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ABSTRACT Accidental fall is a significant health risk among the elderly. However, most of the fall detection
systems give notification only after a fall occurs. Therefore, medical attention has shifted to fall preventive
measures to reduce risks of fall and prevent any damage entirely. As most fall prediction data in previous
literature are obtained from inertial sensors or static pressure sensors, in this study, wireless pressure sensors
embedded insoles are used to train machine learning (ML) models to predict the risk of fall of an individual.
The novelty of this paper is that dynamic walking data is obtained by wearing smart pressure insoles from
1101 subjects. We applied six different MLmodels, i.e., support vector machine (SVM), random forest (RF),
logistic regression (LR), naive bayes (NB), decision tree (DT), and k-nearest neighbor (kNN). Results show
that LR model with oversampling techniques achieved the highest area under curve (AUC) of 0.82, whereas
the RF model with oversampling achieved the highest accuracy of 0.81 and specificity of 0.88. The results
show that such models combined with pressure embedded wireless sensor insoles are capable for fall risk
prediction.

INDEX TERMS Fall risk prediction, pressure sensor, machine learning, smart insole, gait analysis.

I. INTRODUCTION
There were 727 million persons aged 65 years or over in
2020 [1]. Over the next three decades, the number of the
elderly worldwide is projected to more than double, reach-
ing over 1.5 billion in 2050. Globally, the population aged
65 years or over is expected to increase from 9.3% in 2020 to
around 16% in 2050 [1]. In each region in the world, hun-
dreds of thousands of elderly face risks and complications
caused by fall accidents. Medical research shows that the
aging process in humans involves the recession of nervous
system and physiological functions [2], which reduces their
ability to walk. So, the elderly are more prone to falls than
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younger people. Falls among elderly are one of the major
health problems that lead to a decreased quality of life and
increased morbidity and mortality [3]. Health centers have to
deal with a large number of patients due to accidental falls,
resulting in a huge cost on society. In 2015, the estimated
medical costs attributable to fatal and nonfatal falls were
approximately $50 billion [4].

To alleviate the severity of fall accidents, several systems
were developed.Most were post-fall detection [5], [6], [7], [8]
systems, which notify caretakers or the medical staffs only
after a fall occurs. However, despite the early notification,
damage has already occurred. Thus, there is need for a fall
prediction system to prevent falls from occurring at an early
stage and help the elderly to reduce their fall risk. Therefore,
a fall risk prediction system which can notify the elderly
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before they fall using previous data is a promising method to
avoid falls. Although there are many studies based on fall risk
prediction systems, most studies used accelerometer sensor
data [2], [3], [9], [10] or static pressure plates [11], [12].

In this work, a wireless pressure sensor embedded smart
insole for fall risk prediction has been proposed. The smart
insoles are used to enable dynamic gait analysis. Since the
gait and balance disorders have been identified as strong
fall risk factors [13], we used feature sets extracted from
the gait and balance data for this study, then apply different
ML models and compare their performances on fall risk
prediction. In addition, the smart insoles are lightweight, thin,
and comfortable to wear, providing an unobtrusive way to
perform gait and balance analysis.

II. RELATED WORK
In general, there are two different approaches to alleviate
falls. One is fall detection [5], [6], [7], [8] and the other is
fall prevention [2], [3], [9], [10], [11], [12]. The disadvantage
of fall detection method is that it notifies only after the fall
occurs. On the contrary, the fall prevention system by using
users’ past data, we can assess the fall risk and recommend
exercise or training to reduce their fall risk.

In [2], a mobile phone and a three-dimensional
accelerometer were used to develop a simple statistical fall
risk prediction system. Stability and symmetry of gait from
accelerometer data were used to predict the fall risk (nor-
mal, attentive, dangerous) of walking subjects. In another
study [3], deep learning models were used to automatically
derive features from raw accelerometer data that assess binary
fall risk (fall, non-fall) with an existing dataset of 296 older
adults. The best performance was achieved with AUC of
0.75 for prediction of risk of fall. Hemmatpour et al. [9]
proposed a polynomial classification model of human gait
for real-time fall prediction. Their approach can detect the
transition from a normal to an abnormal gait pattern. The
accelerometer and gyroscope sensor data we used to analyze
various gait features. Their statistical-based approach had
the best performance among other fall prediction algorithms,
with 99.2% accuracy. Bizovska et al. [10] proposed a statisti-
cal model for medial-lateral local dynamic stability during
gait using inertial sensors combined with a clinical score,
called the Tinetti total score, as a potential fall risk assessment
measure. Results showed that an AUC of 0.75 was acquired
from a total of 131 elderly subjects observed for one year for
this study.

All the above discussed work [2], [3], [9], [10] used inertial
sensors (accelerometer, gyroscope) to analyze the gait data
and predict fall risk. The challenge with inertial sensors is
that the placement of sensors worn on the body may affect the
model’s performance. Also, it is well-known that corrupted
errors, such as measurement noise and time-variant sensor
biases can distort the data from inertial sensors [14], [15].
Therefore, such sensors require longer preprocessing time to
filter raw sensor data and extract useful features. Further-
more, [2] and [10] used statistical models to predict fall risk.

Statistical models have been used for inference, which is
created by fitting a project-specific probability model [16].
In contrast, ML models predict by using general-purpose
algorithms to find patterns in often rich data [16]. Therefore,
ML models are more generalized than statistical models and
are likely to handle future incoming data effectively. In [9],
a polynomial classification model and a threshold-based
approach were used to classify normal and abnormal gait.
However, the abnormal gait scenario is synthesized by adding
obstacles; so the approachmay not reflect realistic fall-related
gait patterns.

As aforementioned, [2], [3], [9], [10] have used only iner-
tial sensors, with the exception of [11] which extends to
use the inertial sensor with static pressure sensors. They
concluded that features from inertial sensors with pressure
platforms obtained better results than inertial sensors alone.
Their balance features were calculated from a static pres-
sure platform, which helped predict fall risk. However, the
gait analysis cannot be measured from the pressure platform
because of its static nature. In this work, we used a pressure
sensor embedded smart insole to collect dynamic pressure in
real-time gait movement.

In this work, we propose a different approach that employs
ML models with inputs obtained from wireless pressure
sensor embedded smart insole instead of inertial sensors to
predict an individual’s fall risk. In particular, we analyze the
dynamic gait data by using a butterfly loop, which describes
the gait cycle’s stability and symmetry. In this work, the appli-
cation of center of pressure (COP) as dynamic gait/balance
assessment is novel for fall risk prediction. Results show that
the LRmodel with oversampling has the highest AUCof 0.82,
whereas the RF model with oversampling has the highest
accuracy of 0.81 and specificity of 0.88.

III. MATERIALS AND METHODS
This study was conducted at the Khon Kaen University and
the Dan Sai Crown Prince Hospital, Thailand. The study was
approved by Khon Kaen University Ethics Committee for
Human Research (EC number - HE631529). All participants
gave written informed consent.

A. GENERAL INFORMATION
A total 1101 volunteers (341 male and 760 female subjects)
participated in this study. Excluded participants were subjects
with a plantar wound, aged below 65 years, an unstable
medical condition with lower limb amputation, gait and/or
mobility disorders, and inability to walk 10 meters without
support or unable to wear smart insoles.

Demographic characteristics mainly included personal
details, such as age (years), weight (kg), height (cm), BMI
(kg/m2), exercise (Y/N), smoke (Y/N), previous falls (Y/N)
etc.

A fall risk assessment index called Timed Up and Go
data was also collected. The Timed Up and Go (TUG) is a
simple screening test that is a sensitive and specific measure
of the probability of falls among older adults and one of the
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FIGURE 1. The Timed Up and Go Test (1 = stand up, 2 = walk 3 meter, 3 =

Turn around, 4 = walk 3 meter, 5 = sit down).

FIGURE 2. The smart insole layer and locations of sensing points.

primarily used tests for fall risk assessment by experts [17].
TUG measurement is shown in Fig. 1.

B. SMART INSOLE (SURASOLE)
A commercial smart insole (provided by Suratec Co., Ltd.,
Nakhon Ratchasima, Thailand) as shown in Fig. 2 was used
to collect dynamic plantar pressures while a subject was
walking. The insole had five force-sensitive resistance sen-
sors each with a diameter of 18 mm embedded in both
insoles. These sensors were uniquely positioned to detect and
quantify a relative change in the pressure or applied load.
As shown in Fig. 3, the data collected during the experiment
were divided into five zones of the foot: the big toe (Hallux:
HA), the medial forefoot (M1), the lateral forefoot (M5),
the midfoot (MF), and the heel (HF). These sensors were
connected to a microcontroller using a voltage divider circuit.
The output was then connected to a 10-bit analog-to-digital
converter. The circuit was adjusted for each sensor to operate
at full force range (0–20 kg) and a response time of less than
10 µsec. The sampling rate used was 20 Hz.
The dynamic data collection process began with the patient

walking back and forth over a ten-meter distance to assess
the pressure distribution under their feet. These real-time
measurements were transmitted to a smartphone through
Bluetooth and then recorded on a database server for further
analysis.

C. PREPROCESSING
After collection of data, the sensor data at the begin-
ning and at the closing of each sample was cut by 20%.

FIGURE 3. The foot zones position.

FIGURE 4. Butterfly loop illustrating the trace of the COP.

This percentage of cut was selected based on evaluating dif-
ferent cutoff percentage (5%, 10%, 15%, 20%, and 25%)
on the collected smart insole data to eliminate the transition
at the start and end of the data collection. For this experi-
ment, we used 2202 samples (each participant walked two
times back and forth, so two samples for each participant).
After removing the samples with invalid data and noise,
2070 samples remained for our experiment. Then the data
was analyzed to determine various motion-related parame-
ters, including sway information, and COP. To enhance the
feature for fall prediction and gait analysis, a collection of
COP from a two-step walk cycle, called the butterfly loop,
was introduced. COP traces create a butterfly loop shown
in Fig. 4.

Let the coordinates of the butterfly loop in Fig. 4 be defined
as A, B, C, D, E, F, G, H, I, where B is the cross-section
point of the butterfly loop. The common extracted features
from a gait analysis obtained from a butterfly loop are shown
below [18]:
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• Cadence: The number of steps a person walked in one
minute.

• Stance time: The time taken to complete a stance phase
of corresponding foot in a gait cycle (i.e., the time for
which a corresponding foot is in contact with the ground
in a gait cycle).

• Sway distance: The distance obtained from the corre-
sponding segment of the butterfly loop. The larger the
sway distance, the larger the pressure applied on the foot,
i.e.,

DL (Left sway distance) = BE + EA + AD + DB

DR (Right sway distance) = BG + GC + CF + FB.

• Cycle time: The time taken to complete a gait cycle
(2 steps). In other words, the time taken to complete a
butterfly loop.

It is worth to note that these butterfly features have been
used for gait analysis [18], but to the best of our knowledge it
has not yet been used for fall risk prediction. The additional
features extracted from the butterfly loop for fall risk predic-
tion are presented in Table 1.

D. FEATURE SELECTION
The selection of features is a central concept in ML that has
a significant effect on the model’s performance. Irrelevant
features may adversely affect the performance of the model.
Therefore, good selection of features will result in reduction
of overfitting, improve accuracy and reduction of training
time.

We use a method called feature importance [19] to extract
useful features in our dataset. In this method, all features have
their individual scores. Features having a high score are more
important for the target outcomes, i.e., high risk of fall or
low/no risk of fall classification.

From Fig. 5, the feature with the highest score (i.e., step
count) has the most impact whereas the feature with lowest
score (SD_X) has the least impact or no impact at all on the
performance of the model.

From Fig. 6, it is shown that having more than 5 features
does not provide an additional advantage, as can be seen that
after 5 features, the AUC score did not improve (increase)
any further. Therefore, we used the top 5 features in our
experiment from Fig. 5.
In this study, we used TUG to label the data. For commu-

nity dwelling adults, the cutoff scores for indicating risk of
falls is 13.5 seconds [17], giving the following threshold used
in this experiment.

• If TUG score is greater or equal to 13.5, the participants
are labeled as high risk of fall (fall) category.

• Otherwise, the participants are labeled as the low/no risk
of fall (non-fall) category.

IV. EXPERIMENTS AND RESULTS
Six well known ML models (support vector machine
(SVM), random forest (RF), logistic regression (LR),

FIGURE 5. Features and their corresponding scores.

FIGURE 6. Number of features vs AUC score.

naive bayes (NB), decision tree (DT), and k-nearest neighbor
(kNN)) were used in this study to perform binary classifi-
cation of participants based on their risk of fall. Since for
clinical fall risk study, the model performance was evaluated
by physicians using AUC score [3], [10], we used AUC as
a primary performance measure to compare the ML models.
AUC was the measure of the ability of a ML model to dis-
tinguish between classes (high risk/low risk of fall) and was
used as a summary of the receiver operating characteristic
(ROC) curve. In addition to AUC, the accuracy, sensitivity
and specificity were also evaluated.

In our experiment, we used a hyperparameter tuning library
called GridSearchCV [20] with a combination of k-fold
cross-validation technique to find the optimal parameter for
each model. After we achieved optimal hyperparameters for
eachMLmodel, we applied the commonly used ratio of 70:30
as the training set and test set ratio in all models.

A. DATASET HANDLING
The dataset from Section 3.3 consisted of 2070 data samples
which consisted of 500 falls and 1570 non-falls based on
TUG score. As the ratio between non-fall and fall samples
was approximately 3:1, the dataset was imbalanced. As the
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TABLE 1. Feature set extracted from the butterfly loop (Fig. 4).

FIGURE 7. AUC and accuracy scores of ML models on without resampling
dataset.

imbalanced dataset directly affects the performance of ML
models, in our study, we used resampling methods to handle
the imbalanced dataset. These methods involves creating a
new transformed balanced training dataset.

The most commonly used resampling techniques are
• Undersampling: which decreases themajority class sam-
ples i.e., in our case non-fall samples (Section 4.1.2),

• Oversampling: which increases the minority class sam-
ples i.e., in our case fall samples (Section 4.1.3).

ML models were applied and their performance was com-
pared among three types of dataset, i.e., without resampling
dataset, oversampling dataset and undersampling dataset as
follows.

1) EXPERIMENT-1 WITHOUT RESAMPLING DATASET
We applied ML models in this experiment without introduc-
ing resampling techniques to our imbalanced dataset. The
objective was to evaluate the effect of imbalanced dataset
without any resampling treatment.

In Fig. 7, we can see that AUC and accuracy scores are the
highest and identical in the three models (SVM, LR, kNN),
with an AUC of 0.80 and an accuracy of 0.83, whereas DT
has the lowest AUC of 0.75. DT may be inefficient if there
are features with weak or no interactions since every feature
in the DT is compelled to interact with every feature further

TABLE 2. Optimal hyperparameters on Experiment-1 without resampling
dataset using GridSearchCV library.

up the tree [21]. This could be the reason that DT performed
the worst in this experiment.

The optimal hyperparamaters were selected using Grid-
SearchCV library as shown in Table 2.

2) EXPERIMENT-2 WITH UNDERSAMPLING DATASET
In this experiment, we applied the undersampling technique
to balance the dataset. We used two popular undersampling
methods in this experiment, i.e.,

• Random undersampling: This method involves ran-
domly selecting samples from the majority class and
deleting them from the training dataset,

• Centroid-based undersampling: This method undersam-
ples the majority class by replacing a cluster of majority
samples with the cluster centroid of a K-means algo-
rithm. The K-means clustering algorithm computes cen-
troids and repeats until the optimal centroid is found,
where K denotes the number of clusters found from data.

The main difference between the two undersampling
methods is as follows. In the centroid-based undersampling
method, the newly generated data samples are synthesized
from the centroids, whereas in the random undersampling
method, original data samples are used. The samples chosen
by random undersampling may be biased and can discard
potentially useful information, which could be essential for
building binary classifiers. In contrast, the samples chosen
in centroid-based undersampling are less biased because
they used centroid samples instead of the original samples.
We applied different ML models in both undersampling
methods to compare their performances.

In Fig. 8, results show that AUC is the highest and identical
in RF and kNN for random undersampling and whereas NB
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FIGURE 8. AUC scores of ML models in Undersampling method.

FIGURE 9. Accuracy scores of ML models in Undersampling method.

and kNN performs best in centroid-based undersampling,
with an AUC of 0.81.

In Fig. 9, we can see that DT has the highest accuracy
of 0.78 in random undersampling and NB has the highest
accuracy of 0.77 in centroid-based undersampling.

SinceNB has both the highest AUC and accuracy, therefore
for this experiment, NB was selected as the optimal model
using the centroid-based undersamplingmethod. After apply-
ing undersampling in our original dataset, the non-fall dataset
was reduced from 1570 to 500 samples compared to the other
two experiments. As NB works better in smaller datasets
compared to other ML models [22], NB performed best in
undersampling.

3) EXPERIMENT-3 WITH OVERSAMPLING DATASET
In this experiment, we applied the oversampling techniques to
the training dataset to balance the data. We used two popular
oversampling methods in this experiment, i.e.,

• Random oversampling: This method involves randomly
selecting samples from the minority class with replace-
ments and adding them to the training dataset,

• SMOTE (Synthetic Minority Oversampling TEch-
nique): This method is a type of data augmentation for
the minority class.

FIGURE 10. AUC scores of ML models in Oversampling method.

FIGURE 11. Accuracy scores of ML models in Oversampling method.

The main difference between the two oversampling meth-
ods is as follows. In the SMOTE method, the newly gener-
ated data samples are synthesized from the existing samples,
whereas in the random oversampling method, duplicating the
existing data samples. We applied different ML models in
both oversampling methods to compare their performances.

In Fig. 10, LR has the highest AUC score of 0.82 in
both oversampling methods. LR is useful when the response
variable is binary, but the features are numeric [23]. This
would be the case since we were predicting whether or not
a subject is at fall risk, using the information on their age,
step count, cycle time, and other COP parameters, which are
numeric variables.

In Fig. 11, RF has the highest accuracy of 0.81 and speci-
ficity of 0.88 in the random oversampling method. After
applying oversampling in our original dataset, the fall dataset
expanded from 500 to 1570 samples compared to the other
two experiments. As RF works better in terms of accuracy on
larger datasets compared to other ML models [24], RF had
the highest accuracy in oversampling.

In this experiment, the AUC scores were the highest
for oversampling. Therefore, the two oversampling methods
were selected as the optimal methods in which the remaining
performance metrics are shown in Table 3. From Table 3, for
both oversampling methods, LR model has the highest AUC
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TABLE 3. ML models performance scores in oversampling method.

and RF model has the highest accuracy and specificity. Since
AUC is the most significant factor for clinical fall risk assess-
ment, our results suggested that LRmodel with oversampling
may be used. However, if accuracy and specificity are the
main concern, then RF with oversampling may be used.

In comparison with previous works, deep learning meth-
ods (convolutional neural network (CNN), long short-term
memory (LSTM), and a combination of CNN and LSTM,
i.e., ConvLSTM) were used to predict the risk of falls on raw
accelerometer sensor data achieved AUC of 0.75 [3]. In our
work, we achieved an AUC of 0.82 by using the LR model
with data obtained from oversampling method. In another
study [12], a One-One-One deep learning model (combina-
tion of 1D-CNN, LSTM, and the Dense) was proposed on
force plate data for fall risk prediction. This model achieved
accuracy, precision, and sensitivity of 0.99, 1, and 1, respec-
tively. This suggests potential improvement in performance if
deep learning method is used with pressure sensor data from
dynamic gait.

V. CONCLUSION
In this work, six different ML approaches are compared to
predict the risk of falls by using the butterfly loop gait/balance
assessment obtained from wireless pressure-embedded smart
insoles data. Our proposed method was evaluated on a dataset
of 1101 elderly subjects walking data collected using a
pressure-embedded smart insole. Different oversampling and
undersampling methods were applied due to the imbalanced
nature of the dataset. Whereas, in our study, the LR model
with oversampling achieved the highest AUC of 0.82, and the
RF model with oversampling achieved the highest accuracy
of 0.81 and specificity of 0.88. Therefore, results suggest that
ourmethods have the potential to predict the risk of falls using
wireless pressure sensor embedded smart insoles.

Furthermore, existing literature demonstrated that high
accuracy performance can be achieved by using deep learn-
ing methods, we will explore different deep learning (CNN,
recurrent neural network (RNN), LSTM, etc.) methods to
extract insights of human gait and balance with the help of
hidden layers of neural networks in future research. In addi-
tion to that, we will investigate more gait and balance features
from our insole data to develop a multiple-class fall risk
prediction model.
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