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ABSTRACT Digital X-ray radiography is widely used in clinical diagnosis. High quality chest X-ray is
conducive to the accurate diagnosis of diseases by clinicians. However, the quality assessment of the chest
X-ray images mainly depends on the subjective evaluation of doctors, and the results are influenced by
the skill level and experience of the evaluators, involving many issues such as heavy workload and various
uncertain factors in such subjective judgment. In this paper, we propose a chest X-ray quality assessment
method that combines image-text contrastive learning with medical domain knowledge fusion. Based on
pretraining the model from contrastive text-image pairs, large-scale real clinical chest X-ray and diagnostic
report text information are fused, and the model is fine-tuned to achieve cross domain transfer learning.
While improving the prediction accuracy of the algorithm, the cost of massive sample data annotation is
avoided. The local visual patch features of the X-ray images are aligned with multiple text features to ensure
that the visual features contain more fine-grained image information. Theoretical analysis and experimental
results show that the contrastive learning algorithm based on the fusion of triplet information in medical
knowledge graph and chest X-ray multi-modal data has achieved good performance in terms of accuracy.
In addition, the method proposed in this paper can be easily extended to complete other tasks such as medical
image multi-lesion segmentation and disease progression prediction.

INDEX TERMS Chest X-ray, image quality assessment, no reference assessment, image-text contrastive
learning, knowledge graph.

I. INTRODUCTION
Digital X-ray radiography, boasting the advantages of low
radiation dose, fast imaging speed and high image definition,
is a common imaging method widely used in clinical diag-
nosis [1]. During the chest X-ray imaging process, there
are many factors, e.g., patient’s position, breathing status,
exposure, irradiation field, center line, projection angle,
etc., that will affect the imaging quality and directly influ-
ence the doctor’s diagnosis of the disease. High quality
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chest X-ray images are helpful for the clinicians to accu-
rately diagnose the diseases, while low quality X-ray images
are likely to cause misdiagnosis or missed diagnosis [2].
At present, the quality judgment of the chest X-ray images
mainly depends on the subjective evaluation from the radi-
ologists. The results depend on the skill level and expe-
rience of the evaluators. The evaluation process requires
high concentration and heavy workload. The image qual-
ity assessment method based on machine recognition can
achieve objective evaluation of chest X-ray image quality,
avoid subjective uncertainties, and effectively improve the
efficiency.
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Image Quality Assessment (IQA) is one of the basic tech-
nologies in image processing [3]. It is widely used in algo-
rithm design and analysis, system performance evaluation,
etc., and can help complete image super-resolution, image
restoration, evaluation and debugging of imaging product
parameters and other tasks.

IQA can be divided into two methods: subjective quality
assessment and objective quality assessment according to
the evaluation method. The subjective IQA method judges
the image quality through the observer’s subjective scoring.
The advantage is that it can truly reflect people’s subjec-
tive visual experience. The results are direct, accurate and
reliable. Mean Opinion Score (MOS) and Differential Mean
Opinion Score (DMOS) are the main forms of obtaining sub-
jective scores [4]. However, this method is usually affected
by objective factors such as the observation environment and
the number of experimenters, thus having many limitations.
The objective IQA method establishes a mathematical model
based on the visual system of the human eye and evaluates
or scores the images to be tested. It has the advantages of
batch processing and reproducible results, which is easier to
be applied in various scenarios.

Objective image quality assessment methods can be
divided into Full-Reference Image Quality Assessment
(FR-IQA), Reduced-Reference Image Quality Assess-
ment (RR-IQA) and No-Reference Image Quality Assess-
ment (NR-IQA) according to their processing methods.
Among them, FR-IQA algorithms rely entirely on the refer-
ence image and evaluate the image by detecting the difference
between the distorted image and its corresponding original
undistorted image. There are already many FR-IQAmethods,
such as SSIM [5], MS-SSIM [6], VIF [7], IFC [8], FSIM [9],
etc. Due to the existence of reference images, FR-IQA can
usually accurately measure the quality of distorted images.
However, their usefulness is limited due to the difficulty in
obtaining reference images in practical applications. RR-IQA
algorithms utilize the representative information of the ref-
erence image and its distorted image (e.g., some statistical
features of the reference image, such as power spectrum).
Image quality evaluation is conducted by measuring the
similarity of these features in the reference image and the
distorted image [10], [11], [12], [13]. NR-IQA algorithms
evaluate the image quality without using the original ref-
erence image. In terms of practicality, NR-IQA methods
are widely used because no information about the reference
image is required [14], [15], [16], [17]. So far, designing
an effective NR-IQA method remains a challenging research
topic.

Since there is often no gold standard image in medical
images, the quality assessment is mainly based on NR-IQA.
Early NR-IQA methods mainly used handcrafted features,
including lots of local features and global features. However,
its limited feature expression ability resulted in low perfor-
mance. With the rapid development of deep learning, deep

features are increasingly used in NR-IQA. The performance
of deep features far exceeds that of handcrafted features.

Although NR-IQA has made a lot of progress, however,
due to the complexity of real clinical image data and many
factors causing low quality, there are still many problems
in directly applying it to the quality assessment of chest
X-rays. Firstly, the most used NR-IQA data sets such as
LIVE, TID2008, TID2013 are either natural distortion data or
artificially simulated distortion data. Their data distribution
and characteristics are far from real medical imaging data.
Secondly, the accuracy of algorithm prediction is mainly
measured based on the correlation with the subjective scoring
of the human eye, which cannot meet the relevant require-
ments of the medical domain for medical image quality [18].
Finally, most of the existing methods use quality assessment
methods based on the chest X-ray image features [3], [19],
[20], and use image segmentation algorithms to semantically
segment the diagnostic regions, and then use classification
algorithms to judge image quality. However, such methods
require large amount of annotated chest X-ray data, which
brings huge data annotation workload to doctors and chal-
lenges the current data-driven deep learning methods.

At present, chest X-ray quality assessment methods that
only rely on medical image feature learning still rely heavily
on expensive or expert-knowledge supported datasets. The
collation of these data requires heavy work in data collec-
tion, sampling, and manual labeling, which it is difficult
to scale up. This expensive data collation process limits
the size of the data set, which in turn hinders the effective
improvement of the performance of the algorithm model.
In recent years, with the continuous development of transfer
learning technology, a number of unsupervised multimodal
pre-trainingmodels using image-text pairs have emerged, and
have achieved excellent performance in downstream tasks
such as image classification and image segmentation [21],
[22]. Considering that each patient’s chest X-ray image will
have a corresponding diagnosis report and quality control
report, it is possible to construct the X-ray image-text pairs
by performing natural language processing on the diagnosis
report and quality control report and obtain the knowledge
descriptions related to the quality of chest X-ray images. Then
they can be fine-tuned based on the CLIP pre-trainedmodel to
obtain better performance. In addition, sicne the text feature
has a certain generalization ability, it can effectively improve
the generalization performance of the model.

Each single chest X-ray images may have many quality
problems. For example, a chest X-ray image may have two
quality problems of uneven clavicle and abnormal external
objects at the same time. Thus, there will be multiple quality
judgment rules, and every quality judgment rule is related to
the local area of the image, leading to a typical multi-label
image feature learning problem. Using the fine-grained com-
parative learning method of local image features in Dual-
CoOp [23] can further improve the performance.
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Therefore, inspired by the multimodal pre-training big
models CLIP [21] and ALIGN [22], we propose a chest
X-ray quality assessment method that organically combines
image-text contrastive learning with medical domain knowl-
edge fusion. First, an algorithm framework for chest X-ray
quality assessment is presented. It achieves cross-domain
transfer learning by fusing large scale real clinical chest
X-ray images and diagnosis report text information based on
Contrastive Language-Image Pre-training (CLIP) and model
fine-tuning. While improving the prediction accuracy of the
algorithm, the cost of massive data labeling is avoided, and
the local visual patch features of the X-ray image are aligned
with multiple text features to ensure that the visual features
contain more fine-grained image information. The contribu-
tion of this paper can be summarized as:

1) A medical image quality assessment method integrat-
ing medical domain knowledge is proposed. The text
data from chest X-ray image diagnosis reports and
quality control reports are converted into triplet infor-
mation through knowledge extraction and knowledge
fusion, which are used as the guidance information
from medical domain knowledge to medical images in
the process of model training.

2) Exploiting the text annotation data of large-scale med-
ical images together with their corresponding diagnos-
tic reports and quality control reports, cross domain
transfer learning is accomplished by fine-tuning the
pre-trained model based on the contrastive text-image
pairs, which effectively help overcome the problem of
insufficient training data and avoid the heavy manual
data labeling work.

3) By aligning local visual patch features of the X-ray
image to multiple text features, the visual features are
able to contain more fine-grained image information,
so that the problem that global visual information can-
not reflect the local image quality for disease diagnosis
is addressed.

II. RELATED WORK
A. FACTORS AFFECTING THE DISQUALIFICATION OF THE
CHEST X-RAY IMAGESS
According to theworking experience and technical guidelines
of radiologists [18], high-quality chest X-ray images should
meet the following conditions, as illustrated in Figure 1:
1) The image should have no artifacts or severe image noise.
Bad cases include abnormal external objects not belonging to
the body (except those that cannot be removed), motion blur,
post-processing, and equipment artifacts, etc. No granular
noise should be visible to the naked eye in soft tissue density
areas. 2) The position of the patient should be correct and
appropriate, and 80% of the scapula in the case should be
moved outside the lung field. (3) Both sides of the thorax
should be symmetrical; the double clavicles should be flatp;
and the sternoclavicular joints should be symmetrical. (4) The
irradiation field should be properly selected, and there should

FIGURE 1. Example of qualified chest X-ray image.

be no case where chest tissue cannot be displayed due to
occluded cuts (including both lung apexes, the lateral edge
of the ribs above the diaphragm, and the double costophrenic
angle). (5) The chest projection should be in the center of
the image. The upper part of the chest X-ray should include
the lung apices on both sides, and a 3-5 cm empty exposure
area can be seen above the soft tissue shadow of the shoulder;
the lower part should include the bilateral costophrenic angle
and about 1-3 cm below; the outer sides of the chest should
include the outer edge of the ribs and the soft tissue of the
chest wall. (6) The bilateral lung fields, trachea and adjacent
bronchi, heart and aortic border, diaphragm and bilateral
costophrenic angles, lung fields and mediastinum behind the
heart shadow should be clearly displayed. (7) The level of
lung field and mediastinum, lung field and chest wall, lung
field and shoulder soft tissue should be distinguishable. The
structure of lung field texture should be clear and sharp,
mediastinal soft tissue can be vaguely distinguished, and lung
texture overlapping with heart shadow can be clearly dis-
played. (8) There should be no image blur caused by patient
movement, and there should be no visible breathing, heartbeat
motion blur, or diaphragm ghosting in the diagnostic area.

According to the above requirements, we identified
13 common problems in chest X-ray image quality assess-
ment. As shown in Figure 2, we provide 13 common
unqualified chest X-ray image examples with comparisons,
including (a) overlapping of scapula and lung field, (b) mis-
alignment of clavicles on both sides, (c) inconsistent clavicle
height on both sides, (d) asymmetrical sternoclavicular joints,
(e) unclear lung apex, (f) lung apex not included, (g) too
little empty exposure above the shoulders, (h) diaphragm not
included, (i) costophrenic angle not included, (j) asymmet-
rical ribcage on both sides, (k) asymmetrical lung fields on
both sides, (l) existence of abnormal objects, (m) motion
blur. The left part of each image is the original image,
and the right part is the unqualified image. Figure 2-(n)

22906 VOLUME 11, 2023



S. Du et al.: Chest X-Ray Quality Assessment Method With Medical Domain Knowledge Fusion

FIGURE 2. Examples of disqualified chest X-ray images: (a) overlapping
of scapula and lung field, (b) misalignment of clavicles on both sides,
(c) inconsistent clavicle height on both sides, (d) asymmetrical
sternoclavicular joints, (e) unclear lung apex, (f) lung apex not included,
(g) too little empty exposure above the shoulders, (h) diaphragm not
included, (i) costophrenic angle not included, (j) asymmetrical ribcage on
both sides, (k) asymmetrical lung fields on both sides, (l) existence of
abnormal objects, (m) motion blur; (n) multiple disqualification factors.
Marks on the images: lake blue indicates that the scapula overlaps with
the lung field; sky blue indicates that the clavicles on both sides are not
in the same position and height; yellow indicates asymmetry of the
sternoclavicular joints on both sides; dark red indicates that the apex of
the lung is not clear; gray indicates thoracic asymmetry; green indicates
lung field asymmetry; pink indicates abnormal objects.

contain 7 disqualification factors; they are overlapping of
scapula and lung field, misalignment of clavicles on both

sides, inconsistent clavicle height on both sides, asymmet-
rical sternoclavicular joints, unclear lung apex, asymmetrical
ribcage on both sides, asymmetrical lung fields on both sides,
existence of abnormal objects, which are marked in different
colors.

B. NO-REFERENCE IMAGE QUALITY ASSESSMENT
METHODS
No-Reference Image Quality Assessment (NR-IQA) is an
important type of objective quality evaluation methods. Since
no original reference image is needed, it has a broad appli-
cation prospect. Feichtenhofer et al. proposed a sharpness
measurement method based on the statistical analysis of local
edge gradients for the no-reference assessment of distorted
images with blurs and noises [24]. Mittal et al. did not use
subjective opinion scores for training, but performed the
NR-IQA by calculating locally normalized brightness coeffi-
cients in the spatial domain, which is more competitive than
the two methods of peak signal to noise ratio and structural
similarity [16]. Min et al. proposed a NR-IQA framework
based on pseudo reference images, which generated pseudo
reference images as new reference images for the distorted
images [25].

In recent years, with the continuous development of deep
learning technology, a variety of NR-IQA methods based
on depth learning have been proposed. Kang et al. first
proposed to use CNN to effectively measure the distortion
degree of local image regions, and the experimental results
showed that the performance was better than the traditional
methods [26]. Gu et al. proposed a vector regression frame-
work for NR-IQA, which estimated the trust score vector by
CNNs and improved the evaluation performance by using
object-oriented pooling [27]. Gao et al. used two objective
image quality assessment indicators of peak signal to noise
ratio and structural similarity, instead of subjective scoring,
to train the network for the lack of CT annotation data [28].
The end-to-end NR-IQA methods based on deep learning
integrate feature extraction and fitting/regression into a uni-
fied framework and optimize them simultaneously, which
are the current mainstream NR-IQA scheme. The main ideas
include using GAN to restore the distorted image; using the
generated restored image and distorted image to perform loss
calculation and distance measurement; generating a quality
score; and using the idea of rank learning to solve the problem
of lack of large-scale data sets in IQA and to improve the
accuracy of the model. In addition, the attention mechanism
is used to improve the weight of the region of interest so as to
assess the image quality. And the prior knowledge is learned
through the meta-learning method to solve the problem that
the scale of the no-reference image dataset is too small.

High quality medical images are the prerequisite for radiol-
ogists to accurately diagnose and treat diseases. Considering
that deep learning has achieved remarkable results in object
detection, organ segmentation and image classification, the
quality assessment of medical images without reference
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by deep learning has gradually attract more attention and
become a research hotspot. For example, Eck et al. proposed a
CT quality assessment algorithm to realize theNR-IQA under
the premise of ensuring the detection rate of lesions [29].
Mortamet et al. proposed a method for fully automatic assess-
ment of 3D MRI quality by analyzing the air background
pattern in MRI [30]. Esses et al. used neural networks to
assess the image quality of the whole image of T2-weighted
MRI of the liver [31]. Wang et al. used the two-step con-
volution neural network to evaluate the image quality of the
region of interest on MRI of liver sites [32]. Xiao-Qian et al.
used neural networks to achieve the evaluation of DR chest
radiographs into four grades of excellent, good, medium and
poor [33]. Wu et al. realized the automatic quality assess-
ment of prenatal fetal ultrasound images based on two-step
convolution neural network [34]. Li et al. used the improved
AlexNet to score the quality of CT images, proving the poten-
tial of CNN in no-reference quality assessment of medical
images [35]. However, it was still unable to effectively solve
the problem of lack of high-quality scoring data sets. Due to
the particularity of pathological images, the assessment of
medical image quality cannot be determined solely by the
whole image alone, while the quality of local images for
disease diagnosis is often more important. At present, most
research work is based on the overall structure of medical
images. Their used scale of quality assessment is relatively
large, leaving no analysis of local focus on the images for
disease diagnosis.

Currently, there are only a few research work on
no-reference medical images quality assessment based on
deep learning. One of the main reasons is that the network
needs a large amount of manually scored data for training.
However, it is time and labor consuming to perform such
manual quality scoring and annotation on massive medical
images. At the same time, the current mainstream data driven
deep learning methods have achieved satisfactory results in
many cases. In order to solve these problems, many scholars
have carried out adding prior knowledge in the machine
learning process to improve the performance of the algo-
rithm model. For instance, logical rules [36], [37] or alge-
braic equations [38], [39] have been added as constraints of
loss functions; feature representation of the neural network
was enhanced by using the association information between
instances in the form of a knowledge graph [40]. These meth-
ods have achieved better performance in image classification
tasks [41], [42]. Increasing amount of research results show
that the data and knowledge driven methods are playing an
important role in more and more fields.

At the same time, the two-stage training paradigm of ‘‘pre-
training and fine-tuning’’ has gradually become one of the
mainstream learning schemes in deep learning. Pretraining on
large-scale datasets can significantly improve the model per-
formance and generalization ability. In fact, large-scale data
not only help define the approximation of the target problem,
but is also necessary to ensure asymptotic convergence [43].

In the field of visual-language pre-training (VLP), CLIP [21]
and ALIGN [22] collected millions of image-text pairs for
learning visual representation from natural language super-
vision, which has been proved to be transferable to vari-
ous downstream tasks, such as vision and language [44],
image [45] and video tasks [46]. They directly aligned the
visual and linguistic features through image-text contrastive
(ITC) loss, which can also extended to large-scale data sets
with high training efficiency.

The multi-label image recognition task obtains a more
comprehensive understanding of an image by identifying
multiple semantic labels present in the image [47], [48], [49],
[50]. Prompt learning provides an effective way to transfer
pre-trained visual-language models to other tasks and has
achieved success in many tasks [51], [52], [53], [54], [55],
[56]. However, these methods mainly focus on matching a
single label per image and cannot handle the case where
there are multiple multi-labels for an image. DualCoOp [23]
proposes a fine-grained contrastive learning method, which
effectively improves the ability to recognize multiple objects
in multi-label recognition tasks. Considering that each chest
X-ray image may have multiple image quality factors as
shown in Figure 2 (n), we can learn from its designing idea
to realize the identification of multiple chest X-ray image
quality factors.

To summarize, NR-IQA method is an important kind
of objective quality assessment method, which has impor-
tant application potential in the field of medical image
quality assessment. And currently, the deep learning based
NR-IQA has become a research hotspot. However, the exist-
ing research works suffer from the lack of high quality
labeled data; the global feature evaluation method of medi-
cal images cannot reflect the data quality of local focusing
information used by the doctors for disease diagnosis; and
the end-to-end data driven learning methods lacks medical
domain knowledge fusion, which cause the bottleneck in
quality assessment. In this paper, we combine image-text con-
trastive learning with medical domain knowledge. By using
large-scale chest X-ray images, diagnostic reports and quality
control reports information, the pretrained model based on
contrastive text-image pairs is fine-tuned to achieve cross
domain transfer learning. The local visual patch features of
X-ray images are aligned with multiple text features to ensure
that the visual features contain more fine-grained image
information.

III. CHEST X-RAY QUALITY ASSESSMENT WITH MEDICAL
KNOWLEDGE
Our proposed framework contains the chest X-ray quality
control knowledge triplets, text encoder, and image encoder,
as illustrated in Figure 1. First, in the training phase, the
knowledge rules of chest X-ray standardized quality control
[18] are converted to triplets of text description corresponding
to X-ray images, which are denoted as Gpos = (h, r, t)
and treated as positive samples. And then the corresponding

22908 VOLUME 11, 2023



S. Du et al.: Chest X-Ray Quality Assessment Method With Medical Domain Knowledge Fusion

FIGURE 3. The overall framework of our proposed method. In the training phase, through entity extraction, entity relationship extraction and entity
alignment, the text data from chest X-ray diagnosis report and quality control report are converted to the knowledge graph triplets for chest X-ray image
quality assessment. The obtained triples (e.g., <scapula, overlap, lung field>) are treated as positive samples, whereas the corresponding negative
samples (e.g., <shoulder blades, no overlap, lung fields>) are manually constructed. Image-text contrastive learning (ITC) is applied to the text encoder and
image encoder to obtain text and image features respectively (Tpos, Tneg, I). The image-text contrastive loss is adopted to maximize the feature similarity
of positive pairs. In the model inference phase, only input images are needed to feed into the model to obtain quality assessments for different aspects
of the images. Such combination of knowledge graph triplets and ITC can effectively improve the accuracy of chest X-ray image quality assessment.

negative samplesGneg = (h, r, t) are manually constructed.
With the diagnostic report and quality control report paired
to the chest X-ray image, we conduct entity extraction,
entity relationship extraction and entity alignment process,
so as to map the organ entity and its attribute/relationship in
each report to the knowledge triplet information, and build
the quality assessment triplets of each patient’s chest X-ray
image.

Image-text contrastive learning (ITC) is applied to text
encoder and image encoder to respectively obtain text and
image features. The standard vision Transformer (ViT)
model [29] is used as the image encoder. The chest X-ray
image I ∈ RH×W×1 is divided into N pieces of p ×

p sized patches Xp ∈ RN×(P2×1), N =
H×W
p×p . Then

they are encoded into N + 1 feature vector sequences
{Igal, I1, I2, · · · , IN }. Similarly, the positive and negative text
samples are encoded into {Tposgal ,Tpos1 ,Tpos2 , · · · ,TposN },
{Tneggal ,Tneg1 ,Tneg2 , · · · ,TnegN } using the Transformer
structure. Traditional image-text contrastive learning (ITC)
uses global visual feature vectors to align visual language
features with text features. Since each chest X-ray image
contains multiple triples of text corresponding to different
organ regions, we propose to use the patch level visual feature
vectors of for more fine-grained feature alignment. Feature
vector embeddings fpos(i) = gi (Ii) · gt

(
Tposgal

)
, fneg(i) =

gi(Ii) · gt (Tneggal ) are constructed by inner product operation.

In the training process, the feature vectors provided by the
image encoder are expected to be as close as possible to
the positive sample Tpos and far away from the negative
sample Tneg.
In the model inference phase, only input images are

needed to feed into the model to obtain quality assessments
for different aspects of the images. Combining knowledge
graph triplets with ITC has the following two significant
advantages: (1) redundant information in X-ray diagnosis
report and X-ray quality control report can be removed,
(2) medical domain knowledge can be naturally integrated
with image-text contrastive learning model; thus effectively
improving the model performance.

IV. CHEST X-RAY QUALITY ASSESSMENT TRIPLET
A. JOINT ENTITY RELATION EXTRACTION
Entities (e.g., mediastinum, scapula, lung field, trachea, etc.)
and attributes (e.g., clear, unclear, overlapping, aligned, etc.)
are respectively identified from the chest X-ray diagnosis
report and quality control report. In this paper, the joint
entity relationship extractionmethod [57] based on parameter
sharing is applied to the chest X-ray diagnosis report to obtain
the triplets Gd (hd , rd , td ), and to the quality control report to
obtain the triplets Gq(hq, rq, tq).
Given a sentence Xj in the training set D and all possible

triplets Ti = {(h, r, t)} in the sentence, the optimization
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objective of obtaining triplet entities and relations turns into
the maximization of the likelihood function in the training
set [57]:

|D|∏
j=1

 ∏
(h,r,t)∈Tj

p((h, r, t)|xj)

 (1)

=

|D|∏
j=1

∏
h∈Tj

p(h|xj)
∏

(r,t)∈Tj|s

p((r, t)|h, xj)

 (2)

=

|D|∏
j=1

∏
h∈Tj

p(h|xj)
∏
r∈Tj|h

p(t|h, xj)
∏

r∈R\Tj|h

pr (t∅|h, xj)


(3)

where h ∈ Tj it an entity in the triplet Ti; Ti|h represents
the related triplets of the entity h in Ti; (r, t) ∈ Tj|h stands
for a (r, t) pair related to entity h in the triplet Ti; R is the
set of all possible entity relationships; R \ Tj|h represents
other relationships associated with the entity h. t∅ denotes
the empty entity.

The entity extraction model is used to find all possible
entities in the sentence. Then for each found entity, the rela-
tionship extraction model is posed to find all its correlated
relations and their corresponding entities. By formula (1), (2)
and (3), multiple entity relation triples can be extracted in the
sentence.

In this paper, the pretraining language representation
model (BERT) [58] based on multi-layer bidirectional Trans-
former is used to conduct the feature extraction of sen-
tence Xj. The sentence representation learning is completed
by jointly mediating the context of each word. The model
includes N identical Transformer blocks Trans(x), where x
represents the input vector. The specific calculation is:

h0 = SWh +Wp (4)

hα = Trans(hα−1), α ∈ [1,N ] (5)

where S represents a word vector matrix in the input sentence;
Wh represents the word embedding matrix; Wp denotes a
position embedding matrix. p is the position of a word in a
sentence; hα is an implicit state vector; and N is the number
of Transformer blocks. Since the input is a single sentence,
piece-wise embedding is not used.

Head entity identification adopts the binary classification
method to directly decode the above encoding results, so as
to identify all possible head entities. We use a linear layer and
sigmoid activation function to determine whether each token
is a beginning token or end token of the head entity, as shown
in the following formula:

Pstart_hi = δ(WstartXi + bstart ) (6)

Pend_hi = δ(WendXi + bend ) (7)

where Pstart_hi and pend_hi denote the probability that the ith
token serves as the head or tail entity in the input sentence,
respectively. If it exceeds a certain threshold, the correspond-
ing token represents a head entity. Based on the nearest

matching principle, the identified start and end tokens are
paired to obtain the candidate head entity set.

After identifying the head entity, joint recognition of the
relationship and the tail entity is carried out. Here, a group
of relationship-based tail entity recognition is implemented.
The structure of the tail entity recognition layer is similar to
that of the head entity recognition layer. The main difference
lies in the input data. The input of the head entity recognition
layer is the output of encoding layers, while the input of the
tail entity recognition layer takes joint considerations on the
head entity feature νksub:

Pstart_ti = δ(W r
start (Xi + νksub) + brstart ) (8)

Pend_ti = δ(W r
end (Xi + νksub) + brend ) (9)

where νksub represents the vector average of all tokens con-
tained in the kth candidate head entity.

B. ENTITY ALIGNMENT
After the tripletsGd (hd , rd , td ) andGq(hq, rq, tq) are obtained
from the chest X-ray diagnostic report and quality control
report respectively, they need to be aligned with the standard
triplets Gpos(h, r, t) constructed by the knowledge rules for
the chest X-ray standardization quality control standards [4].

Without loss of generality, we use the interaction model
based on BERT [59] to achieve alignment of the two
triplets Gd (hd , rd , td ) and Gpos(h, r, t). The alignment of
Gq(hq, rq, tq) and Gpos(h, r, t) adopts the same method.

The pretrained BERT model is used to calculate the
name/description of the entity. For the given entity input, the
corresponding value of CLS downstream classification task
tag is taken and mapped by multi-layer perceptron (MLP).
Given e ∈ E , the vector representation of the entity can be
calculated by the following formula:

C(e) = MLP(CLS(e)) (10)

For the given two entities inGq(hq, rq, tq) andGpos(h, r, t),
i.e., hqi ∈ hq and hi ∈ h, the vector representation C(hqi)
and C(hi) of the name/description of the two entities can be
calculated using Equation (10). By calculating the cosine
distance of the two vector representations, the similarity of
the two entities can be obtained.
C(hqi) and C(hi) are calculated respectively for the

names/descriptions of similar nodes of entities in the two
graphs to obtain two vector sets, i.e., {C(hqi)}

|N (hq)|
i=1 and

{C(hi)}
|N (h)|
i=1 . The similarity matrix of the two vector sets can

be obtained by cosine similarity calculation. The calculation
formula is as follows:

Sij =
C(hqi) · C(hi)

∥C(Hqi)∥ · ∥C(hi)∥
(11)

Then the row direction and column direction of the
matrix are aggregated respectively. In the process of the
row direction aggregation of the matrix, the maximum
pooling operation is carried out for each row. For vector
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Si = {Si0, Si1, · · · , Sin} in the ith row, considering the hetero-
geneity of the triplet, the neighbor entities of the two aligned
entities are not identical. Therefore, the similarity between
one of the neighbor entities in hqi and its most similar entity
among the neighbor entities of hi is considered. Their the
maximum value Smaxi is taken, that is:

Smaxi =
n

max
j=0

{Si0, Si1, · · · , Sin} (12)

where n indicates the maximum number of neighbors.
The Gaussian kernel function is used for one-to-many

mapping for Smaxi , and multiple mapping values are obtained
to form a vector K r (Si). We average the matrix K r (S) log-
arithmically in the column direction and obtain a vector of
length L. The calculation process is as follows:

Kl(Smaxi ) = exp

[
−
(Smaxi − µl)2

2δ2l

]
(13)

K r (Si) =
[
K1(Smaxi ), · · · ,Kl(Smaxi ), · · · ,KL(Smaxi )

]
(13.1)

φr (N (hqi),N (hi))

=
1

|N (hqi)|

|N (hqi)|∑
i=1

logK r (Si) (13.2)

where L represents the number of Gaussian kernels, and r
represents row aggregation.

Column aggregation is completed in the same steps as
above. Then, the two aggregation result vectors are added
according to Equation (14) to obtain the neighbor view inter-
active similarity vector φ(N (hqi),N (hi)):

φ(N (hqi),N (hi)) = φr (N (hqi),N (hi)) ⊕ φc(N (hqi),N (hi))

(14)

where ⊕ represents the concatenation calculation.
For the two aligned entities hq and h, their corresponding

neighbor triplets are Gq(hq, rq, tq) and Gpos(h, r, t), respec-
tively. If the tail entity tq and t are similar, the relationship rq
and r are also similar. The mask matrix can be calculated to
calibrate the neighbor entity similarity matrix.

The vector averages of C(e) in the head entity set and the
tail entity set of the entity relation are calculated respectively,
and the vector representation of the entity relation is obtained
by concatenating the these vectors. The similarity matrixM is
obtained according to the neighbor relation vector of entity hq
and h, i.e.,Mij = sim(C(rqi),C(rj)), whereMij represents the
cosine similarity between the entity hq’s ith neighbor relation
rqi and the entity h’s jth neighbor relation rj. The matrix S is
then modified by M , i.e., S = S ⊗ M , where ⊗ stands for
elementwise multiplication.

Similar to the construction of entity similarity matrix, the
entity attribute similarity matrix can be obtained. And finally
the entity attribute similarity vector is obtained. Based on
this, the entity similarity vector, the neighbor entity similarity
vector and the attribute similarity vector are concatenated to
obtain the similarity vector of two triplet pairs. Then, the

similarity score between the entities can be calculated using
the multi-layer perceptron.

In the process of entity triplet alignment, the candidate
aligned entities with the highest cosine similarity are first cal-
culated according to the entity vector C(e). Then the similar-
ity scores of the candidate entities and entity h are calculated
respectively, and the results are sorted in descending order.

V. IMAGE-TEXT CROSS-MODAL CONTRASTIVE LEARNING
After the triplets are obtained from the chest X-ray diagnostic
report and quality control report and entity alignment is com-
pleted, a positive sample triplet description is obtained for
the corresponding chest X-ray image. Then negative sample
triplet description is constructed by changing entity relation-
ships/attributes. The image and text encoding features are
obtained by using feature extractors of different modalities,
and then the improved fine-grained image-text contrastive
function is used for cross-modal feature alignment.

A. MULTI-MODAL FEATURE EXTRACTION
For a given chest X-ray image and its corresponding posi-
tive/negative sample triplets, image features and text features
are extracted by the image encoder and text encoder respec-
tively. Image encoder utilizes standard vision Transformer
(ViT) model [60]. The chest X-ray image I ∈ RH×W×1 is
divided into N patches Xp ∈ RN×(P2×1), N =

H×W
p×p with

resolution of p×p, and then encoded into a sequence of visual
feature vectors {Igal,T1,T2, · · · ,TN }, with sequence length
of N+1, where {Igal} is used to represent the global features
of the image. The text encoder uses the standard Transformer
model to encode the triplets of text representing positive
and negative samples as {Tposgal ,Tpos1 ,Tpos2 , · · · ,TposN },
{Tneggal ,Tneg1 ,Tneg2 , · · · ,TnegN } respectively. Both image
encoder and text encoder can use the feature encoder in
pretrained CLIP model. Since it has been pretrained on
large-scale natural image-text pairs, the model boasts strong
image-text matching ability. Based on this, parameters of the
model are fine-tuned, which can not only retain the original
strong cross-modal matching ability, but also adapt the model
to the data domain of chest medical image.

B. CROSS-MODAL FEATURE ALIGNMENT
For the traditional cross-modal contrastive learning of image-
text, such as CLIP shown in Figure 4 (a), they generally
align the global feature {Igal} of the image with the global
feature {Tposgal } of the positive sample text, while the global
feature {Igal} of image and the global feature {Tneggal } of
negative sample text are pulled apart. Specifically, the global
feature vector of the image and the feature vector of the
text are mapped to the same dimension by the corresponding
projection layers gi and gt respectively, and the embedded
vector features are constructed by the inner product operation:
fpos = gi

(
Igal

)
·gt

(
Tposgal

)
, fneg = gi(Igal)·gt (Tneggal ). Then,

image-text contrastive loss function (ITC) is used to optimize

VOLUME 11, 2023 22911



S. Du et al.: Chest X-Ray Quality Assessment Method With Medical Domain Knowledge Fusion

FIGURE 4. Illustration of the different image-text cross-modal contrastive learning methods. (a) Image-text cross-modal
contrastive learning. (b) Fine-grained image-text cross-modal contrastive learning, which is more suitable for the situation
in this paper where each image has multiple quality failure factors corresponding to multiple different regions of the
image, as shown in Figure 2 (n).

TABLE 1. Data distribution with factors influencing chest X-ray image
quality.

the model parameters:

Lossitc =
exp(fpos/π )

exp(fpos/π + exp(fneg/π ))
(15)

where π is the learnable temperature coefficient. As each
chest X-ray image corresponds to multiple positive/negative
sample triplets, and different triplets contain different organ
regions of the image, fine-grained image information will be
lost when the global features of an image are aligned with
the corresponding text features. Therefore, inspired by [23],
we improve the traditional cross-modal contrastive learning
of image-text and propose a fine-grained image-text align-
ment method.

Specifically, instead of aligning the global features of an
image with multiple text features, we align all visual fea-
tures of an image with multiple text features, since these
visual features contain more fine-grained image information.
As shown in Figure 4 (b), the visual feature vector sequence
{I1, I2, · · · , IN } apart from the global image feature and the
feature vector of the text are mapped to the same dimension
by the corresponding projection-layer gi and gt respectively,
and the embedded vector features are constructed by inner
product operation: fpos(i) = gi (Ii) · gt

(
Tposgal

)
, fneg(i) =

gi(Ii) · gt (Tneggal ). The obtained embedded vector feature is
also a vector sequence with length N. In order to obtain the
feature vector of length 1 for each image-triplet, we embed
positive sample into the feature vector sequence to aggregate
the features of positive/negative sample embedding vector
respectively:

fpos =

N∑
i

Softmax(fpos(i)) · fpos(i) (16)

fneg =

N∑
i

Softmax(fpos(i)) · fneg(i) (17)

Softmax(fpos(i)) =
exp(fpos(i))∑
j exp(fpos(j))

(18)

Finally, the image-text contrastive loss function (ITC) is
also used to optimize the model parameters:

Lossitc =
exp(fpos/π )

exp(fpos)/π + exp(fneg/π )
(19)

VI. EXPERIMENT AND ANALYSIS
A. DATA PREPARATION
The experimental data used in this study is the large-scale
chest X-ray image dataset ChestX-ray8 [61] released by NIH.
The dataset contains 112,120 frontal view X-ray images from
30,805 patients. A total number of 1000 qualified image are
selected from the dataset as negative set; while 4846 dis-
qualified images are selected as positive set. The 13 dis-
qualification factors are: overlapping of scapula and lung
field, misalignment of clavicles on both sides, inconsistent
clavicle height on both sides, asymmetrical sternoclavicular
joints, unclear lung apex, lung apex not included, too little
empty exposure above the shoulders, diaphragm not included,
costophrenic angle not included, asymmetrical ribcage on
both sides, asymmetrical lung fields on both sides, existence
of abnormal objects, and motion blur. Finally, a total number
of 5846 chest X-ray images are included in the experimental
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TABLE 2. Chest X-ray image quality assessment results.

TABLE 3. Comparative results on different features.

dataset. Sample distribution of the image quality factors is
shown in Table 1.

In the experiment, randomly 70% of the data (4092 chest
films) are selected as the training set, 20% of the data (1169
chest films) as the validation set, and 25% of the data (1461
chest films) as the test set.

In data preprocessing of the training and inference phases,
the visual encoder adopts the same image resolution as

in [19], i.e., 512×512 pixels, and all intensities are normal-
ized to 0-1. The text encoder uses the same Transformer as
in [54].

B. MODEL TRAINING DETAILS
For each label in the chest X-ray image, we use an SGD
optimizer with an initial learning rate of 0.002, decayed by the
cosine annealing rule. We obtain the best performance over
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FIGURE 5. Confusion matrix.

the past 200 epochs by training the model for 1000 epochs.
The entire model training is done on a server with 8 NVIDIA
RTX 3090 GPU cards.

C. EVALUATION METRIC
The FR-IQAmethodsmostly use SSIM,MS-SSIM,VIF, IFC,
FSIM and other quality assessment metrics. The NR-IQA
cannot use the above-mentioned quality assessment due to the
lack of reference images.

In our experiment, precision, recall, F1-Score, and false
positive rate (FPR) are used to evaluate the performance of
our proposed algorithm. The confusion matrix is defined as
in Figure 5.

The definitions of the evaluation metrics are as follows.
Precision = TP/(TP+ FP)
Recall = TP/(TP+ FN )
F1 = (2 × Precision× Recall)/(Precision+ Recall)
FPR = FP/(FP+ TN )

D. EXPERIMENTAL RESULTS AND ANALYSIS
From the experimental results shown in Table 2, it can be
observed that among the evaluation results on the 13 influenc-
ing factors, 10 F1-Scores are higher than 0.95, 3 F1-Scores
are between 0.92 and 0.95. The result on the existence of
abnormal objects class is comparatively lower. Elaborately
designed methods can be adopted in the future to further
improve the model. The overall performance of our proposed
model is satisfactory and it can be used for chest X-ray image
quality assessment.

In order to further verify the effectiveness of our method
proposed in this paper, we further carried out the following
ablation study. On the same training data, we experimented
with (a) only image features, (b) global image features + text
features, and (c) fine-grained image features + text features.
As shown in Table 3, the experimental results show that using
the visual text model can achieve better performance than
only using image features, and the fine-grained visual text
model can achieve the best performance.

VII. CONCLUSION
In this paper, we propose a chest X-ray quality assessment
method combining both image-text contrastive learning and
medical domain knowledge. Specifically, it integrates large-
scale real clinical chest X-rays and diagnostic report text
information, and fine-tunes the pretrained model based on

contrastive text-image pairs. It achieves cross-domain trans-
fer learning and can save the huge workload caused by doc-
tors in labeling multi-modal medical data. The integration of
the triplet information from knowledge graph into the deep
learningmodel proposed in this paper provides a new solution
for knowledge and data-driven machine learning methods.
The proposedmethod can be extended to complete other tasks
such as multi-lesion segmentation on medical images and
prediction of disease progression. The experimental results
and analysis show that the proposed method boasts good
performance.
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