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ABSTRACT As a modern communication paradigm, Artificial intelligence based Internet of Things (AIoT)
can provide an interactive platform across the globe to enrich the quality of networking services. With the
AIoT paradigm, coded distributed computing (CDC) has recently emerged to be a promising solution to
address the straggling effects in conventional distributed computing systems. In this article, we propose a
novel CDC control scheme in the AIoT platform. Based on the cooperative game theory, the main challenges
of our scheme are i) the k value decision for the CDC process, and ii) edge node resource allocation for
offloading tasks. Using the ideas of coalition game and weighted Nash social welfare solution (WNSWS),
our proposed scheme is developed as a two-phase game model to achieve a mutually desirable solution.
At the first phase, a dynamic coalition formation is proceeded to select the most adaptable edge nodes for
the offloading subtasks. At the second phase, the WNSWS is adopted to effectively share each edge node’s
computing resource. Based on the jointly design of these two cooperative games, we explore the synergy
effect to optimize the CDC process. In the edge assisted distributed computing infrastructure, our reciprocal
combinative approach can provide a fair-efficient solution through the sequential interactions of edge nodes
and AIoT devices. In the performance evaluation, we provide extensive simulation analyses to show our
scheme’s superiority by comparing with the existing baseline protocols.

INDEX TERMS Artificial Internet of Things, coded distributed computing, dynamic coalition game,
weighted nash social welfare solution, cooperative game theory.

I. INTRODUCTION
Functioning of the Internet is persistently transforming from
the Internet of computers (IoC) to the Internet of things (IoT).
The IoT paradigm has created a ubiquitously connectedworld
while generating a variety of heterogeneous data in a myriad
of fields and applications. It is expected that the total installed
IoT-based devices will be projected to amount to approxi-
mately 41.6 billion, and nearly 79.4 Zettabytes (ZBs) of data
may be generated and consumed in 2025. Major goal of IoT
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technology is to make the world smart. To satisfy this goal,
we will need artificial intelligence (AI). In recent years, there
is an increasing demand for the convergence of AI and IoT to
tackle high-performance data processing issues in IoT-driven
engineering applications. The collective integration of AI and
the IoT has greatly promoted the rapid development of AI-of-
Things (AIoT) systems that evolve the existing IoT standards
to form autonomous future communication architectures to
support the intelligent exchange of data between millions of
devices [1], [2].

With limited computing supplies, AIoT devices can hardly
complete their computation-intensive tasks. One of the major
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AIoT tasks is matrix multiplication for the machine learning
process. Therefore, computation offloading may be a solu-
tion for this problem. Traditionally, cloud computing plays
a crucial role in the IoT paradigm where the vast resources
available in the cloud can provide ubiquitous on demand com-
puting and storage capabilities to support IoT devices. For the
further computing process, the cloud-centric AIoT platform
requires massive data transmissions from AIoT devices to the
cloud center. Although the cloud center has unlimited compu-
tational capacity, some serious issues, such as the great pres-
sure on network bandwidth, the inherent latency constraints
of network communications, go on plaguing cloud based
services. The new AIoT trend pushes the frontier of AI from
the centralized cloud to themobile edge nodes, paving the last
mile delivery of AI capabilities. Nowadays, edge intelligence
has emerged as a promising and enabling paradigm toward
materializing the vision of AIoT. Specifically, the edge com-
puting method brings computational resources closer to the
data source with a relatively light access burden and a low
transmission delay. It is extremely suitable for the AIoT plat-
form, and has attracted a great deal of interest from industry
and academia [2], [3].

With the ability to utilize the AIoT devices, distributed
computing has recently become a highly-effective approach
for large-scale computations in wireless edge networks. Com-
pared to centralized computing methods, distributed comput-
ing is more fault-tolerant and scalable.With these outstanding
advantages, distributed computing has been widely applied
in the edge-based AIoT platform. In particular, an intensive
computation task can be partitioned into multiple subtasks,
and then they can be transmitted to several edge nodes for
the parallel executing. Although distributed edge computing
has many advantages for the AIoT paradigm, it has been
facing a technical challenge. The performance of distributed
computing is greatly affected by the unpredictable comput-
ing latency. In distributed computing executions, the total
task processing time is determined by the slowest comput-
ing edge node, i.e, the straggler. The reason is that a task
requires the calculated results from all edge nodes. This
phenomenon partially weakens the advantages of distributed
computing [4], [5], [6], [7].

To address the straggling problem, coded distributed com-
puting (CDC) has recently emerged to be a highly-effective
solution. The main principle of CDC is to inject computa-
tion redundancy to edge nodes via advanced coding theo-
retic techniques. Such redundancy can compensate for the
uncertain computation time while improving the distributed
computing stability and latency. Unlike the traditional dis-
tributed computing method, the CDC technique does not
require all assigned edge nodes to send back their com-
puted results. Specifically, the computation latency with
CDC technique is determined by a group of the fastest
edge nodes. Therefore, the distributed edge computing with
CDC technique has been widely adopted in the AIoT
platform [4], [5], [6], [7].

Among CDC techniques, the maximum distance separable
(MDS) code has been widely used for matrix multiplication
which is the most common operation in machine learning
algorithms. By using MDS code, a computation task can
be divided into k equal-size subtasks. These subtasks are
then encoded into n coded subtasks, which are assigned to
n edge nodes in a distributed manner where k ≤ n. As soon
as k edge nodes complete their assigned subtasks and send
the results to the master node. Finally, the master node can
obtain the expected result by decoding any k results from
those n subtasks. In this way, the effect of straggling nodes
can be significantly mitigated, and the speed up for the dis-
tributed matrix multiplication is decided by a factor of logn.
In the MDS code, the decision for k and n values has a
significant impact on the effectiveness and efficiency of the
CDC process. When the k value is set to a higher value, there
can be many straggling nodes; this can potentially lead to a
long processing latency. When the k value is set to a lower
value, the computation workload of the remaining n−k edge
nodes will be wasteful. Therefore, it is critical to optimize the
tradeoff between the effectiveness and efficiency for the AIoT
applications [4], [5], [6], [7].

As the study of edge assisted CDC system is still in its
nascent stage, and has not received much attention. In this
study, we focus on the cooperative game theory to solve the
control problem for MDS code operations. Usually, game
theory is used as a mathematical tool to understand andmodel
cooperative or competitive situations which have multiple
rational and selfish decision-makers. Especially, the central
idea of game theory is to model strategic interactions as a
game between a set of players. In cooperative games, all
game players want to maximize their payoffs by choosing
the best strategies, and no one has any incentive to change
its own strategy. Several models of cooperative games are
designed for different situations with the relationships of
players. In contrast to traditional optimization methods which
concentrate to achieve only one objective function, cooper-
ative game models select the most acceptable solution for
all players [8]. Because of complicated interactions between
intelligent edge nodes and AIoT devices, the cooperative
game can be a candidate to design an efficient MDS code
management algorithm in the edge assisted CDC platform.

The rest of this paper is organized as follows. Section II
describes the technical concepts and features of cooperative
game theory, which are adopted to design our proposed CDC
control scheme. The related work for the coded distributed
computing approach is discussed in Section III. Section IV
presents the distributed edge network platform, and formu-
lates the CDC system control problem as a two-phase coop-
erative game model. And then, the proposed algorithm has
been explained in a phasewise description manner. Based
on the testbed experiments, computer simulation results are
discussed to demonstrate the excellence of our approach in
Section V. Finally, conclusion of the work and future study
are highlighted in Section VI.
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II. TECHNICAL CONCEPTS AND MAIN CONTRIBUTIONS
Game theory provides useful insights into the way game
players that share a scarce resource may plan their use of the
resource under different situations. Cooperative game theory
is the part of game theory that pertains when players can sign
binding contracts determining their actions and payoffs. Usu-
ally, cooperative game theory assumes that groups of players,
called coalitions, are the primary units of decision-making,
and may enforce cooperative behavior. In cooperative game
theory, dynamic coalition formation game is a game that
models the formation of coalitions of players when players
have preferences over which coalition they belong to. It is
specified by giving a finite set of players, and a preference
ranking over all coalitions of players that the player belongs
to. The outcome of a coalition formation game consists of a
partition of the players into disjoint coalitions, that is, each
player is assigned a unique group. Such partitions are often
referred to as coalition structures [12], [15].

Bargaining solutions may be interpreted as formulas that
determine unique outcomes in some class of cooperative
game situations. Originally, J. Nash was the first pioneer to
use the tools of game theory to propose a strong bargaining
theory. As a bargaining solution, the weighted Nash social
welfare solution(WNSWS) is an important welfare criterion
that combines efficiency and fairness considerations. Simply,
the outcome of WNSWSis to maximizes Nash social welfare
functions; it maximizes the product of the individual players’
payoffs. This idea goes back to J. Nash’s famous solution con-
cept to the cooperative bargaining problem. The WNSWSis
not only to provide an important quality criterion, but also
to successfully converge to the Nash-optimal outcome in a
distributed negotiation model [13], [14].

In this study, we develop a new CDC control scheme based
on the two-phase cooperative games: coalition formation
game and resource bargaining game. At the first phase, k edge
nodes are formed a group for the MDS code mechanism; it
is operated based on the dynamic coalition formation game.
At the second phase, the computing resource of each node is
adaptively shared to process AIoT devices’ offloading tasks
according to the idea ofWNSWS. Our hybrid game approach
can dynamically control the trade-off between service latency
and system efficiency while alleviating edge nodes’ real
straggling effects. Moreover, our approach can ensure the
fairness among individual edge nodes in the CDC process.
Therefore, we can effectively improve the offloading task
delay, CDC system throughput and edge fairness. Specifi-
cally, themajor contributions of this paper can be summarized
as follows:

• We propose a reliable CDC control scheme for the
AIoT paradigm, which can support the immersive user
experiences in the 6G networks. Especially, we adopt
the fundamental ideas of cooperative game theory, and
develop a new two-phase game model for the MDS
code execution.

• First phase game model: we dynamically form an edge
node coalition to decide the k value for MDS code

operations. Therefore, we can process the offloaded
computation tasks of AIoT devices in the distributed
computing infrastructure.

• Second phase game model: each individual edge node
allocates its computing resource for the assigned
offloading tasks. In a distributed fashion, the limited
computation capacity is shared by using the concept
of WNSWS.

• To mitigate the straggler effects of distributed comput-
ing, strategies in two cooperative games are adaptively
adjusted. Our jointly designed approach enables the
sequential interactions of different system agents to
achieve a mutually desirable solution.

• Perform extensive simulations show the efficiency of
our proposed scheme compared to those of the state-
of-the-art CDC control protocols. Numerical results
clearly indicate the superiority of our cooperative
game approach in terms of the offloading task delay,
CDC system throughput and edge fairness.

III. RELATED WORK
Over recent years, edge assisted CDC systems have shown
great promise in many applications including big data ana-
lytics and machine learning applications. In distributed sys-
tems, the straggling effect requires to be managed while the
voluntary cooperation of edge nodes is hard to expect due to
their selfish nature. To handle these issues, some researchers
have investigated CDC control protocols to speed up the
distributed computing process.
The paper [7] proposes the Coded distributed comput-

ing Elastic Resource Allocation(CERA) scheme to elastically
allocate computing resources for CDC processes. To jointly
optimize the CDC control over heterogeneous edge nodes,
the CERAscheme consists of two stages. In the first stage,
a joint coding and node selection optimization problem is for-
mulated to minimize the expected processing time for a CDC
task. Since this problem is nonlinear and NP-hard, an effec-
tive integer non-linear programming is modeled to quickly
obtain the optimal solutions. This approach can signifi-
cantly reduce the problem’s computational complexity. In the
second stage, a smart online approach with the Lyapunov
optimization method is developed to dynamically turn
off straggling nodes based on their actual performance.
To greatly improve the resource utilization, this approach
enables the server to optimize the trade-off between the total
processing time and the system’s resource efficiency. Simu-
lation results have demonstrated that the CERAscheme yields
a significant gain in terms of the total processing time [7].

In [9], theOptimal Coded Network Service(OCNS) scheme
is designed to mitigate the computing effect of straggling
nodes. To motivate the participation of mobile devices in
the CDC platform, the OCNSscheme proposes incentive
mechanisms that distribute the incentive based on work-
load and completion time of mobile devices. This approach
captures the needs for discounting values of the processed
results. To analyze the interaction among mobile devices
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and task publisher, their behaviors are modelled to be moti-
vated by economic aspects, and formulated as a Stackelberg
game with a hierarchical decision-making structure. In the
OCNSscheme, mobile devices lead the competition as lead-
ers; they provide the computational resources, and the task
publisher rationally determines its response as a follower; it
has a limited budget to response to the mobile device’s behav-
ior. Through game-theoretic analysis the OCNSscheme can
achieve a unique Stackelberg equilibrium with the guarantee
of convergence [9].

Yu et al. develop the Optimal Distributed Resource Allo-
cation(ODRA) scheme to minimize the total execution time
accounting for the durations of both computation and com-
munication phases [10]. Specially, the ODRAscheme consid-
ers a general MapReduce-type framework based on the CDC
technique. In this approach, overall computation is decom-
posed to three stages, Map, Shuffle, and Reduce stages. In the
Map phase, each input file is processed locally to generate
intermediate values. In the Shuffle phase, all intermediate
values are transferred to one of the nodes for reduction. In the
Reduce phase, all intermediate values are reduced to the
final result. To prove the effectiveness of the ODRAscheme,
a matching information-theoretic converse on the execution
time is derived, and the total execution time of the computa-
tion tasks is adaptively reduced [10].

The earlier schemes in [7], [9], [10] have been studied
and recently published to mitigate the straggling effect in the
distributed computing platform. As aforementioned, a few
researchers tackled the problems of stragglers to improve the
performance of CDC methods. Even though these existing
schemes dynamically control the activities of edge nodes to
reduce the processing time of thewhole CDC system, they did
not consider the cooperative mechanism among intelligent
system agents. To the best of our knowledge, our proposed
scheme is the first in the literature to investigate a two-phase
cooperative game model, and guides selfish CDC system
agents toward a socially optimal outcome in the distributed
edge computing platform.

IV. MDS CODE CONTROL SCHEME FOR THE
AIOTPARADIGM
In this section, we first provide an edge assisted CDC sys-
tem infrastructure, and the basic ideas of dynamic coali-
tion game and WNSWS. And then, we present our proposed
scheme to efficiently solve the (n, k) MDS code problem,
which captures the benefit of adaptive distributed computing
approach.

A. EDGE ASSISTED CDC PLATFORM AND A TWO-PHASE
COOPERATIVE GAME MODEL
As illustrated in Fig.1, we consider an edge assisted CDC
system platform consisting of one edge computing server (C),
a set of mobile edge nodes E = {E1, . . . ,En} , and a set of
AIoT devices D = {D1, . . . ,Dm} in a given geographical
area. The edge node E1≤i≤n∈E has his computing power(
MEi

)
, and communicates with the C through wired links.

FIGURE 1. The infrastructure of edge assisted CDC system.

Each AIoT device D1≤j≤m∈D generates its computational
workload task

(
WDj

)
; WDj is assumed to be delay sensitive,

and follows a Poisson process with an average generation
rate at each time period. To reduce the computation load, the
Dj can offload its task WDj to the C. Using the (n, k) MDS
code, the C divides the computing task

(
WDj

)
into k sub-

tasks with an equal size. Then, these subtasks are encoded
into n coded subtasks and sent them to n edge nodes. Edge
nodes, i.e., E∈E, locally perform their corresponding sub-
tasks, which are distributed from the C. While performing the
distributed computation, each edge node periodically mea-
sures the remaining workload and reports this information to
the C [7].
In this paper, the (n, k) MDS code problem for the Dj

and the Ei’sresource sharing problem are formulated as
cooperative games GDj and GEi , respectively. As a conse-
quence, server, edge nodes, and AIoT devices aresequentially
interacted with each other; it is noteworthy that we formu-
late the C − E − D association in a coordinated manner.
Formally, we define our two-phase game G entities, i.e.,
G ={GDj , GEi} = {C, E, D,{GDj |Dj∈D, E,WDj , v (·)},
{GEi |Ei∈E,MEi , W

Ei
Dj

, SEi
Dj

,UEi
Dj

(·)}, T } of gameplay.

• C,E andD represent the edge computing server, the sets
of edge nodes, and AIoT devices, respectively. They
are mutually and reciprocally interdependent, and work
together in the edge assisted CDC platform.

• At the first phase, the GDj is designed to form an edge
structure to process the subtasks of WDj . In the GDj ,
edge nodes are game players, and v (·) is a characteristic
function for players’ coalition.

• At the second phase, the GEi is developed to share the
MEi for the subtasks of the AIoT devices. EachGE1≤i≤n

game is operated in a distributed parallel fashion.
• In the GEi , W

Ei
Dj

is the Dj’s subtask assigned to the Ei,

and it is a game player. The SEi
Dj

and UEi
Dj

(·) are the
player’s strategy and utility function, respectively.

• Discrete time model T ∈ {t1, . . . ,tc, tc+1, . . .} is
represented by a sequence of time steps. The length of
tc matches the event time-scale of GDj and GEi .
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B. FUNDAMENTAL IDEAS OF COALITION GAME MODEL
AND WNSWS
Traditionally, forming effective coalitions is a major research
challenge in cooperative games; a coalition of players can
also do things more efficiently than individual players can do.
Therefore, coalition formation entails finding a coalitional
structure that maximizes the total payoff. In the coalition
formation game, an external factor imposes a certain structure
to form stable coalitions, and no player has an incentive to
deviate. Formally, a coalition formation game is defined by
(N , v) which N = {p1, . . . , pn} is the set of players and v is a
real-valued characteristic function such that v(S) : 2N →

R, s.t., S⊂N ; a subset S is termed a coalition. Given a
coalition game, a coalition structure C = {S1, . . . , Sk} is
an exhaustive disjoint partition of the space of players into
feasible coalitions and v(C) =

∑
S∈C v(S). By considering

game dynamics, the properties from resulting coalitions and
its adaptability to environment variable or externalities are
important research issues [11], [12].

To implement a dynamic coalition formation algorithm,
some definition and rules are necessary. First of all, the coali-
tion composed of all players is referred as a grand coalitionN,
and a collection of coalitions in the N, denoted S, is defined
as the set S = {S1, . . . , Sk} of mutually disjoint coalitions
S1≤i≤k ⊂ N and N =

⋃k
j=1Sj. Apreference relation▷

is an order defined for comparing two coalition collections
S = {S1, . . . , Sl} and hat S =

{
Ŝ1, . . . , Ŝp

}
that are partitions

of the same subset A ⊆ N. Therefore, game players in S

and hat S are same. In this case, S ▷ Ŝ implies that the way S

partitions A is preferred to the way Ŝ partitions A. Based on
the concept of preference relation, merge and split rules can
be defined as follows [11], [12].

Merge Rule: Any set of coalitions {S1, . . . , Sk} may
be merged whenever the merged form is preferred by the
players; i.e., where {

⋃k
j=1, Sj}▷{S1, . . . , Sk} , therefore,

{S1, . . . , Sk} → {
⋃k

j=1, Sj}.
Split Rule: Any coalition

⋃k
j=1Sj may be split when-

ever a split form is preferred by the players; i.e.,
where {S1, . . . , Sk} ▷ {

⋃k
j=1, Sj}, thus, {

⋃k
j=1, Sj} →

{S1, . . . , Sk} .
The basic idea behind the merge-and-split rules is that

players enter into a binding agreement to form a coalition
through the merge (orsplit) operation if all players are able
to improve (ornot decrease) their individual payoffs from the
previous state [11], [12].

The underlying idea of the WNSWScomes from the field
of bargaining game theory. To get the bargaining solution,
all players agree to create a grand coalition for their higher
payoffs. To find the optimal grand coalition, we need to
optimize the super-criterion on the set of all feasible actions.
In the literature of bargaining problems, super-criteria are
often referred to as social welfares. Therefore, the main con-
cern ofWNSWSis to optimize the Nash Social Welfare(NSW)
function, which is a super-criterion over the feasible alloca-
tion while ensuring both fairness and efficiency at the same

time. To characterize the basic ideas ofWNSWS, we first start
with some definitions. Let N = {1 . . . i . . . n} be the set of
imaginary players, and let R be the set of all real numbers.
↶ ⊆ Rn represents the set of feasible solutions and it is
assumed to be bounded where Rn is the n− fold Cartesian
product of R. For all i∈N , f ( ) := (x∈ |f1(x), . . . , fn(x)) is
a vector of payoff functions. Traditionally, a multi-objective
optimization problem can be stated as [13], [14]:


max

{
i∈S+, x∈↶|fi(x)

}
min

{
j∈S−, x∈↶|fj(x)

} , s.t., S+
∪S−

= N (1)

where S+ and S− are the index sets of payoff functions that
need to be maximized and minimized, respectively. Denote

= (ω1, . . . , ωn) is a vector of players’ weights with
ωi > 0 for all i∈N ; they are players’ corresponding degrees of
importance. Based on the positive weights, we can aggregate
players’ payoff functions to form a single-objective optimiza-
tion problem [13].

max

∑
i∈S+

(ωi × fi(x)) −

∑
j∈S−

(
ωj × fj(x)

)
s.t. , S+

∪S−
= N and x∈ (2)

Equation (2) is called as the weighted sum optimization
in the literature of multi-objective optimization problem.
According to the ideas of (1)-(2), the WNSWSis mathemat-
ically formulated as follows:

WNSWS =max
x∈

 ∏
i∈S+

(fi(x) − di)ωi ×
∏
j∈S−

(
dj − fj(x)

)ωj


s.t., fi(x)≥di, ∀i∈S+ and fj(x) ≤ dj, ∀j∈S−

(3)

where di is the i’s reference point. In the literature of bar-
gaining problems, the reference point is sometimes referred
as the disagreement point and it basically indicates the pay-
off of each player under no coalition. Note that since the
player i∈S+ is interested in maximizing its payoff function,
(fi(x) − di)ωi captures the benefit that it will obtain as the
result of creating a coalition. Similarly, the player j∈S−

is interested in minimizing its payoff function. Therefore,(
dj − fj(x)

)ωj captures the benefit that it obtains as the result
of creating a coalition. Considering players’ weights, the
main goal of WNSWSis to maximize the product of ben-
efits of players with respect to the reference point. The
WNSWSin equation (3) can be transformed as a local-
benefit-scale-free WNSWS, i.e., lbsf-WNSWS, by replacing
the payoff function of the WNSWSwith the arbitrary positive
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constants α1≤i≤n [13], [14].

lbsf −WNSWS

= max
x∈


∏
i∈S+

((αi × fi(x)) − (αi × di))ωi

×

∏
j∈S−

((
αj × dj

)
−

(
αj × fj(x)

))ωj



= max
x∈



n∏
k=1

(αk)
ωk

×

∏
i∈S+

(fi(x) − di)ωi

×

∏
j∈S−

(
dj − fj(x)

)ωj



s.t.,


αk =

1
max
x∈

(fk (x) − dk)
, ∀k∈S+

αk =
1

max
x∈

(dk − fk (x))
, ∀k∈S−

(4)

Since
n∏

k=1
(αk)

ωk is a positive constant, it has no impact on the

optimization and it can be dropped. Therefore, the maximum
benefit that each player can obtain will be precisely one
in the equivalent problem. This implies that an equivalent
WNSWSwith unit-maximum-benefit can be constructed from
the originalWNSWSformula [13], [14].

C. THE PROPOSED EDGE ASSISTED CDC CONTROL
SCHEME FOR THE AIoT PARADIGM
To develop our edge assisted CDC control scheme for AIoT
devices, we formulate a new two-phase cooperative game
model. At the first phase, we define the n and k values for the
MDS code. In our distributed computing scenario, individual
devices contact the C for their offloading services, and have
their corresponding edge nodes in the C’s coverage area.
Simply, we set the n value as the number of corresponding
edge nodes. And then, the decision for k value is made based
on the dynamic coalition formation game. For example, the
Dj generates the WDj , and the GDj is operated to form a
coalition with efficiently workable edge nodes. The charac-
teristic function of each individual edge node is defined as the
worth of its contribution. For the Ei, its characteristic function
v (Ei) is given by:

v
(
Ei, W

Ei
Dj

)
=η −

G
(
CEi

)
×log


(
CEi+f

(
W

Ei
Dj

))
MEi

+θ



s.t. G
(
CEi

)
=


ϕ , if f

(
W

Ei
Dj

)
≥

(
MEi − CEi

)

exp

 f
(
W

Ei
Dj

)
(
MEi − CEi

)
 , otherwise

(5)

where η, θ , and ϕ are control parameters for the v (·). CEi is
the currently used computing power ofEi, and f

(
W

Ei
Dj

)
is the

needed computing capacity for theW
Ei
Dj

whereW
Ei
Dj

is the n−
divided WDj and assigned to the Ei. v(S) is the characteristic
function that associates to each edge node coalition S.

v(S) =

∏
Ei∈S

v (Ei) , s.t., S ⊆ E (6)

According to (6), we can form the best coalition S, which
consists of adaptable edge nodes to process theWDj . Finally,
the k value is given by:

k =

∣∣∣S∗

Dj

∣∣∣
s.t., v

(
S∗

Dj

)
= max

S∗

Dj
⊆E

Ei∈E|

∏
Ei∈S∗

Dj

v (Ei)

 (7)

where
∣∣∣S∗

Dj

∣∣∣ is the cardinality of S∗

Dj
. Based on the S∗

Dj

formation, the k subtasks of WDj are assigned to the edge
nodes in the S∗

Dj
. In the GD for each AIoT device, we can

create its coalition S∗

D. Based on this information, each edge
node also creates two subtask coalitions, i.e., S+

E and S−

E ,
where these subtasks are offloaded from its corresponding
AIoT devices. For example, the Ei has his two coalitions such
as the S+

Ei
and S−

Ei
. They are defined as follows:

S+

Ei
=

⋃ {
Dj∈D|Ei ∈ S∗

Dj

}
and

S−

Ei
=

⋃ {
Dk∈D|Ei ̸∈ S∗

Dk

}
(8)

At the second stage, individual edge nodes allocate their com-
puting powers

(
ME1≤i≤n

)
for the assigned subtasks. For the

Ei, the GEi game model is developed in a distributed manner,
and the MEi is shared by the corresponding AIoT devices.
If the Dj ask its offload task to the Ei, his utility function, i.e.,
UEi

Dj
(·), is given by equation (9), as shown at the bottom of

the next page, where γ , δand 0 are control parameters for the
UEi

Dj
(·), which is differently defined whether the Dj in S

+

Ei

or S−

Ei
. 1

Ei
Dj

is the remaining workload of W
Ei
Dj

. Therefore,

the 1
Ei
Dj

is needed to be computed by the Ei for each offload

task. To process the f
(
W

Ei
Dj

)
, REi

Dj
and SEi

Dj
are the requested

and assigned computing powers at the next time period.
Therefore, the SEi

Dj
is thought as the strategy for the W

Ei
Dj

.
PEi represents the resource assignment ratio for services in
S+

Ei
. In this study, we adopt the WNSWS to decide the SEi

Dj
.

According to (3)-(4), the WNSWS for the Ei, i.e., WNSWSEi ,
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is obtained as follows:

WNSWSEi = max〈
...S

Ei
Dj

,S
Ei
Dk

,...

〉


∏
Dj∈S

+

Ei

(
UEi

Dj
(·) − d+

Dj

)ωDj

×

∏
Dk∈S

−

Ei

(
d−

Dk
− UEi

Dk
(·)

)ωDk


s.t., Dj, Dk∈DEi , S+

Ei
∪S−

Ei
= DEi , and∑

Dl∈DEi

SEi
Dl

≤ MEi (10)

where d+

Dj
is the Dj’s reference point if Dj∈S

+

Ei
, and d−

Dk

is the Dk ’s reference point if Dk∈S
−

Ei
. ωDj and ωDl are

the weights of Dj and Dk , respectively. DEi is the set
of AIoT devices, which assign their offload workloads to
the Ei.

D. MAIN STEPS OF OUR HYBRID COOPERATIVE GAME
BASED CDC CONTROL ALGORITHM
Distributed computing has been rapidly emerging as a pop-
ular computing paradigm driven by a growing demand
from the massive AIoT devices. It is enabled by inno-
vations and advancements of modern wired and wireless
networks. However, distributed computing methods face
challenges in meeting the required service quality, and satis-
fying the complex demands of AIoT devices, especially for
latency-sensitive applications. Recently, coding techniques
have become a popular approach to solve the challenges of
the distributed computing systems. In this paper, we introduce
a new CDC control scheme, which shows the effectiveness
to mitigate the straggler effects based on the cooperative
game features. By a sophisticated combination of coalition
formation and bargaining games, our proposed two-phase
hybrid approach isvery effective to enhance the perfor-
mance of edge assisted distributed computing system while
adaptively handling among conflicting service requirements.

The primary steps of our proposed scheme are described as
follows.

Step 1: Based on the simulation scenario, control factors
and parameters in our proposed scheme are deter-
mined by the Section V and Table 1.

Step 2: At each time period, individual AIoT devices in
the D generates their computation-intensive tasks
(WD), which are offloaded to edge nodes in their
coverage area.

Step 3: At the first phase, individual edge nodes form
two coalitions to execute the (n, k)MDS code for
each D. This process is formulated as a dynamic
coalition formation game (GD) in a coordinated
manner.

Step 4: In the GD, characteristic function for each edge
node and coalition (S) are defined as (5),(6) and
(7), respectively. Finally, the k value is given from
the equation (7).

Step 5: At the second phase, each edge node share its lim-
ited ME for the assigned offloaded computation
tasks in a distributed manner. For each E, it is
developed as a bargaining game (GE).

Step 6: As the solution concept of GE, the WNSWSis
employed based on the equations (1)-(4), each
WE

D in E works together as a game player.
Step 7: In the of GE, utility function for game player is

defined as (9), and the ME is shared according
to (10).

Step 8: During a sequence of time steps, the GD and GE

games sequentially interact each other to reach an
efficient consensus. This interactive feedback pro-
cess continues in a step-by-step manner to achieve
a mutually desirable solution.

Step 9: Individual system agents are constantly self-
monitoring the current edge assisted distributed
computing environments. At each time period,
a new two-phase cooperative game process is re-
triggered; proceeds to Step 2 for the next iteration.

UEi
Dj

(
W

Ei
Dj

, 1
Ei
Dj

,REi
Dj

, SEi
Dj

)
=



exp

γ ×

 f
(
W

Ei
Dj

)
− 1

Ei
Dj

f
(
W

Ei
Dj

)
 ×

min
(
SEi
Dj

,REi
Dj

)
REi

Dj

, ifDj∈S
+

Ei

PEi × log

 f
(
W

Ei
Dj

)
− 1

Ei
Dj

f
(
W

Ei
Dj

)
 + δ

 + 0

 ×

min
(
SEi
Dj

,REi
Dj

)
REi

Dj

, ifDj∈S
−

Ei

s.t.,PEi = −


∑

Dl∈S
+

Ei

SEi
Dl∑

Dl∈S
+

Ei

REi
Dl

 (9)
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V. PERFORMANCE EVALUATION
This section provides simulation results to verify the effec-
tiveness of the proposed CDC control scheme. To outline
the benefits of our approach, we show a detailed compara-
tive analysis with other competing protocols of CERA [7],
OCNS [9] and ODRA [10]. The evaluations are carried out
using the MATLAB, which is an interactive programming
environment for scientific computing. To ensure a fair com-
parison, the following assumptions and system scenario are
used.

• Simulated the edge assisted CDC platform consists of
one edge server (C), ten edge nodes and one hundred
AIoT devices, i.e., |E| = 10, and |D| = 100.

• Each AIoT device D1≤j≤100 generates different
computation-intensive tasks

(
WDj

)
where the arrival

process of WDj is the rate of Poisson process (ρ). The
offered range is varied from 0 to 3. 0.

• Ten edge nodes are deployed in the C’s coverage area,
and individual AIoT devices are randomly distributed
over there.

• Each individual AIoT device can directly contact with
theC, and it communicates with the edge nodes through
wired backhaul link.

• The reference point for D∈S+

E

(
d+

D

)
is zero, and the

reference point for D∈S−

E

(
d−

D

)
is zero, too.

• The weights (ωD) of all devices are simply assumed
as 1.• We assume the absence of physical obstacles in
the C’s coverage area.

• The total computation power of each edge node is
randomly decided; the range is varied from 50 GHz
to 150 GHz.

• To reduce the computation complexity, the offloading
service amount is specified in terms of basic unit (uM)

where one uM is 100 MHz in this study. For practi-
cal implementations, the computing resource allocation
through theWNSWSis negotiated discretely by the size
of one uM.

• The edge assisted CDC system performance measures
obtained on the basis of 100 simulation runs are plotted
as functions of the Poisson process (ρ).

To evaluate the proposed solution, we compare its perfor-
mance in terms of normalized service latency, CDC system
throughput and edge fairness. Table 1 shows the control
parameters and system factors used in the simulation.
Fig. 2 depicts the results of service latency for offloaded

tasks; they are normalized for a fair comparison. As the
AIoT device workload ratio increases, the service latency
of all schemes grows polynomially. However, it may eas-
ily be seen that our proposed scheme outperforms than
all other CDC control protocols such as CERA, OCNSand
ODRAschemes. Based on the idea of WNSWS, edge nodes
in our distributed computing algorithm effective share their
computing resources through the interactive negotiation pro-
cess between two subtask coalitions. Therefore, we can fully
exploit the limited computing resource of each edge node

TABLE 1. System parameters used in the simulation experiments.

FIGURE 2. Normalized service latency for offloaded tasks.

while reducing the service delay for offloading tasks. It means
that our cooperative game approach can significantly miti-
gate the straggling effects under the dynamic changing edge
assisted distributed computing environments.

To further compare the performance of all schemes,
we evaluate their CDC system throughput with the different
task load average. In the viewpoint of system operators,
it is a main performance criterion to evaluate the system
efficiency. As can be observed, the system throughputs of all
protocols are improved gradually while increasing average
workload rate. This is a common-sense result. But, our pro-
posed scheme adopts a dynamic formation game to find an

VOLUME 11, 2023 42049



S. Kim: Collaborative Coded Distributed Computing Scheme: A Two-Phase Cooperative Game Approach

FIGURE 3. System throughput in the CDC platform.

FIGURE 4. Edge Fairness in the CDC platform.

optimal coalitional structure that maximizes the CDC system
efficiency. Compare to the static coalition-formation game
model, our dynamic coalition formation approach can adap-
tively select best-effort workers, i.e., edge nodes, behind the
merge-and-split rules. Therefore, we can get a Pareto-optimal
solution for edge nodes based on the current CDC system
condition.

Fig.4 depicts the fairness among edge nodes in the CDC
platform. Simulation results clearly indicate the superiority of
our proposed scheme about the fairness issue. This is mainly
because the feature of cooperative game theory. Classically,
the main challenge of cooperative game solutions is to ensure
the fairness among game players while generating maximum
efficiency. This feature is directly implied in our proposed
method.Moreover, this policy can deal with the dynamics and
uncertainty of the CDC network environment. Therefore, the
ME of each edge node is shared in a fair-efficient manner.
Therefore, we can attain an excellent edge node fairness while
effectively handle dynamic AIoT devices’ requests.

From the simulation results in Fig.2 to Fig.4, we can
see that our hybrid cooperative game approach can capture

dynamic interactions among AIoT devices and edge nodes
to achieve a mutually desirable solution. By employing a
coordination paradigm, we reciprocally combine two differ-
ent cooperative game concepts; the coalition formation game
and bargaining game. Therefore, the synergy effect can be
obtained while converging to a fair-efficient solution through
the negotiative interactions.

VI. SUMMARY AND CONCLUSION
This study has developed a highly-effective approach to
jointly optimize the MDS code and edge node selection,
thereby significantly enhancing the efficiency of CDC system
in the AIoT paradigm.With cooperative game ideas, the CDC
control problem is modeled as a coalition formation game
and a resource bargaining game between AIoT devices and
edge nodes. Particularly, the most adaptable edge nodes are
selected through the coalition formation process, and they
effectively operate the CDC process to mitigate the straggler
effects in the distributed computing network. To satisfy this
goal, the computing resource of each edge node is adap-
tively shared based on the concept of WNSWS. To achieve
a mutually desirable solution, individual AIoT devices and
edge nodes work together and act cooperatively with each
other. By employing a coordination paradigm, our approach
can strike an appropriate performance balance under dynami-
cally changing CDC system environments. Therefore, we can
achieve a ‘win-win’ solution to ensure, i) system throughput
maximization, ii) computation latency minimization, and,
iii) fairness provisioning among edge nodes. Finally, our
proposed scheme is simulated and analyzed with comparing
to that of the state-of-the-art protocols. Simulation results
clearly indicate that our method is suitable for the decentral-
ized CDC network infrastructure than other existing CERA,
OCNS and ODRAschemes.

From a future-oriented perspective, a hierarchical game-
theoretic CDC framework can be developed for the meta-
verse services, especially for vehicular metaverse. Therefore,
we will minimize the idle resources from vehicles to handle
intensive computation tasks. In addition, we will reformulate
the CDC control problem as a Markov decision process, and
design a novel deep reinforcement learning algorithm. The
reason is that Markov decision process can find the best set
of edge nodes for different learning tasks with edge nodes’
straggling parameters. Furthermore, blockchain technology
can be explored to improve our proposed scheme. Usually,
the information related to AIoT devices is strictly private and
confidential. Therefore, we should guarantee AIoT devices’
security and privacy.
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