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ABSTRACT During the epidemic outbreak period, the number of infected people increased explosively.
In order to effectively contain the further spread of the epidemic and treat infected people, it is necessary to
make reasonable planning for the treatment of infected people and the distribution of materials. In this paper,
a multi-objective mixed-integer programming model for the integrated design of emergency medical and
material distribution networks is developed, in which the location of medical points, the allocation of infected
people, and the distribution of medical materials are addressed in the multi-stage planning. Then, the multi-
objective model is solved by the augmented ε-constraint method. A realistic case study on Huangpu District
of Shanghai in China is conducted to demonstrate the validity of the developed model. The results show that
the integrated consideration of the emergency medical network and the material distribution network is more
capable of reducing the total transportation distance and decreasing the total operating cost.

INDEX TERMS Epidemic, emergency medical network, material distribution network, dynamic allocation,
augmented ε-constraint method.

I. INTRODUCTION
The epidemic outbreak period is defined as a large number
of patients with the same disease in the same region within a
short period of time. The COVID-19 (Corona Virus Disease
2019) outbreak is the sixth global public health emergency
to date. The outbreak of COVID-19 has severely affected
the daily lives of people around the world. According to
reports, between the date December, 2019 and June 15,
2022, 533,563,676 people have been infected, resulting in
6,319,981 deaths. In 2022, an outbreak occurred in Shanghai,
China, with a cumulative total of over 600,000 infected peo-
ple. In response to the outbreak of COVID-19, Shanghai has
set up mobile cabin hospitals to treat infected people. Cen-
tralizing the treatment of infected people facilitates control
and prevents the further spread of the epidemic. However,
challenges remain in treating all those infected and meeting

The associate editor coordinating the review of this manuscript and

approving it for publication was Maurizio Casoni .

the need for medical materials. For example, because the
number of infected people spikes during an outbreak, the
infected people cannot all be treated or the medical material
needs of those already treated people cannot all be met. As a
result, this will not be conducive to the prevention and control
of the epidemic, making it increasingly serious. Similar chal-
lenges can be seen in the 2020 Wuhan outbreak in China and
the 2022 Zhengzhou outbreak in China. In addition, different
from traditional logistics, emergency logistics is an important
force of a national security system, as it is a logistics activity
that provides emergency support for materials and personnel
needs in response to unexpected public health events and
other emergencies. Therefore, the government establishes an
effective emergency logistics system before the outbreak,
to choose appropriate emergency medical points (EMPs)
and medical material distribution points (MMDPs), to treat
infected people and satisfy the medical material needs of
these people are critical to support emergency relief opera-
tions and respond quickly to outbreaks.
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As the allocation of infected people to each EMP influ-
ences the distribution of medical materials. Conversely, the
quantity of medical materials that can be received at each
EMP also affects the allocation of infected people. It is
clear that the emergency medical network and the material
distribution network interact with each other. Therefore, the
emergency medical network and the material distribution
network should be designed in an integrated manner during
an epidemic.

This paper integrates the design of the emergency medical
and material distribution networks and establishes a multi-
objective mixed-integer programming model that considers
multi-stage decisions. Using the epidemic data of Huangpu
District in Shanghai as an example, the established model is
solved by the augmented ε-constraint method, and sensitivity
analysis of key parameters is carried out.

This paper contributes to the literature in the following
ways. First, we design the emergency medical and material
distribution networks in an integrated manner. As far as we
know, most of the current studies only deal with one of
the two networks. Second, a multi-objective mixed-integer
programming model considering multi-stage is established
and the augmented ε-constraint method is used to solve the
model.

The remainder of this paper is organized as follows.
In Section II, a review of the related literatures is provided.
In Section III, the problem definition is presented and amulti-
objective mixed-integer programming model is formulated.
In Section IV, the solution method for the multi-objective
model in this paper, the augmented ε-constraint method,
is presented. In Section V, a realistic case study on the
2022 COVID-19 epidemic in Huangpu District, Shanghai
is presented. In Section VI, conclusions and future research
directions are presented.

II. RELATED LITERATURE
Since our work focuses on the integrated design of emergency
medical and material distribution networks, in this section,
we review the following streams of literatures that are similar
to our research: (1) emergency medical network design; (2)
material distribution network design; (3) integrated design of
emergency medical and material distribution networks.

A. EMERGENCY MEDICAL NETWORK DESIGN
For the location of emergency medical facilities, Sudtachat
et al. [1] proposed a relocation strategy that models the loca-
tion of healthcare facilities with the objective of maximizing
desired coverage. Zhang et al. [2] designed a multi-objective
optimization method based on genetic algorithms to deal with
the location problem of medical facilities. Coco et al. [3]
investigated a robust optimization-based robust optimization
basedmaximum coverage sitingmodel. Liu et al. [4] modeled
the allocation of medical services facilities to casualties with
the goal of maximizing the expected survival rate and the
total operating cost. Liu et al [5] constructed a robust siting
optimization model for emergency service stations with the

objective of minimizing the desired total cost, and proposed
an outer approximation algorithm to solve it. Chen et al [6]
proposed a model for siting emergency medical facilities
based on transport infrastructures. Zarrinpoor et al. [7] devel-
oped a hierarchical healthcare facility location-allocation
model considering some factors such as the risk of disrup-
tion to facilities in the healthcare delivery network. Maleki
Coco [8] considered referral systems and developed a multi-
objective mixed-integer nonlinear programming model. The
above literature only studied the emergency medical network
and did not consider the distribution of emergency materials.

B. MATERIAL DISTRIBUTION NETWORK DESIGN
For the location of material distribution points, scholars have
studied it from several perspectives. Considering cost factors,
Benneyan et al. [9] developed single-stage and multi-stage
location-allocation models with the objective of minimizing
the total cost. Ekici et al. [10] designed a disease transmission
model based on which an emergency material distribution
model with the objective of minimizing total cost was devel-
oped. Khayal et al. [11] developed a mixed-integer planning
model for facility siting with the objective of minimizing
total system cost. Loree et al. [12] established a model
for the location and distribution of post-disaster emergency
materials distribution points with cost minimization as the
objective. Haghi et al. [13] constructed a multi-objective
planning model considering factors such as fair distribution
of emergencymaterials and total cost minimization, proposed
the MOGASA algorithm, and compared it with the NSGA
II algorithm to verify the effectiveness of the MOGASA
algorithm. However, in the actual process of emergencymate-
rials distribution, the low-cost distribution method can not
necessarily transport emergency materials to the point of
demand in the shortest time, which often affects the efficiency
of emergency rescue.

With the deepening of research, more and more schol-
ars began to study the timeliness of emergency materials
distribution. Wang et al. [14] and Ren et al. [15] devel-
oped a location-allocation model with the objectives of
minimizing emergency response time and maximizing sat-
isfaction, Wang et al. [16] developed an emergency logistics
network optimization model with the objectives of minimiz-
ing logistics operating costs and minimizing total distribution
time, taking into account factors such as emergency response
speed. Long et al. [17] developed a multi-stage siting-
distribution model for emergency materials. Tikani et al. [18]
Established a two-stage stochastic nonlinear mixed integer
programming model for emergency materials distribution
considering time window and other factors. Wang et al. [19]
established a multi-regional emergency materials coordi-
nation and dispatching model, taking into account factors
such as differences in the supply of emergency materials
between different regions and uneven reserves of materials,
but did not consider the location of emergency materials
distribution points. Zhang et al. [20] developed a multi-stage
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joint material distribution model with the goal of minimiz-
ing patient loss and maximizing equity in material distri-
bution. Zhou et al. [21] considered the multi-cycle dynamic
emergency material dispatching problem and established an
emergency material allocation model with the objective of
minimizing the total shortage of material demand and min-
imizing the total risk of material failing to reach the disaster
area in a timely manner. Garza-Reyes et al. [22] improved
the efficiency of emergency medical services based on lean
thinking and the theory of constraints. Baharmand et al. [23]
proposed a location-allocation model that stratifies the topog-
raphy of the affected area to solve the problem of time and
resource constraints in the distribution of emergency materi-
als after a sudden disaster.

Considering material demand forecasting, Albareda-
Sambola et al. [24] developed a facility siting model assum-
ing that healthcare demand obeys a Bernoulli distribution.
Mohammadi et al. [25] assumed that medical demand obeyed
a Poisson distribution and developed a multi-objective math-
ematical planning model with the objectives of minimizing
total cost and minimizing total time. He et al. [26] proposed
an improved demand forecasting model to establish a model
for the distribution of emergency material. Hou et al. [27]
developed a dynamic planning stochastic model for the distri-
bution of medical materials by building an improved SEIAR
model to forecast the demand for materials. Wu et al. [28]
developed an urban emergency material distribution model
based on the emergency material distribution cloud platform
and designed a genetic algorithm to solve the model. How-
ever, the above literatures had not considered the integration
of emergency medical and material distribution networks.

C. INTEGRATED DESIGN OF EMERGENCY MEDICAL AND
MATERIAL DISTRIBUTION NETWORKS
In order to better solve the problems arising from emergency
activities, some scholars have started to study integrated net-
works, but the research results are relatively few. Yi et al. [29]
established a dynamic logistics coordination model by con-
sidering the distribution of materials and the transfer of
casualties in disaster areas. Sheu et al. [30] established a
three-stage emergency response network by considering the
shelter network, medical network, and distribution network.
Camur et al. [31] developed a dynamic optimization model
for marine evacuation in large-scale emergency rescue events,
considering the distribution of personnel in the affected area
and the distribution of rescue materials. The above literatures
are all studies on the emergency rescue of natural disasters
and emergencies, but not on public health emergencies. Luo
et al. [32] developed amodel for the distribution of emergency
materials and patient allocation in a large-scale epidemic, but
only considered a secondary emergency supply distribution
network consisting of community hospitals and emergency
hospitals. In actual emergency rescue, due to the quantity of
emergency materials at the emergency materials distribution
point is limited, and the materials need to be allocated from

the supply point to fully meet the material needs of each
demand point, the second-level emergency logistics network
is usually unable to meet the needs of emergency materials at
demand points.

In sum, although numerous scholars have conducted stud-
ies on the emergency medical network and material distribu-
tion network from different perspectives, to our knowledge,
there have been no studies on the emergency medical and
three-level material distribution networks in the context of
the epidemic, in which these networks have been considered
in an integrated manner. In addition, there is little literature
that considers the stock levels of emergency materials at the
distribution points and the supply points after each emergency
material distribution stage is completed, and the emergency
material distribution models established fail to automatically
convert the stock levels of materials after the completion of
the previous stage of distribution into the replenishment of
materials for the next stage. The distribution plan of emer-
gency materials is different at each stage, and the inventory
of materials is also different, which affects the formulation of
the distribution plan of materials.

III. PROBLEM DEFINITION AND FORMULATION
In this paper, the integrated design of the emergency medical
and material distribution networks is aimed at areas where the
epidemic outbreak occurred. Such an area has public infras-
tructures (parks and gymnasiums) that can support emer-
gency activities. When an outbreak occurs, infected people
need to be transported to EMPs, while medical materials are
transported from medical material supply points (MMSPs) to
EMPs via MMDPs. Because the number of infected people
changes dynamically over time, the integration of the emer-
gency medical and material distribution networks should be
designed with multi-stage in mind.

Figure 1 shows the structure of the integrated emergency
medical and material distribution network. The integrated
design of the emergency medical and material distribution
network includes the determination of the location of EMPs
and MMDPs, the number of infected people who are treated
at each stage of EMPs, the quantity of medical materials that
are transported at each stage from MMSPs to MMDPs, and
the quantity of medical materials that are transported at each
stage from MMDPs to EMPs, as well as the corresponding
flows.

Before constructing a multi-objective model for the inte-
grated design of emergency medical and material distribution
networks under the epidemic outbreak, four assumptions are
made:(1) At each stage, the replenishment quantities of med-
ical materials in MMSPs and the infection rate are known.
(2) Only mild infected people are considered. (3) A sufficient
number of transport vehicles can be mobilized after the out-
break. (4) As there is more than one type of medical materials
required for EMPs and the demand is high, these medical
materials are normally distributed separately. Thus, this paper
only considers the distribution of a type of medical materials.
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A. NOTATIONS
The following notations are used in III.B to present the for-
mulation.

B. MODEL
In this section, a multi-objective model for the integrated
design of emergency medical and material distribution net-
works is built.
min z1 =

∑
i∈I

∑
j∈J

∑
t∈T

(
yijtψij

)
+

∑
g∈G

∑
h∈H

∑
j∈J

∑
t∈T

(
αghtdgh + βhjtϖhj

)
(1)

FIGURE 1. Structure of the integrated emergency medical and material
distribution network.

min z2 =

∑
i∈I

∑
j∈J

ψijwyijt

+

∑
g∈G

∑
h∈H

∑
j∈J

∑
t∈T

(dghf αght +ϖhjf βhjt )

+

∑
j∈J

∑
t∈T

(cjt
∑
i∈I

yijt + kjxj)

+

∑
h∈H

∑
t∈T

(eht
∑
g∈G

αght + nhϑh) (2)

s.t.∑
i∈I

yijt ≤ Aj −
∑
i∈I

∑
t∗=0,··· ,t−1

yijt∗ +

∑
t∗=0,··· ,t−1

rjt∗ ,

∀j ∈ J ,∀t ∈ T (3)∑
j∈J

yijt = θipt ,∀i ∈ I ,∀t ∈ T (4)

∑
i∈I

yijt ≤ Mxj,∀j ∈ J ,∀t ∈ T (5)

rjt =st
∑
i∈I

yijt+
∑
i∈I

∑
t#=0,...,t−1

st (1 − st)
t−t#

yijt# ,

∀j ∈ J ,∀t ∈ T (6)

yij0 = 0,∀i ∈ I ,∀j ∈ J (7)

rj0 = 0,∀j ∈ J (8)

αgh0 = 0,∀g ∈ G,∀h ∈ H (9)

βhj0 = 0,∀h ∈ H ,∀j ∈ J (10)∑
h∈H

αght ≤ qgt +

∑
t∗=0,··· ,t−1

qgt∗

−

∑
h∈H

∑
t∗=0,··· ,t−1

αght∗ ,
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∀g ∈ G,∀t ∈ T , t ̸= 0 (11)∑
g∈G

αghtv ≤ Bhϑh,∀h ∈ H ,∀t ∈ T (12)

∑
j∈J

βhjt ≤

∑
g∈G

αght +

∑
g∈G

∑
t∗=0,··· ,t−1

αght∗

−

∑
j∈J

∑
t∗=0,··· ,t−1

βhjt∗ ,

∀h ∈ H ,∀t ∈ T , t ̸= 0 (13)∑
h∈H

βhjt =

∑
i∈I

uyijt + u(
∑
i∈I

∑
t∗=0,...,t−1

yijt∗

−

∑
t∗=0,...,t−1

rjt∗ ),

∀j ∈ J ,∀t ∈ T (14)

ϑh, xj ∈ {0, 1} , yijt , αght , βhjt , rjt ≥ 0,

∀i ∈ I ,∀j ∈ J ,∀h ∈ H ,∀g ∈ G,∀t ∈ T (15)

The objective function (1) is to minimize the total trans-
portation distance, in which the total transportation distance
includes the transfer distance of infected people and the trans-
portation distance of medical materials. The purpose is to
make the emergency medical points and material distribution
points nearby rescue, otherwise the transportation distance
will be relatively large, affecting the efficiency of emergency
response. The objective function (2) is to minimize the total
operating cost including the costs of transferring infected
people, distributing medical materials, establishing EMPs,
treating infected people, establishing MMDPs and storing
medical materials of MMDPs. The purpose is to reduce
the cost of emergency rescue as much as possible, because,
for some economically underdeveloped countries or regions,
unreasonable emergency medical and material distribution
networks planning will increase the financial burden. Con-
straint (3) ensures that the total number of infected people
allocated to each EMP at each stage does not exceed its
maximum admissible number. Constraint (4) is the infected
people at each stage is fully treated. Constraint (5) ensures
that infected people are not transferred to EMPs when EMPs
are not established. Constraint (6) calculates the number
of cured people at each EMP at each stage. Constraint (7)
ensures that the number of infected people transfer from each
patient area to each EMP at the stage prior to the outbreak is
0. Constraint (8) ensures that the number of infected people
who have been cured at each EMP at the stage prior to
the outbreak is 0. Constraint (9) ensures that the quantity
of medical materials distributed from each MMSP to each
MMDP at the stage prior to the outbreak is 0. Constraint
(10) ensures that the quantity of medical materials distributed
from each MMDP to each EMP at the stage prior to the
outbreak is 0. Constraint (11) ensures that the quantity of
medical materials delivered by theMMSP to theMMDP does
not exceed its storage capacity at each stage. Constraint (12)
ensures that the total volume of medical materials received
at each stage at the MMDP does not exceed its volume.

Constraint (13) ensures that the quantity of medical materials
distributed by the MMDP to the EMP at each stage does not
exceed their storage capacity. Constraint (14) ensures that the
requiredmedical materials are satisfied at each EMP and each
stage. Constraint (15) enforces the binary and non-negativity
restrictions on decision variables.

IV. SOLUTION METHOD
The augmented ε-constraint method is used to solve multi-
objective mixed-integer programming models (Roni et al
[33]). The principle is to optimize only one objective, then
transform other objectives into constraints. Compared to the
weighted sum method, the augmented ε-constraint method
can get more effective Pareto solutions. Therefore, we use
the augmented ε-constraint method to solve the established
multi-objective model. The primary objective of this model
is to minimize the total transportation distance and the sec-
ondary objective is to minimize the total operating cost.
Therefore, equation (1) is kept unchanged, equation (2) is
transformed into a constraint condition, and equation (2)
is restricted from exceeding the range of threshold ε. So,
the original multi-objective model is transformed into the
following form:

min z1 =

∑
i∈I

∑
j∈J

∑
t∈T

(
yijtψij

)
+

∑
g∈G

∑
h∈H

∑
j∈J

∑
t∈T

(
αghtdgh + βhjtϖhj

)
(16)

s.t. (3) − (15)
∑
i∈I

∑
j∈J

∑
t∈T

ψijwyijt

+

∑
g∈G

∑
h∈H

∑
j∈J

∑
t∈T

(dghf αght +ϖhjf βhjt )

+

∑
j∈J

∑
t∈T

(cjt
∑
i∈I

yijt + kjxj)

+

∑
h∈H

∑
t∈T

(eht
∑
g∈G

αght + nhϑh) ≤ ε (17)

The value of ε is bounded set on the value of total operating
cost.

A. LEXICOGRAPHIC OPTIMIZATION FOR OBTAINING THE
RANGE OF ε

The lexicographic optimization approach is to rank the objec-
tive functions according to their priority, and add constraints
to the optimized solution of the lower priority objective func-
tion to ensure that the previously optimized objective function
maintains the corresponding optimal value. The calculation
steps are as follows:

Step 1: Using equation (1) as the objective function and
equations (3)-(15) as the constraints, the optimal solution
z∗, x∗, y∗, α∗, β∗ and the optimal value z∗1 are obtained; sub-
stituting the optimal solution into equation (2), the optimal
value z∗2 is obtained.
Step 2: Using equation (2) as the objective func-

tion and equations (3)-(15) as the constraints; adding the

22408 VOLUME 11, 2023



X. Li et al.: Integrated Design of Emergency Medical and Material Distribution Networks

constraint Z1 = Z1
1 + δ1, δ1 ≥ 0, the optimal solution

z∗∗, x∗∗, y∗∗, α∗∗, β∗∗ and the optimal value z∗∗

2 are obtained.
Step 3: Let εmax = max(Z∗

2 ,Z
∗∗

2 ), εmin = min(Z∗

2 ,Z
∗∗

2 ).
The range of values of ε is thus determined.

B. STEPS OF THE AUGMENTED ε-CONSTRAINT METHOD
Before the calculation can be carried out using the aug-
mented ε-constraint method, the objective function needs to
be transformed into a constraint by adding appropriate slack
variables or residual variables to the objective function. For
the model established in this paper, by adding relaxation
variables to equation (2), the original multi-objective model
is transformed into the following form. Note that φ belongs
to the range of 10−6 to 10−3.

min z1 =

∑
i∈I

∑
j∈J

∑
t∈T

(
yijtψij

)
+

∑
g∈G

∑
h∈H

∑
j∈J

∑
t∈T

(
αghtdgh + βhjtϖhj

)
−

φλ

εmax − εmin
(18)

s.t. (3) − (15)
∑
i∈I

∑
j∈J

∑
t∈T

ψijwyijt

+

∑
g∈G

∑
h∈H

∑
j∈J

∑
t∈T

(dghf αght +ϖhjf βhjt )

+

∑
j∈J

∑
t∈T

(cjt
∑
i∈I

yijt + kjxj)

+

∑
h∈H

∑
t∈T

(eht
∑
g∈G

αght + nhϑh) + λ = ε (19)

λ>0 (20)

The calculation steps are as follows:
Step 1: Use the lexicographic optimization approach, and

obtain the range of εmax and εmin of the objective function z2.
Step 2: Set the constant �, 1ε =

(εmax−εmin)
�

, give the
Pareto optimal set ξ = ∅, and set the number of cycles ii
as 1.

Step 3: Let ε = εmax − ii1ε, and substitute it into the
transformed model. Add it to the set ξ if the constraint is
satisfied, then execute step 4; if the constraint is not satisfied,
then execute step 4 directly.

Step 4: If ii ≤ �, ii = ii+1, then return to step 3; otherwise
terminate the calculation and output the Pareto solution set ξ .

V. CASE STUDY
During the outbreak of the epidemic in Shanghai, the
Huangpu District had a large number of newly infected peo-
ple every day, and faced great challenges in the treatment of
infected people and the supply ofmedicalmaterials, sowe use
the epidemic data fromMarch 1 to May 31, 2022 in Huangpu
District, Shanghai as the case to demonstrate the efficiency of
the proposed model and method. From the report released by
China’s National Health Commission, the average duration
of treatment for infected people at EMPs in the Shanghai

outbreak is 7 days, so, in order to better set the cure rate of
infected people value, we chose 7 days as a stage. In addi-
tion, as the outbreak was at the beginning of March and the
number of infected people was low, the period from 1 March
to 21 March was set as the first stage. So, in this paper, the
period from 1March to 31 May is divided into 11 stages. The
proposed model and method are coded in CPLEX and a series
of numerical experiments are run on a PC with i5-1035G1
CPU and 8G memory.

A. ESTIMATION OF INPUT DATA
There are 10 streets in Huangpu. Due to the small area of
20.52 square kilometers, we use streets as patient areas, for
a total of 10 patient areas. We select 15 large open areas
for EMPs, 5 large open areas for MMDPs. We also select
Shanghai and Suzhou as MMSPs. The relevant data are cho-
sen based on a realistic situation, while others are generated
based on some assumptions, since some data could not be
obtained through official reports [34]. We digitize a map
of the Huangpu District. The coordinates of each area are
indicated by the street office coordinates. Figure 2 shows the
geographic location of patient areas, candidate EMPs, and
candidate MMDPs. As we select Shanghai and Suzhou as
MMSPs are not part of Huangpu District, the MMSPs are not
drawn in Figure 2 to better show the geographical location of
other points.

The setting and estimation of parameters are presented as
follows:

(1) Capacity of EMPj(Aj): These parameters are based on
the footprint per bed of the existing EMP at the Expo Urban
Footprint Pavilion in Huangpu District.

(2) Volume of MMDP h(Bh): These parameters are
obtained by multiplying the area available for the MMDP to
be selected by a height of 2 meters.

(3) Number of residents in patient area i(θi): The num-
ber of residents in the patient area is extracted from the
data published by the National Bureau of Statistics of China
(https://www.shhuangpu.gov.cn/).

(4) Infection rate of stage t (pt ): The daily number of
infected people in Huangpu District from 1 March to 31 May
was obtained from data published by the National Health
Commission of China. Thus, we set the infection rate of stage
t as the ratio of the number of infected people at each stage t
to the total number of people in Huangpu District.

(5) Cured rate of infected people at stage t (st ): the cured
rate of infected people at each stage is set to 1 in this paper.

(6) Construction cost of EMPj (kj): In this paper, the value
of construction cost for each EMP is the number of beds
multiplied by 37,000 (RMB).

(7) Cost of treating per unit number of infected people at
stage t of EMPj (cjt ): The cost of treating per unit number of
infected people at stage t of EMPj includes costs of meals and
nucleic acid testing, thus, cjt is set to 80 (RMB/per unit).

(8) Construction cost of MMDP h (nh): In this paper, the
value of construction cost of MMDP is the number of the
volume multiplied by 100 (RMB).
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FIGURE 2. The geographic location of patient areas, candidate EMPs, and
candidate MMDPs in Huangpu District, Shanghai.

(9) Cost of storing per unit quantity of medical materials at
stage t of MMDP h (eht ): eht is set to 1.5 (RMB/per unit).
(10) Transfer costs per unit of distance and per unit of

infected people (w): According to the price list from Shanghai
Medical Emergency Center, w is set to 7 (RMB/per unit).

(11) Transportation cost of per unit of distance and per unit
of medical material (f ): f is set to 1.2 (RMB/ per unit).

(12) Distance between patient area i and EMPj (ψij): We
use the Euclid distance to calculate the distance between
patient area i and EMPj.
(13) Distance between MMDPh and EMPj (ϖhj): We use

the Euclid distance to calculate the distance betweenMMDPh
and EMPj.

(14) Distance betweenMMSPg andMMDPh (dgh):We use
the Euclid distance to calculate the distance betweenMMSPg
and MMDPh.

(15) Volume per unit of medical material (v): Based on
product information found from the internet, v is set to 0.04
(m3).

(16) Replenishment quantities of medical materials for
MMSPg at stage t (qgt ): The value of qgt is set as shown in
Table 1.
(17) Demand per unit of medical materials u: u is set to 1.
(18) A very large positive numberM :M is set to 999,999.

B. COMPARISON BETWEEN INTEGRATED AND
NON-INTEGRATED MODELS
In this paper, the non-integrated model means that the emer-
gency medical network and the material distribution network
are considered separately, and infected people are allocated
first and then the medical material is allocated based on
the results of the allocation of infected people. In order to
better compare the integrated model with the non-integrated
model, we use the minimizations of the total transportation
distance and the total operating cost as objective functions,
respectively. The calculation method for the total transporta-
tion distance in the integrated and non-integrated models

TABLE 1. Replenishment quantities of medical materials for MMSPs at
each stage.

is showed in Table 2. The calculation method for the total
operating cost in the integrated and non-integrated models
is showed in Table 3. The calculation results are showed in
Tables 4 and 5.

It can be seen from Tables 4 and 5 that the total trans-
portation distance in the integrated model is less than the
sum of the values of considering emergency medical network
only and considering material distribution network only in
the non-integrated model. The total operating cost in the
integrated model is also less than the sum of the two values
of considering emergency medical network only and consid-
ering material distribution network only in the non-integrated
model.

C. COMPARISON RESULTS FOR CONSIDERING WITH AND
WITHOUT THE INVENTORY STRATEGY
We calculate the total transportation distance and total oper-
ating cost to illustrate the advantages of considering with
the inventory strategy of MMDPs at each stage. The without
considering inventory strategy is calculated as the quantity
of medical materials received by MMDPs at each stage are
all issued. The calculation model for the total transportation
distance considering with and without the inventory strategy
is showed in Table 6. The calculation model for the total
operating cost considering with and without the inventory
strategy is showed in Table 7. The results of the calculation
are showed in Table 8.

As can be seen from Table 8, the total transportation
distance and total operating cost when considering with
inventory strategy are both less than that considering without
inventory strategy.

Therefore, a model that takes into account the location
of EMPs and MMDPs, and the inventory strategy is more
capable of shortening the total transportation distance and
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TABLE 2. Calculation steps for the total transportation distance in the
integrated and non-integrated models.

reducing the total operating cost of personnel transfer and
medical material distribution, which also verifies the validity
of the developed model.

D. PARETO ANALYSIS
The Pareto front surface obtained from the solution is showed
in Figure 3. Figure 3 shows that there is a negative correlation
between the total transportation distance and total operating
cost. That is, as the total operating cost increases, the total
transportation distance decreases. This is because that when
the total operating cost is larger, the number of EMPs and
the number of MMDPs are increased, and the infected people
will be allocated to the EMPs which are closer to them first.
Similarly, the MMDPs will also be allocated to the EMPs
which are closer to them first, such that the total transporta-
tion distance decreases.

It can also be seen from Figure 3 that the shape of the
Pareto curve becomes steeper when the total operating cost
is between 6.6 × 108 RMB and 7 × 108 RMB, which means
that a slight increase in the total operating cost has a large

TABLE 3. Calculation steps for the total operating cost in the integrated
and non-integrated models.

TABLE 4. The total transportation distance of the integrated and
non-integrated models.

impact on the total transportation distance. When the total
operating cost is between 7.7× 108 RMB and 8× 108 RMB,
the Pareto curve shape becomes flatter, which means that
increasing the total operating cost has little effect on the
total transportation distance. Therefore, for decision-makers,
considering the budget earmarked for epidemic relief, the
appropriate solution should be chosen according to the actual
situation. When the budget earmarked for epidemic relief is
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TABLE 5. The total operating cost of the integrated and non-integrated
models.

TABLE 6. The calculation model for the total transportation distance
considering with and without the inventory strategy.

TABLE 7. The calculation model for the total operating cost considering
and without considering the inventory strategy.

limited, solutions that invest too much money and have less
impact on the total transportation distance should be avoided
to choose.

As can be seen from Figure 3, it is not possible to obtain
a solution that simultaneously optimizes both objective func-
tions, thus, the decision-maker needs to choose the appropri-
ate solution according to the actual situation. In order to help
the decision-maker choose the solution more scientifically,
two loss indicators are constructed in this paper, namely loss
indicator LDi for the objective functions z1 and loss indicator
LCi for the objective functions z2, which are calculated as
follows.

LDi =
max z1 − zi,1

max z1 − min z1
(27)

LCi =
max z2 − zi,2

max z2 − min z2
(28)

TABLE 8. The total transportation distance and total operating cost of
considering with and without the inventory strategy.

TABLE 9. The loss level values of various solutions.

Note that max z1 andmax z2 denote themaximum values of
the objective functions z1 and z2 in all solutions, respectively;
min z1 andmin z2 denote the minimum values of the objective
functions z1 and z2 in all solutions, respectively; zi,1 and
zi,2 denote the values of the objective functions z1 and z2
in solution i, respectively. The loss level values of various
options are showed in Table 9, and the decision-maker can
choose the appropriate option based on the actual situation
and the acceptance level of the two loss indicators. For exam-
ple, if the decision maker can accept at most 70% of the loss
of the objective function z1, then the solution with the lowest
loss of the objective function z2, solution 4 can be selected
among the solutions for which the LDi value is eligible.
We choose the solution with the smallest transportation

distance among all Pareto solutions to show the integrated
network. The integrated networks of stages 6 and 8 are
showed in Figures 4 and 5, respectively.

E. SENSITIVITY ANALYSIS
In order to analyze the impact of parameters in the model on
the Pareto front surface, four main parameters including the
infection rate, the replenishment quantities of medical mate-
rials for MMSPs, the capacities of EMPs, and the volumes of
MMDPs are selected for analysis.

(1) Impact of different infection rates on the Pareto front
surface

By holding other parameters constant, the infection rate is
varied by −50%, −25%, +15%, and +25% at each stage in
turn, and the effect of changing infection rate on the Pareto
front surface is observed, as shown in Figure 6. We choose
the solution with the smallest operating cost among all Pareto
solutions having the same infection rate as an example for our
analysis. The numbers and locations of EMPs and MMDPs
under different infection rates are showed in Table 10. When
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FIGURE 3. Pareto front surface.

FIGURE 4. Integrated network for stage 6.

the infection rate is increased by 25% at each stage, there is
no viable solution. This is because that when the infection
rate is increased by 25%, the demand for medical materi-
als increases, while the quantities of medical materials at
MMSPs do not meet the needs of all infected people. It can
be seen from Figure 6 that the Pareto front surface shifts
upwards as the infection rate is increased. This is consistent
with the reality. As the infection rate is increased, the number
of infected people to be treated is increased, resulting in an
increase in the total transportation distance from the transfer
of infected people and the distribution of medical materials.
It indicates that decision-makers should actively deploy med-
ical material and ensure adequate supply of medical material.
Otherwise, when the number of infected people is large,
it may not be possible to find a feasible plan for the transport
of infected people and the distribution of medical material.

Table 10 shows that as the infection rate increases, the
number of selected EMPs gradually increases and an increas-
ing number of EMPs with larger capacity are being selected.
This is due to the fact that as the infection rate increases,

FIGURE 5. Integrated network for stage 8.

more people become infected and more beds are needed to
accommodate these infected people. At the same time, as the
infection rate increases, the quantities of required medical
materials also increase, leading to the change in the number
of MMDPs. These results indicate that when the number
of infected people is large, decision-makers should select a
large number of alternative EMPs and MMDP to ensure full
admission of infected people and meet the needs of medical
material of infected people.

(2) Impact of different replenishment quantities of medical
materials for MMSPs on the Pareto front surface

By holding all other parameters constant, replenishment
quantities of medical materials for MMSPs are varied by -
25%, -15%, +25%, and +50% at each stage in turn, and
the effect of changing replenishment quantities of medical
materials for MMSP on the Pareto front surface is observed,
as shown in Figure 7.We choose the solutionwith the smallest
operating cost among all Pareto solutions having the same
replenishment quantities of medical materials for MMSPs as
an example for our analysis. The numbers and locations of
EMPs and MMDPs under different replenishment quantities
of medical materials for MMSPs are showed in Table 11.
As can be seen in Figure 7, the Pareto front surface shifts
downwards as replenishment quantities of medical materials
for MMSPs increases. This is because that as replenishment
quantities of medical materials for MMSPs increases, the
MMSPs can supply more medical materials to MMDPs,
resulting in an increase in the number of EMPs that each
MMDP can serve. As a result, the total transportation distance
decreases. Increasing the replenishment quantities of medical
materials for MMSPs can result in a smaller total transporta-
tion distance for the same total operating cost. However,
excessive reduction of replenishment quantities of medical
materials for MMSPs may lead to unworkable solutions.
For example, When the replenishment quantities of medical
materials for MMSPs are reduced by 25%, there is no viable
solution. This is because when replenishment quantities of
medicalmaterials forMMSPs is reduced by 25%, the quantity
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FIGURE 6. Impact of changing infection rates on Pareto front surface.

TABLE 10. The numbers and locations of EMPs and MMDPs under
different infection rates.

FIGURE 7. Impact of changing replenishment quantities of medical
materials for MMSPs on the Pareto front surface.

of medical materials cannot meet the medical material needs
of all infected people.

As can be seen from Table 11, changes in replenish-
ment quantities of medical materials for MMSPs influence
the number of selected EMPs and MMDPs. The different
replenishment quantities of medical materials for MMSPs
lead to different choices of EMPs and MMDPs. The above

TABLE 11. The numbers and locations of EMPs and MMDPs under
different replenishment quantities of medical materials for MMSPs.

results indicat that the changes in replenishment quantities
of medical materials for MMSPs change the values of the
total transportation distance and total operating cost, and
modify the structure of the emergency medical and material
distribution network. Different replenishment quantities of
medical materials for MMSPs will select EMPs and MMDPs
in different numbers and locations.

(3) Impact of capacities of EMPs on the Pareto front
surface

By holding all other parameters constant, capacities of
EMPs are varied by -50%, -25%, +25%, and +50% in turn.
Then, the effect of changing capacities of EMPs on the Pareto
front surface is observed. As shown in Figure 8. We choose
the solution with the smallest operating cost among all Pareto
solutions having the same capacity of EMPs as an example
for our analysis. The numbers and locations of EMPs and
MMDPs under different capacities of EMPs are showed in
Table 12. When the capacities of EMPs are reduced by 50%,
there is no viable solution. This is because that when the
capacities of EMPs are reduced by 50%, the EMPs cannot
treat all infected people. As can be seen from Figure 8, the
Pareto front surface shifts downwards, as the capacities of
EMPs increase. This is because, as the capacities of EMPs
increase, more EMPs are established to receive a greater
number of infected people who are close to them. It indicates
that taking into account the total operating cost, increasing
the capacities of EMPs can reduce the total transportation
distance. And, When the value of capacities of EMPs are
varied from −25% to 0%, the decreased amplitude of the
Pareto front surface is the largest; however, with the continued
increase of capacities of EMPs, the decreased amplitude grad-
ually decreases. This indicates that the Pareto front surface is
particularly sensitive when the capacities of EMPs are small.

As can be seen from Table 12, the number of selected
EMPs gradually decreases as the capacity of EMPs increases.
This is because that an increase in the capacity of EMPmeans
that more infected people can be treated at each EMP, which
is consistent with reality. At the same time, as the number
of EMPs increases, the number of selected MMDPs tends to
increase and then remain the same. The result indicates that
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FIGURE 8. Impact of changing capacities of EMPs on the Pareto front
surface.

TABLE 12. The numbers and locations of EMPs and MMDPs under
different capacities of EMPs.

changes in the capacities of EMPs not only lead to changes
in the value of the objective function but also influence the
number of selected EMPs and MMDPs due to the interaction
between the emergency medical network and the distribution
network of material. For example, increasing the capacities of
EMPs will result in a smaller number of EMPs and a larger
number of MMDP.

(4) Impact of volume of MMDPs on the Pareto front
surface

By holding all other parameters constant, volumes of
MMDPs are varied by −50%, −25%, +25%, and +50%
in turn, and the effect of changing volumes of MMDPs on
the Pareto front surface is observed, as shown in Figure 9.
We choose the solution with the smallest operating cost
among all Pareto solutions having the same volumes of
MMDPs as an example for our analysis. The numbers and
locations of EMPs andMMDPs are given under different vol-
umes of MMDPs in Table 13. As can be seen from Figure 9,
the Pareto front surface shifts downwards, as the volumes of
MMDPs increase. This is because that the increased volumes
of MMDPs can provide more medical materials to the EMPs
in its vicinity, resulting in a reduction in the total transporta-
tion distance. It can be concluded that, under the same total
operating cost, increasing the volume of MMDPs can reduce
the total transportation distance. However, due to the high

FIGURE 9. Impact of changing volumes of MMDPs on the Pareto front
surface.

TABLE 13. The numbers and locations of EMPs and MMDPs under
different volumes of MMDPs.

density of the urban population and limited land resources
during an outbreak, when expanding the volume of MMDPs,
it is important to ensure that the expanded MMDPs volume
can significantly reduce the total transportation distance so
that the increased MMDPs volume will be of maximum
utility.

Table 13 shows that as the volumes of MMDPs increase,
the number of selected MMDPs becomes smaller. This is
because that as the volumes of MMDPs increase, each
MMDP can receive more quantities of medical materials and
distribute the medical materials to more EMPs. Thus, the
number of selected MMDPs gradually decreases. Therefore,
changes in the volumes of MMDPs not only change the value
of the objective function but also change the structure of
the emergency medical and material distribution network.
For example, increasing volumes of MMDPs will result in
a smaller number of MMDPs.

The above sensitivity analysis leads to the following man-
agement insights. (1) In the event of an outbreak of epidemic,
when the timeliness of medical material distribution and
patient treatment is required, decision-makers can take sci-
entific measures based on the sensitivity analysis of the
four parameters: infection rate, replenishment quantities of
medical materials for MMSPs, the capacities of EMPs, and
the volumes of MMDPs. For example, in order to rea-
sonably distribute medical materials and transfer infected
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people, decision-maker can increase replenishment quantities
of medical materials for MMSPs or the volumes of MMDPs.
(2) By adopting a location-allocation strategy for the inte-
grated emergency medical and material distribution network,
decision-maker can better optimize the entire system net-
work. For example, decision-makers can select EPMs and
MMDPs based on the results of sensitivity analysis under dif-
ferent infection rates, avoiding the selection of an excessive
number of EPMs and MMDPs.

VI. CONCLUSION
In this study, we address an integrated design of emergency
medical and material distribution networks by taking into
account the number of infected people and the multi-stage
characteristics of dynamic distribution of medical materials
after the epidemic outbreak. Then, a multi-objective mixed-
integer programming model with the objectives of minimiz-
ing the total transportation distance and the total operating
cost is established. By taking Huangpu District of Shanghai
in China as a case study, Pareto analysis between objectives
and sensitivity analysis for key parameters are conducted to
verify the effectiveness of the developed model.

Our research provides four major contributions to the
planning of emergency medical and material distribution
networks during future outbreaks. First, we considered the
inventory of emergency medical material at each stage of
the MMSPs and MMDPs to establish the multi-stage inte-
grated optimization model of emergency medical and mate-
rial distribution network, the results show that the integrated
model of emergency medical and material distribution net-
works is more capable of decreasing the total transportation
distance and the total operating cost, compared to the non-
integrated model. It can provide more effective solutions for
emergency rescue decision-makers. Second, there is a neg-
ative relationship between the total transportation distance
and the total operating cost. If the decision-makers want to
reduce the total transportation distance, the total operating
cost must be increased. Third, the research results show that
the established dual-objective optimization model can effec-
tively balance the total transportation distance and the total
operating cost, and obtain the location-allocation solution
of EMP and MMDP in the distance-cost compromise can
provide decision-makers withmultiple options for emergency
rescue. Finally, if the timeliness of the emergency response is
high, decision-makers can choose to increase replenishment
quantities of medical materials for MMSPs, capacities of the
EMP, or volumes of MMDPs, depending on the situation so
that the total transport distance can be reduced.

Future research can be conducted in four directions. First,
in this study, we assumed that the infection rate at each
stage is known after the outbreak. However, it is difficult
to accurately predict the infection rate in real life, so it is
more realistic to develop an integrated optimization model
with an uncertain infection rate. Second, we only considered
mildly infected people in the modeling, however, require-
ments for medical material may vary with the degree of

infection of each infected people during an outbreak. There-
fore, the research on the integration optimization of the
uncertain demand for medical material is also the focus of
future research. Third, in this study, only one type of medical
materials was considered, but in actual epidemic prevention
and control, multiple medical materials are needed. Thus, the
issue of location-distribution of multi-level facilities consid-
ering multiple types of medical materials needs to be studied
in depth. Finally, in this study, only the same patient transport
vehicle model and the same material distribution vehicle
model were considered. In fact, due to the sudden onset of
the epidemic, a sufficient number of vehicles of the same
vehicle model could not be mobilized within a short time.
Moreover, different vehicles have different driving speeds,
which have different impacts on patient transport andmaterial
distribution. Therefore, the issue of optimizing the integration
of emergency medical and material distribution networks
considering multiple vehicles needs further study.
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