target image. (b)-(i) Writing results from 1st to 8th.

FIGURE 19. Writing results and error rates of the eight writing practices
of the character ‘‘ ’’.

FIGURE 20. Each stroke error rate of the Chinese character ‘‘ ’’.

practices, respectively. Some error rates of strokes increase
gradually during the first few writing practices. This is
because of the error correction, the length and position of the
stroke are both adjusted at the same time. When the stroke
length is increased but the position is wrong, the stroke error
rate may increase slightly.

2) ERROR RATE PER WORD
Table 4 shows the comparison of the writing results of the
Chinese characters ‘‘ ’’ and ‘‘ ’’, and the MAPE with
the writing practices of the characters ‘‘ ’’ and ‘‘ ’’,
respectively.
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FIGURE 21. Each stroke error rate of the Chinese character ‘‘ ’’.

FIGURE 22. Writing result of the Chinese character ‘‘ ’’ are shown in
(a) as the writing target in [17], (b) as the writing result in [17], (c) as the
writing target in the proposed method, and (d) as the writing result in the
proposed method.

TABLE 3. Error rates of strokes(%) of the character ‘‘ ’’.

C. AESTHETICS ANALYSIS
In addition to the similarity calculation with human samples,
we also performed an aesthetic analysis of the calligraphy
writing results. Chinese calligraphy writing can be aesthet-
ically evaluated by three features [17] and described in detail
as follows.

The overall aesthetic analysis results of Chinese callig-
raphy can be evaluated by the weighted sum of the three

TABLE 4. Error rate per word (%).

indexes (Eq. (34)).

II = kcIc + kbIb + kd Id (34)

where Ic denotes the coordination index (Eq. (35)), the
aesthetics of any writing result is affected by the relative
size of each stroke relative to the others. Ib denotes the
balance index (Eq. (36)), the balance of the entire Chinese
character is achieved through the different directions and
different degrees of inclination of different strokes to achieve
aesthetic purposes. Id denotes the distribution index (Eq.
(37)), the relative distribution of the strokes of the entire
Chinese character is aesthetically determined by its center of
mass and focus point of overall distribution. kc, kb, and kd
denote the weighted coefficients.

Ic = e
−

∑N
i=2

∣∣∣∣ li
li−1

−
l∗i
l∗i−1

∣∣∣∣ (35)

Ib = e−
∑N

i=1 |s
∗
i −si| (36)

Id = e−
∣∣∣µ−µ∗

µ∗

∣∣∣ (37)

The coordination index Ic in [17] is used to calculate the
relative size ratio of each stroke to other strokes. In Chinese
calligraphy characters, the relative length of each stroke
affects the beauty of a word and even its meaning. For
example, two Chinese characters with completely different
meanings ‘‘±′′ and ‘‘±′′ differ only in the length of the
strokes in the image. The balance index Ib is used to estimate
the writing angle of a stroke in a Chinese character. A
stroke that is too slanted or too flat will affect the beauty of
the overall calligraphy. The distribution index Id estimates
the relative positions of individual strokes in a calligraphic
character. Stroke positions that are too close or too far will
make the calligraphy look introverted or indolent. If the
reader is interested in the implementation details of aesthetic
evaluation, the method in [17] can be referred to.

1) EVALUATION INDEX
There are some problems that affect fairness in the Eq. (35).
In [17], an image of a stroke is considered as a unidirectional
picture, whereas an image should be bidirectional. In the
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TABLE 5. Aesthetics evaluation of Chinese calligraphy-writing ‘‘ ’’.

process of calligraphy writing, the strokes are unidirectional
and orderly. However, in terms of judging the beauty of
calligraphy writing from images, it is bidirectional and
disordered. That is to say, no matter how the stroke order is
arranged, it will be the same resulting image. We modify the
unidirectional estimate of Eq. (35) to a bidirectional estimate,
and then obtain

I ′c = e
−

1
2

(∑N
i=2

∣∣∣∣ li
li−1

−
l∗i
l∗i−1

∣∣∣∣+∑N
i=2

∣∣∣∣ li−1
li

−
l∗i−1
l∗i

∣∣∣∣) (38)

With the revised bidirectional estimation Eq. (38), we can
fairly evaluate the relative proportions of different strokes in
Chinese characters. In addition to the directional problem of
the image, Eqs. (36) and (38) also have a problem that needs
to be improved. Since the evaluationmethods of Eqs. (36) and
(38) are calculated by summing the errors of all strokes, the
scores of characters with more strokes will be lower. We need
to modify the summation operations in Eqs. (36) - (38) to
average operations, and obtain

I∗c = e
−

1
2(N−1)

(∑N
i=2

∣∣∣∣ li
li−1

−
l∗i
l∗i−1

∣∣∣∣+∑N
i=2

∣∣∣∣ li−1
li

−
l∗i−1
l∗i

∣∣∣∣) (39)

I∗b = e−( 1N )
∑N

i=1 |s
∗
i −si| (40)

After obtaining the evaluation methods above Eqs. (37),
(39) and (40), we comprehensively estimate the aesthetics of
calligraphy characters. We modify Eq. (34) as

I∗I = kcI∗c + kbI∗b + kd Id (41)

and then fairly evaluate the aesthetic indices of the proposed
method and the writing method in [17].

2) EVALUATION RESULTS
The weighted coefficients are set the same as in [17], i.e.,
kc =0.4, kb =0.4, and kd =0.2. The results of the aesthetics
evaluation are presented in Table 5.

In Table 5, there may be errors between the aesthetic score
and personal perception. A slight difference in the score does
not mean that its writing result is poor. The indicators of
aesthetic analysis are as follows:

(1) Coordination Index: Scored according to the length of
the strokes of the target and the result. Higher scores indicate
better coordination.

(2) Balance Index: Scored according to the rotation angle
of the target and result strokes. Higher scores indicate better
balance.

(3) Distribution index: Scoring is based on the distribution
of target and result strokes. Higher scores indicate better
distribution.

(4) MAPE: Calculate the error percentage based on the
strokes of the writing target and the writing result. The larger
the ratio indicates the error is bigger.

In summary, the proposed method significantly improves
the balance index I∗b and performs better performance in the
overall aesthetic evaluation I∗I . Therefore, our calligraphy
writing method not only has a small error compared to
human writing but also has a satisfactory result on aesthetic
evaluation. Note that we did not use the indicators of aesthetic
analysis as a reference input for designing the loss function,
but the aesthetic score of the proposed method is higher than
that of [17] which considers these aesthetic indicators.

D. DISCUSSION AND COMPARISON
The experimental results allowed us to analyze and com-
pare the differences, advantages, and disadvantages of
calligraphy-writing learning methods.

1) DISCUSSION
The Chinese characters ‘‘ ’’ and ‘‘ ’’ are composed of
similar strokes, but the practice results of each stroke are
different. Strokes with significant errors must be adjusted
by error correction methods. The current practice does
not include all strokes of Chinese characters, and more
complex strokes are not easy to disassemble and restore.
Thus, the results of the writing would be affected. The
stroke order sorting conditions of other strokes must be
continuously trained and improved in order to adapt to the
writing of all strokes. In addition, the proposed method has
some limitations. First, initial parameters are not calculated
automatically, making the parameters in HGN very difficult
to tune. For example, if the learning rates in HGN are too
large, the learning process of calligraphy will be difficult to
converge. However, the learning process will be too slow
if the learning rates are too small. Therefore, the initial
setting of the HGN’s learning rates depends on the human
experience. Second, the input image captured by a camera has
to be sufficiently stable due to no use of image enhancement
algorithms.

2) COMPARISON
The Chinese calligraphy-writing system is compared with
other writing systems as shown in Table 6. In general writing
systems, the stroke trajectories are described as the vector
[X , Y , Z ] in three dimensions. The position vector [X , Y ]
is the 2-D skeleton trajectory, and [Z ] shows the pressure
(height) level in thick or thin strokes. This is a relatively
simple stroke trajectory planning method. In contrast, our
writing system considers a 5-DOF action instruction as the
vector

[
X ,Y ,Z , θ, θ

]
. The angle vector

[
θ, θ

]
represents the

rotation and tilt of the brush which requires precise control.
State-of-the-art calligraphy manipulator control tech-

niques require the generation of mechanical coordinates
that can write Chinese calligraphy; the proposed method
generates complex motion instructions to control the
manipulator to perform calligraphy writing tasks. Therefore,

VOLUME 11, 2023 25813



M.-J. Hsu et al.: Chinese Calligraphy-Writing Robotic System Based on Image-to-Action Translations and a HGN

TABLE 6. Summary of comparisons with other writing systems.

TABLE 7. Dominance analysis of the writing systems.

we utilize mechanical coordinate generation methods
(e.g., [1], [7], [8], [9], [10], [11]) to compare the performance
in the experimental results, as shown in Table 6. These
methods are described below.

Method 1: Extracting the trajectory of the writing brush
from the thinned-center-line of the stroke [7].

Method 2: Matching and decomposing strokes of character
automatically to the corresponding robot trajectories [8].

Method 3: Using corner detection to decompose characters
and matching the decomposed strokes to robotic writing
trajectories [9].

Method 4: Using a generative adversarial net (GAN) based
calligraphic robotic framework to produce trajectories [1].

Method 5:Modeling of ancient-style Chinese characters by
B-splines for robotic calligraphy writing [10].

Method 6: Using a capacitive touch screen to obtain touch
point positions, strokes, width, writing speed, acceleration
and other characteristics [11].

These methods are used for discussion in Table 6.
This table compares four aspects: (a) Self-learning ability,

(b) Writing stability, (c) Writing flexibility, and (d) Dimen-
sions of the instruction. They are defined as follows.

(a) Self-learning ability
We can confirm whether the writing system has self-

learning ability through conditions such as writing result
feedback, error calculation, and coordinate correction. Our
system comprises two webcams for the input of writing
results and feedback, respectively. Through this closed-
loop structure, the system can calculate errors and perform
self-correction. In addition, the use of these webcams is
inexpensive relative to using other expensive perception
sensors.

(b) Writing stability
The stability of writing is defined by examining calli-

graphic writing results for stroke fluency, proportional font,
and word correctness. If the strokes are jittery, not smooth
enough, have a wrong aspect ratio, or are misspelled, then the
system is considered unstable. Our system utilizes an image-
to-action process for calligraphic writing. As mentioned in
the previous section, some errors may occur during the
conversion process, resulting in unstable output results. Other
systems use font databases for calligraphic writing for more
stable results.

(c) Writing flexibility
Writing flexibility implies that the robotic arm can write

in a variety of calligraphic fonts. Writing different fonts
requires generation of different stroke trajectories. If the
writing system cannot generate new stroke trajectories, the
program needs to be modified to plan new stroke trajectories
or add new font trajectories to the database. Through self-
learning, our writing system can avoid program modification
and shorten stroke modeling times, making writing more
flexible.

(d) Dimensions of the instruction
Practical operations in real environments must consider

factors such as kinematic transformations, noise, and relia-
bility, so the writing results of real robotic arms are used to
check the robustness and fault tolerance of thewriting system.
Therefore, high writing dimensions are needed to improve
the writing results. In contrast, our robotic arm considers the
posture angle of the brush, which is a unique feature of our
writing system. The experimental results of the robotic arm
demonstrate the effectiveness and feasibility of our proposed
Chinese calligraphy-writing system.

The dominance analysis uses a multiple comparison pro-
cess to determine the order of the strengths and weaknesses
of the various writing systems, thereby determining their
relative importance. As shown in Table 6 and Table 7, the
marks A, B, C, D, E, F, and G denote the various writing
systems. L(·),S(·),X(·), and M(·) denote the dominance
analysis at four system discussion levels. Points are awarded
to writing systems that meet the competency criteria. If a
writing system has a higher cumulative score, it means that
the system has an advantage over the others. For example,
L(·) determines whether the writing system has the self-
learning ability. L(A) ⋑ L(B) denotes that the writing
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system ‘‘A′′ has an advantage over writing system ‘‘B′′. The
accumulated point for the writing system ‘‘A′′ is 1, which is
expressed as A{1}. The + symbol indicates that the writing
system considers the posture angle of the brush, which helps
render better writing results. We utilize dominance analysis
to obtain the results shown in Table 7. The conclusion is
that the proposed writing system can autonomously generate
5-DOF action instructions better than other systems. This also
highlights the direction in which our writing systemwill need
continuous improvement in the future.

V. CONCLUSION
This paper presents a self-learning Chinese calligraphy-
writing systemwhichwas designed and trained using anHGN
learning model. The proposed writing system is based on the
5-DOF action instructions, which combine stroke trajectories
and angle information from the HGN, to accomplish Chinese
calligraphy writing. The action instructions of the robotic
arm are automatically generated and corrected by the writing
system through an image-to-action translation. In addition,
the proposed Chinese calligraphy writing system can obtain
the instructions from HGN for the pressure (height), rotation,
and tilt of the brush bundle to precisely control the posture
and angle of the brush for the presentation of stroke
beauty resulting. The MAPE method is chosen to verify
the performance of the writing results. The correction
algorithm and linear regression were used to improve the
error correction results. The writing results demonstrated in
this paper finally approach the given human writing sample
after self-modifications of the proposed writing system,
proving that our proposed robotic writing system is capable
of self-learning and correction. Further research is required
to generate proper parameters of HGN automatically and to
both evaluate and analyse the computational complexity of
the proposed method.
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