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ABSTRACT Video frame interpolation is the task to synthesize intermediate frames between consecutive
frames to increase the frame rate. Recently, various deep-learning techniques have been proposed to
interpolate intermediate frames more reliably. However, many existing methods use either symmetric
(linear) or asymmetric (non-linear) schemes only to estimate motions for the warping process, resulting
in unreliable interpolation results. In this paper, we propose a novel video frame interpolation network
based on both symmetric and asymmetric motion-based warping modules, which can deal with linear and
non-linear motions, as well as occlusions, effectively. The symmetric warping module estimates symmetric
motions to generate intermediate frames, while the asymmetric one predicts asymmetric motions to address
non-linear motions and occlusion problems. We combine symmetric and asymmetric warping results to
reconstruct intermediate frames more reliably. We also develop the frame synthesis network to refine the
combined warping results. Experimental results demonstrate that the proposed network outperforms state-
of-the-art video interpolation algorithms and that the two types of warping modules work effectively in a
complementary manner on various benchmark datasets.

INDEX TERMS Video frame interpolation, convolutional neural network, symmetric motion, asymmetric
motion, motion estimation, frame synthesis, kernel-based approach, deformable convolution.

I. INTRODUCTION
Video frame interpolation aims to increase the frame rate
of a video sequence by synthesizing intermediate frames
between adjacent real frames. A low frame rate (or temporal
resolution) of a video may cause temporal jittering, aliasing,
and motion blur artifacts, degrading video quality as well
as visual satisfaction. Hence, the video frame interpolation
task is important to enhance the temporal resolution and
visual experience by creating videos with high frame rates.
It is widely used in numerous applications, such as video
compression [1], slow-motion generation [2], frame rate-up
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conversion [3], [4], video enhancement [5], frame recovery
in video streaming [6], [7], and novel view synthesis [8].
In recent years, many deep learning approaches have been
proposed to interpolate video frames, but it is still challenging
to reconstruct high-quality intermediate frames because of
motion blur and non-linear motions such as occlusion and
disappearance.

Learning-based video frame interpolation algorithms can
be classified into two approaches: flow-based methods and
kernel-based methods. By employing deep-learning-based
optical flow estimators [9], [10], flow-based methods [11],
[12], [13], [14] warp and blend consecutive input frames to
yield reliable intermediate frames. Many flow-based meth-
ods generate intermediate frames by halving motion vectors
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based on the symmetric motion assumption between two
successive frames. The symmetric motion assumption is valid
in the cases of linear motions with constant velocities such
as typical background movements. However, it cannot cope
with occlusions and non-linear movements properly and may
yield degraded interpolation results in those regions. More-
over, flow-based methods are sensitive to optical flow errors,
caused by occlusions, large displacement, and motion blur.
Such optical flow errors lead to wrong reference positions,
resulting in poor intermediate frames.

Kernel-based methods have been developed to synthesize
intermediate frames using dynamic kernel weights. Recent
kernel-based algorithms [15], [16], [17] estimate kernel
weights and offset vectors and then generate intermediate
frames based on deformable convolution [18], where the off-
set vectors are used as pseudo-motion vectors for determining
matching pixels. Without the symmetric motion constraint,
they estimate asymmetric bilateral offsets to determine refer-
ence positions for interpolation in two consecutive frames.
These kernel-based methods, however, may be ineffective
for synthesizing intermediate frames clearly and reducing
motion blur artifacts on linear motions, since their bilateral
offsets are predicted asymmetrically.

In this paper, we propose a novel video interpolation
network, composed of a symmetric motion-based warping
module, an asymmetric motion-based warping module, and
a frame synthesis network. The proposed network extracts
multi-scale features to obtain multi-scale kernel weights and
offset vectors for video frame interpolation. Then, the sym-
metric motion-based and asymmetric motion-based warp-
ing modules interpolate an intermediate frame between two
input frames based on symmetric and asymmetric offsets,
respectively. Finally, the frame synthesis network generates
a residual frame to refine the interpolated frame from the
warping modules. Experimental results demonstrate that the
proposed algorithm outperforms state-of-the-art video inter-
polation algorithms on various benchmark datasets.

To summarize, this work has the following three main
contributions:

• Unlike existing video interpolators that exploit either
symmetric or asymmetric motion model only, the
proposed warping module estimate both symmetric
and asymmetric motions to deal with both linear
and non-linear motions between successive frames
effectively.

• We propose the frame synthesis network, which gen-
erates residual intermediate frames, to refine warping
results more reliably.

• The proposed network outperforms the state-of-the-arts
on benchmark datasets, which contain videos with both
linear and non-linear motions at various resolutions.

This paper is organized as follows: Section II reviews
related work. Section III describes the proposed algorithm,
and Section IV discusses its experimental results. Finally,
Section V concludes this paper.

II. RELATED WORKS
The conventional motion-compensated frame interpolation
algorithms have focused on estimating exact motion vec-
tors between two consecutive frames and then generating
an intermediate frame by halving those motion vectors.
Many motion vector refinement techniques [19], [20], [21],
[22], [23] have been proposed to estimate more precise
motion vectors for video frame interpolation. Huang and
Nguyen [19] developed a multi-stage refinement algorithm,
which classifies motion vectors according to their reliability
levels and analyzes the distribution of residual energies to
merge motion blocks near motion boundaries effectively.
Jacobson et al. [20] applied saliency techniques and segmen-
tationmethods to refinemotion vectors. Jeong et al. [21] gen-
erated multiple motion hypotheses and determined the best
pixel-wise motion hypothesis through label optimization.
Zhang et al. [22] formed pixel intensities, representing spon-
taneous transition along a motion trajectory, across adjacent
frames and designed a motion estimation algorithm based
on polynomial approximation. Choi et al. [23] developed a
MAP-based refinement algorithm, which repeatedly updates
the motion vector of each block.

Flow-based video frame interpolation methods [11], [12],
[13] have been developed by employing off-the-shelf optical
flow estimators [9], [10]. Niklaus and Liu [11] predicted
bi-directional optical flow utilizing PWC-Net [10] to perform
forward warping and modified GridNet [24] to handle occlu-
sions and non-linear motions. Bao et al. [12] developed an
adaptive warping layer, which blends pixels adaptively using
optical flow information [9]. Also, Bao et al. [13] proposed a
depth-aware flow projection layer, which uses depth informa-
tion [25], to predict an intermediate flow vector by combining
bi-directional flow vectors [10]. Niklaus and Liu [14] used
optical flow [10] to forward-warp input frames based on
softmax splatting. These flow-based methods are, however,
vulnerable to optical flow errors, and some of them require
additional training data for optical flow estimation and incur
additional training complexity.

It is worth pointing out that, in addition to video frame
interpolation, flow-based warping has been adopted also in
various image processing and computer vision tasks, includ-
ing video object detection [26], video super-resolution [27],
[28], and video translation [29], to exploit high temporal
correlation in natural video sequences.

Some flow-based methods, which simultaneously esti-
mate optical flow and interpolate intermediate frames using
the estimated flow information, have adopted an end-to-
end video frame interpolation framework. Liu et al. [30]
developed an end-to-end fully convolutional network to
estimate optical flow by exploiting the information in
a 3D spatiotemporal neighborhood of each output pixel.
Jiang et al. [2] estimated bi-directional flow vectors to
approximate intermediate flow vectors for frame interpo-
lation. Liu et al. [31] proposed a cycle consistency loss to
supervise their network to generate intermediate frames.
Park et al. [32] designed a symmetric bilateral motion
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FIGURE 1. An overview of the proposed video frame interpolation network, which consists of 4 different modules: multi-scale feature
extractor, symmetric and asymmetric motion-based warping modules, and frame synthesis network.

network to estimate intermediate motion vectors based on the
linear motion constraint and used the bilateral motion vectors
for intermediate frame interpolation.

The kernel-based approach has been developed to syn-
thesize intermediate frames by convolving consecutive input
frames with dynamic kernel weights. Niklaus et al. [33] esti-
mated pixel-wise spatially adaptive 2D convolution kernels
with large window sizes but required high memory com-
plexity for the pixel-wise parameters. To reduce the high
memory complexity, Niklaus et al. [34] employed adaptive
separable convolution by separating 2D kernels into 1D hor-
izontal and vertical kernels. Since these algorithms [33],
[34] do not use motion information explicitly, they can-
not deal with motions larger than pre-defined kernel sizes
properly.

Another kernel-based approach has been attempted to
predict kernel weights and motion information simultane-
ously [15], [16], [17], [35]. Peleg et al. [35] estimated offsets
via motion classification and convolved input frames based
on the estimated kernels and offsets. Recent kernel-based
methods [15], [16], [17] have employed deformable con-
volution to estimate kernel weights and offsets to warp two
consecutive frames. They regarded offsets as pseudo-motions
to determine reference positions and convolved two input
frames at the reference positions with the estimated kernel
weights. Moreover, Choi et al. [17] used a multi-scale warp-
ing module to cope with both small and large motions. How-
ever, these kernel-based methods estimate only asymmetric
offsets, even though symmetric offsets are effective for linear
motions.

III. PROPOSED ALGORITHM
Figure 1 shows the structure of the proposed video frame
interpolation network. The proposed network takes two con-
secutive input frames It and It+1, where t is a frame index,
and produces an intermediate frame Ĩt+0.5. The proposed
network consists of the feature extractor, the symmetric and

TABLE 1. Specification of the multi-scale feature extractor: H × W denote
the spatial resolution of an input image.

asymmetric motion-based warping modules, and the frame
synthesis network.

A. FEATURE EXTRACTOR
The feature extractor takes a concatenation of It and It+1
and produces multi-scale features to perform symmetric and
asymmetric motions-based warping. As shown in Figure 1,
we use the U-net architecture [17], [36] as the backbone
for the feature extractor, which consists of an encoder and
a decoder with skip connections. From the output of the
encoder, the decoder extracts multi-scale features and passes
them to the symmetric motion-based and asymmetric motion-
based warping modules. The decoder contains four blocks,
each of which consists of an up-sample layer and four sets
of a 3 × 3 convolution layer with the ReLU activation.
The up-sample layer performs bilinear interpolation with a
scale factor of 2. Then, from each of the decoder blocks,
we extract multi-scale features D = {D1, . . . ,D4

}, where Dl

is the output feature of the lth block. The specification of the
multi-scale feature extractor is summarized in Table 1.

B. MOTION-BASED WARPING
The proposed network contains both symmetric and asym-
metric warping modules to interpolate the intermediate frame
between It and It+1. Both modules perform multi-scale
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FIGURE 2. (a) Symmetric and (b) asymmetric motion-based warping processes for pixel position (x, y ) at scale l .

warping based on deformable convolution. The feature Dl is
converted to kernel weights and horizontal and vertical offsets
for deformable convolution. Let Z l ∈ RH l

×W l
×k2 denote

kernel weights and U l
∈ RH×W×k2 and V l

∈ RH×W×k2

denote horizontal and vertical offsets, respectively, extracted
fromDl . Here,H×W is the spatial resolution, and the kernel
size k is set to 5.

We use Z l , U l , and V l for the warping of an image I
(either It or It+1). The interpolation for pixel position (x, y)
is obtained by the warping function ψ , which is defined as

Ĩ l(x, y) = ψ(I ,Z lxy,U
l
xy,V

l
xy)

=

(k−1)
2∑

i=−
(k−1)
2

(k−1)
2∑

j=−
(k−1)
2

Z lxy(i, j)

× I (x + i+ U l
xy(i, j), y+ j+ V l

xy(i, j)) (1)

where Z lxy ∈ Rk×k , U l
xy ∈ Rk×k , and V l

xy ∈ Rk×k are
the kernel weights, horizontal offsets, and vertical offsets
for pixel (x, y), respectively. To compute Ĩ l(x, y) in Eq. (1),
we adopt deformable convolution in [18]. Also, considering
that offset values, U l

xy(i, j) and V
l
xy(i, j), may not be integers,

we compute I (x+ i+U l
xy(i, j), y+ j+V l

xy(i, j)) using bilinear
interpolation.

1) SYMMETRIC MOTION-BASED WARPING
The symmetric warping module estimates horizontal and
vertical offsets symmetrically to consider linear movements
between adjacent frames. As shown in Figure 2(a), both
warping processes for It and It+1 share offsets with the same
absolute value but opposite signs. For each scale l, interme-
diate frames Ĩ l,st and Ĩ l,st+1 for It and It+1, respectively, are
defined as

Ĩ l,st (x, y) = ψ(It ,Z
l,s
t,xy,U

l,s
xy ,V

l,s
xy ),

Ĩ l,st+1(x, y) = ψ(It+1,Z
l,s
t+1,xy,−U

l,s
xy ,−V

l,s
xy ). (2)

Also, to take advantage of both coarse-scale and fine-scale
information, the symmetric warping module produces the
warping results Ĩ st and Ĩ st+1 with learnable adaptive weights

{wl,st }
4
l=1 and {wl,st+1}

4
l=1, respectively, which are given by

Ĩ st =

4∑
l=1

wl,st Ĩ
l,s
t , Ĩ st+1 =

4∑
l=1

wl,st+1 Ĩ
l,s
t+1 (3)

where
∑4

l=1 w
l,s
t = 1 and

∑4
l=1 w

l,s
t+1 = 1.

We combine the forward warped frame Ĩ st and the back-
ward warped frame Ĩ st+1 with a learnable weight map Os ∈

RH×W to obtain a symmetrically warped frame

Ĩ st+0.5 = Os ⊙ Ĩ st + (1 − Os) ⊙ Ĩ st+1 (4)

where ⊙ denotes the Hadamard product. To obtain Os,
D4 passes through one up-sample block and one 3 × 3 con-
volution layer with the sigmoid activation, satisfying the
constraint 0 ≤ Os(x, y) ≤ 1, as done in [16] and [17].

2) ASYMMETRIC MOTION-BASED WARPING
The asymmetric warping module predicts horizontal and
vertical offsets asymmetrically to deal with occlusions
and non-linear movements as done in other kernel-based
methods [15], [16], [17]. To this end, two sets of hor-
izontal and vertical offsets (U l,a

t+0.5→t,xy,V
l,a
t+0.5→t,xy) and

(U l,a
t+0.5→t+1,xy,V

l,a
t+0.5→t+1,xy) are extracted from different

sets of convolution and upsample blocks in Figure 2(b).
To this end, asymmetric motion-based warping results Ĩ l,at
and Ĩ l,at+1 at scale l are obtained by

Ĩ l,at (x, y) = ψ(It ,Z
l,a
t,xy,U

l,a
t+0.5→t,xy,V

l,a
t+0.5→t,xy),

Ĩ l,at+1(x, y) = ψ(It+1,Z
l,a
t+1,xy,U

l,a
t+0.5→t+1,xy,V

l,a
t+0.5→t+1,xy).

(5)

For the asymmetric motion-based warping, we use only two
scale features D3 and D4 to focus on fine-scale information.
As in the symmetric warping, we combine warping results
with trainable weights to obtain asymmetric warping results

Ĩat =

4∑
l=3

wl,at Ĩ l,at , Ĩat+1 =

4∑
l=3

wl,at+1 Ĩ
l,a
t+1 (6)

where
∑4

l=3 w
l,a
t = 1 and

∑4
l=3 w

l,a
t+1 = 1. Also, we obtain

an asymmetrically warped frame Ĩat+0.5 by combining Ĩat and
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FIGURE 3. The detailed architecture of (a) the frame synthesis network and (b) the residual dense block. The frame synthesis
network generates a residual frame by processing multi-scale warping features and multi-scale warping frames.

Ĩat+1, which is given by

Ĩat+0.5 = Oa ⊙ Ĩat + (1 − Oa) ⊙ Ĩat+1. (7)

A learnable weight map Oa is obtained similarly to Os in (4).

C. FRAME SYNTHESIS
We adopt the GridNet structure [24] for the frame synthesis
network. Figure 3(a) represents the architecture of the frame
synthesis network. The frame synthesis network contains
several residual dense blocks (RDBs) [37], each of which has
two sets of a 3×3 convolution layer with the ReLU activation,
as shown in Figure 3(b). Also, the frame synthesis network
takes multi-scale warping features and multi-scale warping
frames to provide a residual intermediate frame. The warping
features F̃ l,st and F̃ l,st+1 at scale l are defined as

F̃ l,st (x, y) = ψ(F lt ,Z
l,s
t,xy,U

l,s
xy ,V

l,s
xy ),

F̃ l,st+1(x, y) = ψ(F lt+1,Z
l,s
t+1,xy,−U

l,s
xy ,−V

l,s
xy ) (8)

where F lt and F lt+1 are frame features, extracted from It
and It+1 through two feature extraction blocks. Each feature
extraction block has two sets of a 3×3 convolution layer with
the PReLU activation. Then, for multi-scale warping features,
the concatenation of F̃1,s

t and F̃1,s
t+1 and the concatenation

of F̃2,s
t and F̃2,s

t+1 are separately input to RDBs. Also, the
concatenation of Ĩ3,st , Ĩ3,st+1, Ĩ

4,s
t , and Ĩ4,st+1 is fed into a convo-

lution layer as input. To mix these inputs, down-sampling and
up-sampling are performed to equalize the spatial resolution.
The frame synthesis network yields the residual Ĩres. Finally,
the intermediate frame Ĩt+0.5 is synthesized by

Ĩt+0.5 =
Ĩ st+0.5 + Ĩat+0.5

2
+ Ĩres. (9)

D. IMPLEMENTATION DETAILS
The proposed network is trained in an end-to-end manner
based on a loss function, given by

L = Lr + 0.01Ls (10)

where Lr is the reconstruction loss and Ls is the smoothness
loss. Lr is defined as the Charbonnier loss [38] between the

predicted intermediate frame Ĩout and the ground-truth Igt,
which is given by

Lr = ρ(Ĩout − Igt) (11)

where ρ(x) = (x2+ϵ2)1/2 and ϵ = 0.001. Also,Ls is the loss
to encourage neighboring pixels to have similar motions,

Ls =

4∑
l=1

{ρ(∇x(Pavg(Z l ⊙ U l)))

+ ρ(∇y(Pavg(Z l ⊙ U l)))

+ ρ(∇x(Pavg(Z l ⊙ V l)))

+ ρ(∇y(Pavg(Z l ⊙ V l)))} (12)

where Pavg is the average pooling function along the channel
axis. Also, ∇x and ∇y denote partial derivatives in the hori-
zontal and vertical directions, respectively.

We train the proposed network using the AdaMax opti-
mizer [39]. We use hyper-parameters β1 = 0.9 and β2 =

0.999. The learning rate is initialized to 0.001 and then halved
every 20 epochs. The training is iterated for 80 epochs with
an RTX 2080Ti GPU.

IV. EXPERIMENTAL RESULTS
A. DATASETS AND METRICS
For training, we use the Vimeo90K [5] dataset, which is
widely used for assessing various video frame interpolation
methods [2], [16], [17], [32]. FromVimeo90K, we select the
same 73,171 triplets of frames of resolution 448 × 256 as
done in [16] and [17] for a fair comparison. For data aug-
mentation, the triplets are randomly cropped with a 256 ×

256 size and then randomly flipped horizontally or vertically.
For evaluation, we use the same test sets as [16] and [17]:
the 12 sequences in Middlebury [13] and randomly sampled
sequences from the UCF101 and DAVIS datasets. These test
sets include consecutive frames of various resolutions, which
experience both linear and non-linear motions. For the quan-
titative assessment of video frame interpolation, we use the
peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) metrics.
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FIGURE 4. Qualitative comparison of settings V1∼V4 with the proposed algorithm (setting V5).

B. ABLATION STUDIES
First, we analyze the efficacy of three components of the pro-
posed network: symmetric motion-based warping (SMW),
asymmetric motion-based warping (AMW), and frame syn-
thesis network (FSN). Table 2 summarizes the video frame
interpolation results in five settings. In settings V1 and
V2, either symmetric motion-based warping or asymmet-
ric motion-based warping is employed only, respectively.
In setting V3, both symmetric motion and asymmetric
motion-based warping processes are performed without the
frame synthesis network. Setting V4 adopts the symmetric
motion-based warping only, but uses the frame synthesis
network to refine intermediate frames. Finally, setting V5
employs all components in the proposed network.

As listed in Table 2, the proposed network (V5) provides
the best performance on all datasets with large margins —
0.69dB on Middlebury, 0.26dB on UCF101 and 0.58dB on
DAVIS — against setting V1. By comparing V1 and V2,
we see that the asymmetric motion-based warping module
interpolates middle frames more precisely on UCF101 and
DAVIS, but not on Middlebury, which experiences fewer
occlusions. This confirms that asymmetric motion-based

TABLE 2. Ablation studies for the proposed components.

warping is more robust to occlusions. By employing both
symmetric and asymmetric warping modules, V3 outper-
forms both V1 and V2 on Middlebury and DAVIS. Settings
V4 and V5 achieve the second-best and best results, respec-
tively, using the frame synthesis network, which indicates that
the frame synthesis network provides residual intermediate
frames effectively to refine warping results.

Figure 4 shows qualitative comparison results of the pro-
posed network with settings V1∼V4 on the Middlebury,
UCF101, and DAVIS datasets. V1∼V3 yield blurry interpo-
lation results on detailed patterns, such as the numbers on the
license plate in the 1st row and the lines of the building in
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FIGURE 5. Qualitative comparison of settings V1∼V3 with the visualization of motion offsets.

the 2nd row. Also, V1 fails to reconstruct fast-moving objects
faithfully, for example, the athlete’s arm in the 3rd row, the
person in the 4th row, the monkey’s hand in the 5th row, and
the runner’s upper body in the 6th row. In contrast, V4 and the
proposed network reconstruct visually more clear and more
precise interpolation results on those details. However, V4
has the limitation of producing blurry results on fast and large
moving objects in the 5th and 6th rows. These results show
that all components of the proposed network are essential for
reconstructing fine details faithfully and dealing with fast and
large movements of objects reliably.

Figure 5 visualizes the motion offsets for interpolating two
regions (red and green boxes in Figure 5(b)) to demonstrate
the effectiveness of combining symmetric and asymmetric
motions. The red box includes a runner’s legs with non-
linear motions, while the green box contains a background
fence with linear motions. Note that settings V1 and V2 are
based on the symmetric and asymmetric motion-based warp-
ing, respectively. For the motion visualization in Figure 5(e)
and (f), we use offsets (U4,s,V 4,s) and (−U4,s,−V 4,s)
obtained by setting V1 for symmetric motions, while
(U4,a

t+0.5→t ,V
4,a
t+0.5→t ) and (U4,a

t+0.5→t+1,V
4,a
t+0.5→t+1) by set-

ting V2 for asymmetric motions. It can be observed that
the symmetric motions in Figure 5(e) represent the linear
motions of the fence more reliably, while the asymmetric
ones in Figure 5(f) do the non-linear motions of the legs more
accurately.

In Figure 5(g), setting V1 yields blur artifacts on the leg,
since its symmetric warping cannot deal with non-linear
motions properly. In contrast, in Figure 5(h), setting V2
provides a more faithful warping result on the leg by esti-
mating asymmetric offsets. For the fence in the green box,
setting V1 yields better results, more similar to GT in terms
of the fence thickness and sharpness, than setting V2 does.
This is because the symmetric warping provides more robust

TABLE 3. Comparison of the proposed algorithm with conventional video
frame interpolation algorithms.

results on regions with linear motions. Also, note that setting
V3, which adopts both symmetric and asymmetric warping,
provides high-quality results on both the leg and the fence,
which indicates that the joint usage of symmetric and asym-
metricmotions helps to improve the video frame interpolation
performance.

To summarize, we quantitatively and qualitatively ver-
ify that both symmetric and asymmetric warping modules
contribute to synthesizing intermediate frames precisely.
As shown in Table 2, V3 outperforms V1 and V2 by employ-
ing both symmetric and asymmetric motion-based warping
modules. Also, Figure 5 provides a detailed qualitative anal-
ysis of the warping results for symmetric and asymmetric
motions to demonstrate that the combination of symmetric
and asymmetric motions is essential to deal with both linear
and non-linearmotions. Finally, settings V4 andV5 in Table 2
show that the proposed frame synthesis network refines warp-
ing results faithfully.

C. COMPARISON WITH STATE-OF-THE-ARTS
Table 3 compares the proposed network with existing
video frame interpolation algorithms — Phase [40], MIND
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FIGURE 6. Qualitative comparison of the proposed algorithm with the existing algorithms on the Middlebury dataset.

FIGURE 7. Qualitative comparison of the proposed algorithm with the existing algorithms on the UCF101 dataset.

FIGURE 8. Qualitative comparison of the proposed algorithm with the existing algorithms on the DAVIS dataset.

[41], SepConv-L1 [34], DVF [30], SuperSlomo [2], Ada-
CoF [16], BMBC [32], and MSW [17] — on the Mid-
dlebury, UCF101, and DAVIS datasets. The scores of the
existing algorithms in Table 3 are from [17]. For the
scores of BMBC, we use the official source codes, pro-
vided by its authors. The proposed network outperforms the

existing algorithms with meaningful PSNR gains on all three
datasets.

In Table 3, kernel-based methods, SepConv-L1, AdaCoF,
and MSW, yield higher PSNR and SSIM scores than flow-
based ones, DVF and SuperSlomo. This is because the
kernel-based methods estimate asymmetric motions, which
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can deal with non-linear motions or occlusions, whereas
DVF and SuperSlomo depend on symmetric motions and
are vulnerable to optical flow errors. In contrast, another
flow-based method, BMBC, addresses optical flow errors
based on the dynamic local blending filters, which compen-
sate for motion inaccuracies, resulting in the second-best
performance. Notice that the proposed network surpasses
MSW with large margins (more than 0.3dB in PSNR) —
0.76dB on Middlebury and 0.38dB on DAVIS. Also, the
proposed network outperforms BMBC, especially on the
UCF101 and DAVIS datasets, which include video sequences
containing more non-linear motions and occlusions than the
Middlebury dataset. This indicates that the combination of
the symmetric-based and asymmetric-based warping mod-
ules in the proposed network is effective. Also, the highest
performance on Middlebury shows that the proposed frame
synthesis network is essential for refining the intermediate
results.

Figure 6 compares frame interpolation results of the pro-
posed network with those of the existing algorithms on Mid-
dlebury qualitatively. The proposed network synthesizes the
shapes of the left hand and the ball in the 1st row and the shape
of the building in the 2nd row more faithfully than the
other algorithms do. Figure 7 shows interpolation results on
the UCF101 dataset. In the 1st row, the proposed network
precisely reconstructs the movement of the pitcher’s legs.
Also, in the 2nd row, the proposed network synthesizes the
athlete’s body more faithfully. These results verify that the
proposed algorithm deals with fast-moving objects robustly
and effectively.

Finally, Figure 8 provides qualitative comparisons on the
DAVIS dataset. From the 1st to the 3rd rows, videos con-
tain fast-moving components, such as crowds, pillars, and
bushes. In those regions, the proposed algorithm generates
sharp interpolation results, whereas the other algorithms yield
blurry or deformed interpolation results. Finally, in the 4th
row, the proposed network reconstructs the uniform numbers
of the fast-moving player with less blur than the other video
frame interpolation algorithms do.

V. CONCLUSION
In this paper, we proposed a video interpolation network
based on both symmetric and asymmetric motion-based
warping modules, which can deal with linear and non-linear
motions and occlusions effectively. The proposed network
estimates both symmetric and asymmetric motions and per-
forms motion-based warping to obtain symmetric and asym-
metric warping results. It then combines two warping results
and refines them using the frame synthesis network. Exper-
imental results demonstrated that the proposed algorithm
outperforms state-of-the-art video interpolation algorithms
on various benchmark datasets. For future work, we will
develop a video interpolation network for high-resolution
video sequences such as 4K or higher-resolution videos.
To interpolate such high-resolution sequences reliably and
efficiently, we will design a lightweight network to perform

symmetric and asymmetric warping jointly in a single mod-
ule and also reduce the model size of the frame synthesis
network.
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