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ABSTRACT Multi-rotor UAVs (Unmanned Aerial Vehicles) have been increasingly used for hazardous
inspection tasks in complex open-air warehouse storage environments due to their high maneuverability
and aerial perspective. To facilitate rapid response to patrol missions and improve the efficiency of UAV
trajectory planning. This paper established a rotary-wing UAV trajectory plan model considering UAV patrol
efficiency, trajectory cost, and power consumption cost. Secondly, an improved SSA (salp swarm algorithm)
is incorporated for the shortcomings of low algorithmic search efficiency and unsmooth paths when planning
paths in the traditional RRT (Rapidly-exploring RandomTrees). The predation mechanism of the salps group
is incorporated into the random sampling of the RRT algorithm, which reduces the invalid sampling of
random points and introduces the adaptive leader structure, and reverses the search strategy to improve the
algorithm’s global search for superiority at the later stage of the search. Finally, the designed LASSA-RRT
algorithm is subjected to simulation experiments and compared with RRT, RRT∗, IRRT, and PF-RRT∗ in a
cross-sectionalmanner. The results show that the LASSA-RRT algorithm has an average reduction of 55.83%
in sampling times, 51.91% in run time, 13.17% in track length, and 0.1491% in flight cost. In summary, this
paper’s UAV trajectory planning method can be effectively applied to complex open storage environments.
It can provide a helpful reference direction for UAV trajectory planning.

INDEX TERMS RRT, salp swarm algorithm, path planning, UAV, adaptive, reverse search, warehouse
inspection.

I. INTRODUCTION
With the continuous development of the Industry 4.0 process,
intelligent technologies have been widely used in industry
[1]. Warehousing, as an important part of the industrial gen-
eration, is also gradually undergoing digital transformation,
and drones are commonly used in the warehousing industry
due to their high mobility as well as their aerial perspective
[2], [3]. Open-air storage is a special type of storage widely
used in the storage of tobacco, wood, etc. The fire risk of open
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storage has always been a key concern for decision-makers in
the industry. Frequent manual safety inspections have caused
increased costs, while the development of drone technol-
ogy, sensor technology, and artificial intelligence can provide
intelligent solutions for open storage inspections.

Unlike the adjustable environment of indoor storage, the
traditional safety inspection of open-air storage requires staff
to hold a thermometer to measure the temperature of each
stack and has measured the risk of fire. Thanks to the rapid
development of 5G technology in recent years, the collection,
transmission and processing of data in IoT networks has
become increasingly fast and efficient, supporting the use
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of drones as real-time monitoring platforms [4], [5]. The
communication transmission efficiency required by UAVs
for track planning in different environments has reached
conditions [6], [7]. In recent years an increasing number of
unmanned maneuvering devices have been used in inspection
missions [8].

The excellent performance of UAVs in applications such
as grid inspection [9] and industrial pipeline inspection
[10] has proven their significant advantages in the automa-
tion industry. The key to industrial inspection applications
based on UAVs lies in the rationality of trajectory optimi-
sation. Tran et al. designed a UAV trajectory model with
total energy consumption minimisation as the optimisation
objective based on satisfying the requested timeout (RT)
requirement and energy budget [11]. Wu et al., on the other
hand, considered visual occlusion and environmental con-
straints and constructed an optimized model for UAV trajec-
tories in urban environments to provide solutions for UAV
applications in complex environments [12]. As for warehouse
inspection trajectory optimisation, current research on UAVs
in warehousing is mainly based on indoor warehouse inspec-
tions, e.g. Liu et al. constructed a UAV warehouse inventory
trajectory planning model based on a UAV dynamics model
and with energy efficiency and time efficiency minimisa-
tion as the optimisation objectives, providing good trajectory
planning results for task-driven UAV warehouse inspections
[13]. In addition, there is little research on open storage and
the results of this paper could fill the gap for the industry.

With the continuous development of AI, more and more
intelligent algorithms have been used for the solution of
UAV patrol trajectories, and both heuristic algorithms and
meta-heuristic algorithms have achieved certain applications.
Among them, themultiverse algorithm [14], RRT [15] andA∗

algorithm [16] have good planning results. Among them, the
RRT algorithm has received much attention due to its excel-
lent search performance in cluttered environments. How-
ever, due to its large randomness of sampling, the search
has more path redundancy points and a slow search speed.
To compensate for the shortcomings of the RRT algorithm,
Karaman et al. proposed the RRT∗ algorithm, which adds
a process of reselecting a new parent node and wiring it
after finding a new node. However, finding a suitable path
in a particular environment is challenging [17]. In order to
improve the quality of the random tree nodes, the researchers
introduced various improvement strategies for optimization
in the classical algorithm. Among them, Li et al. introduced
the ant colony algorithm and particle swarm algorithm based
on the RRT algorithm. They pruned the UAV flight path
for optimization, which significantly reduced the redundant
turns in the UAV flight and effectively reduced the trajec-
tory length [18]. However, it still generated the path with
the RRT algorithm, and the algorithm generated the ini-
tial path slowly. Yin et al. proposed an improved RRT algo-
rithm (IRRT), which makes the planned trajectory better by
improving the selection strategy of the root node nearest to
the random sampling point and introducing the trajectory

distance constraint [19]. However, there are problems of
high path cost and slow convergence speed. To solve the
problems of RRT∗ algorithm in special environment such
as more memory occupation and low planning efficiency of
path planning, Fan et al. introduced the goal biasing strategy
in the sampling of RRT∗ algorithm and used dichotomy to
create a new parent node, proposed PF-RRT∗ algorithm to
make the sampling more goal-oriented and accelerate the
search speed [20]. Huang et al. proposed a Bi-directional-
Rapidly ExploringRandomTree (Bi-RRT∗) algorithm,which
avoids invalid expansion, saves storage space, and improves
the convergence speed of the algorithm [21], but is vulnerable
in extremely complex environments. In summary, the RRT
algorithm has been widely used as a classical path planning
algorithm, but it still needs to be adjusted and optimized for
the differences and complexity of the scene environment to
improve its algorithmic efficiency and effectiveness.

In terms of algorithmic search efficiency, Swarm Intel-
ligent (SI) as a population-based metaheuristic algorithm
has received a lot of attention from researchers due to its
good generality, excellent search efficiency and optimiza-
tion accuracy [22]. Among them, Pan et al. introduced two
improvement strategies, personal example learning and mir-
ror reflection learning, based on the Golden Eagle opti-
mization algorithm GEO, and verified the superiority of the
designed algorithm by comparison of arithmetic cases [23].
Chen et al. then designed an adaptive learning mechanism
and four operational operators for improvement based on
the standard coyote algorithm, and verified its strong global
search capability by offline trajectory planning simulation
[24]. As an emerging swarm intelligence algorithm, the salps
swarm algorithm has also been effectively applied in UAV
trajectory planning [25]. The use of this for UAV trajectory
planning is therefore an effective experiment.

In summary, this paper investigates the problem of optimis-
ing the UAV inspection trajectory in a complex open storage
environment and designs the LASSA-RRT algorithm to solve
the problem. To summarise the main contributions of this
paper are as follows.

1) An inspection energy and time ratio optimization
model of UAV trajectory for complex storage environ-
ment was established to enable the UAV to fulfill the
requirements of inspection tasks.

2) The adaptive structure is proposed on the basis of the
standard bottle sheath swarm algorithm in terms of
the number of followers, balancing the exploration and
exploitation capabilities of the algorithm; the introduc-
tion of a reverse search strategy enhances the algo-
rithm’s late-stage optimization-seeking capability and
prevents the algorithm from falling into a local opti-
mum. The RRT algorithm is also combined with the
solution of UAV trajectory optimization in order to
explore a new 3D path planning scheme.

3) The results show that the LASSA-RRT algorithm has
good performance. The algorithm successfully solves
the path planning problem of open-air warehouse
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inspection by quadrotor UAV, with the advantages of
a smooth path, fewer sampling points, and low flight
power consumption, which verifies the effectiveness of
the algorithm.

The remainder of the paper is organized as follows: Section II
introduces the investigated UAV inspection problem in a
complex open-air storage environment and describes the
optimization model developed; in Section III, the designed
LASSA-RRT algorithm is presented; in Section IV, the
designed algorithm is verified numerically and the designed
cruise trajectory method is simulated and compared with
cutting-edge algorithms in a cross-sectional manner; finally,
the research is summarized and an outlook is presented.

II. PROBLEM DESCRIPTION AND MODELING
The UAV dangerous situation inspection task in the complex
open storage environment is carried out based on the rotary-
wing UAV. By pre-planning the inspection points, the UAV is
equipped with sensors (visible light sensor, infrared sensor,
etc.) to realize the inspection of dangerous situations. First,
a reference point O is selected in the area with inspection,
and a local coordinate system and a 3D model are estab-
lished to carry out inspection task planning. Among them,
Ii = (xi, yi, zi) represents the coordinates of any inspection
point and ∀i ∈ {1, 2, · · ·, n}. U = (x, y, z) denotes the
coordinates of the UAV, then the inspection process of the
UAV can be represented by a series of consecutive points, and
the trajectory planning of the UAV is the sequential planning
of the inspection points.

Model assumptions:
Due to its high mobility, the rotary-wing UAV for inspec-

tion can have better targeting during inspection operations,
and its complex dynamics will greatly increase the difficulty
of the inspection model as well as the computational volume.
In order to improve the response speed of the UAV in inspec-
tion tasks, the following reasonable assumptions are made.

1) treats the flight of the UAV as uniform, specifying that
its uniform flight speed is 80% of its maximum flight
speed;

2) negligible energy consumed by the UAV to adjust its
attitude [26];

3) Wind speed magnitudes within the workable range of
the UAV;

A. MODELING
1) INSPECTION TIME
The trajectory of the UAV between any nodes can be repre-
sented as a vector and can be projected to the X-axis, Y-axis
and Z-axis directions. The flight distance of a drone between
any nodes can be characterized by the Euclidean parametriza-
tion of the corresponding vector of that track segment as
follows:

−→
Iij =

−→

IXij +
−→

IYij +
−→

IZij , (1)∥∥∥−→Iij ∥∥∥
2
=

√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2, (2)

 dxijdyij
d zij

 =
 cosα

cosβ

cos γ

∥∥∥−→Iij ∥∥∥
2
, (3)

[
vHij
vVij

]
=

[
sin γ

cos γ

] ∥∥∥−→Vij∥∥∥
2
, (4)

where
−→
Iij in Eq. (1) is the vector of trajectories between any

nodes.
−→
IXij ,
−→
IYij and

−→
IZij are the projection vectors of the track

vector track
−→
Jij on the X-axis, Y-axis and Z-axis, respectively.

Equation (2) indicates the length of the trajectory between any
nodes. ∥·∥2 denotes the 2-parametric number of vectors i.e.
Euclidean parametrization. Equation (3) represents the flight
distance of the UAV projected on each axis. α, β and γ denote
the angle of the trajectory

−→
Iij with the X-axis, Y-axis and

Z-axis, respectively. Similarly, the velocity magnitude of the
UAV in the horizontal and vertical directions can be obtained,
as shown in Equation (4).

The total time spent by the UAV during the inspection
process includes both the UAV flight time and the operational
time for inspection using sensors at the inspection point,
as indicated below.

Xij =
{
1, UAV from point i to j
0, otherwise

(5)

Yi =
{
1, UAV detection at i-point
0, otherwise

(6)

IT =
∑
i,j

∣∣∣∣∣ d
x
ij

vHij
+
dyij
vHij
+
d zij
vVij

∣∣∣∣∣× Xij
+

∑
i

(
TA
i + T

W
i + Tδ

)
× Yi (7)

Equation (5) is a 0-1 variable when Xij = 1 means that
the UAV travels from point i to point j, and conversely, when
Xij = 0 means that the UAV does not travel from point i to
point j. Equation (6) is a 0-1 variable, when Yi = 1 means
that the UAV is performing detection operations at detection
point i, and vice versa when Yi = 0 means that the UAV is not
performing detection operations at detection point i. Equation
(7) indicates the total time spent by the UAV for inspection
operations, where TA

i indicates the position adjustment time
of the UAV at the inspection point and TWi indicates the fixed
operation time of the UAV for inspection operations using
sensors. Tδ denotes a normal random variable with mean
0 and standard deviation σ . It is used to correct for the effect
of multiple errors in the actual operation on the estimated
value of the detection time.

2) ENERGY CONSUMPTION FOR INSPECTION
Based on the study of Fan et al. [20], the approximate rela-
tionship function between the lift force F and power PUF of
theUAV is obtained as shown in Equation (8), Combinedwith
the force analysis of the UAV in each flight state, the power
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consumed by the UAV is obtained as shown in Equation (15).

F = K ×
√
P− C (8)

FHij − G− F
H
f = 0 (9)

FNij × cos γ − G− FNf = 0 (10)

f Hij =
1
2
CρS(vA)2 (11)

f Vij =
1
2
CρS(vVij + vA)

2 (12)[
FHij
FNij

]
=

[
G+ 1

2CρS(vA)2
G

cos γ
+

1
2CρS(vij + vA)2

]
(13)

[
PHij
PNij

]
=

1
K 2


[
G+ 1

2CρS(vA)2 + C
]2[

G
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+

1
2CρS(vVij + vA)

2
+ C

]2
 (14)

IE =
∑
i,j

[
PNij ×

(
dxij
vHij
+
dyij
vHij
+
d zij
vVij

)
× Xij

]

+

∑
i

{[
PHij × T

A
i + PS ×

(
TWi + Tδ

)]
× Yi

}
(15)

Equation (8) is the approximate energy consumption equa-
tion of the UAV, where K is the power conversion factor and
C is a constant. Equation (9) is the equilibrium equation in
the hovering state, Equation (10) is the balance equation in
general flight state, where FHij and FNij are the lift forces of the
UAV in the hovering and general flight, G is the self-weight
of the UAV, and FHf and FNf are the air resistance of the
UAV in hovering and general flight, respectively. Equations
(11) and (12) are the formulae for the calculation of FHf and
FNf . vA is the relative wind speed, C is the drag coefficient,
ρ is the air density, and S is the force area. Equation (13)
is the lift force generated by the UAV. Equation (14) is the
working power of the UAV. Equation (15) is the total energy
consumed by the UAV in the inspection process, PS for the
sensor-integrated work energy consumption.

3) OBJECTIVE FUNCTION
The objective function is shown in Equation (16), which is
determined by the ratio of the energy consumed during the
UAV inspection and the time used for the inspection. The
larger the objective function is, i.e., the larger the ratio of
energy and time, the higher the inspection efficiency of the
UAV is indicated.

O = max
(
IE
IT

)
(16)

4) CONSTRAINTS
Combining the requirements of the UAV’s hazardous inspec-
tion task in the open storage environment with the physical
constraints of the UAV itself and the working constraints of
the sensors it carries, the following constraints were obtained:

n∑
i=1

X0i = 1 (17)

n∑
i=1

Xi0 = 1 (18)∑
i=1

Xij = 1,∀j ∈ {1, 2, · · ·, n} (19)∑
j=1

Xij = 1,∀i ∈ {1, 2, · · ·, n} (20)

− 5◦ ≤ γ ≤ 5◦ (21)

IEmax − IE ≥ PNe0 ×

(
dxe0
vHe0
+
dye0
vHe0
+
d ze0
vVe0

)
(22)∑

Yi = n,∀i ∈ {1, 2, · · ·, n} (23)

Hu
min ≤ H

u
i ≤ H

u
max,∀i ∈ {1, 2, · · ·, n} (24)

π
(∥∥∥−→UIi∥∥∥

2
× tan δ

)2
≥ Si,∀i ∈ {1, 2, · · ·, n} (25)

δmin ≤ δ ≤ δmax (26)

Equations (19) and (20) ensure that each point to be
inspected is inspected by a UAV. Equation (21) is the pitch
angle range for the UAV to maintain stability during flight
[21]. Equation (22) is the UAV return energy constraint,
Where IEmax is the total energy of the UAV, IE is the energy
required for the UAV to complete the inspection task, e is
the last inspection point of the UAV, and the right side of the
equation indicates the energy required for the UAV to return
to the inspection center from the last inspection point. Equa-
tion (23) ensures that all devices are inspected. Equation (24)
is the safe flight altitude requirement for the UAV. Equation
(25) for the detection of UAV operating range requirements,∥∥∥−→UIi∥∥∥

2
is the vertical distance from the UAV to the detection

point, δ is the rotation angle of the sensor gimbal carried by
the UAV, and Si is the range to be detected at detection point i.
Equation (26) is the gimbal rotation range of the UAV.

III. DESIGN OF RRT ALGORITHM WITH HYBRID SSA
ALGORITHM
A. RRT ALGORITHM
1) BASIC RRT ALGORITHM
The fast extended random tree algorithm was first proposed
by S.M. Lavall in 1998, and the algorithm has achieved wide
application in query planning of paths. Figure 1 shows a
schematic of the expansion of the RRT algorithm in a given
space, starting from the starting point Q_init and finding a
random point q_rand in the space to find the nearest point
q_near in the tree, generating a new point according to the
step size, and perform collision detection. If q_rand and
q_near are within a certain range, then q_rand is taken as the
new node q_near . When the random tree contains the target
point, the exploration stops, starting with the closest leaf node
and searching the parent node in reverse to get a path from the
root node to the target point.

Since the RRT algorithm traverses the entire space by
random sampling, the randomness of the nodes algorithm
to find the UAV path is not optimal, and the existence of
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FIGURE 1. Schematic of RRT.

redundant nodes will lead to too tortuous paths, which affects
the flight performance of the UAV.

2) IMPROVED RRT ALGORITHM
In this paper, we add a target point-oriented probability func-
tion to the RRT algorithm to accept the generated random
points with a certain probability to speed up the convergence
of the algorithm. The pruning and smoothing algorithm of the
flight path is also introduced to the RRT algorithm to build
and smooth the path after completing the obstacle avoidance
path planning.

Specifically adding a target-guided probability r at each
iteration to generate a random point q_rand , When the prob-
ability rand < r , q_rand = (x_rand, y_rand, θ_rand);
When rand < r , q_rand = q_goal, where rand ∈ [0, 1],
Based on the RRT algorithm, the planning time is shortened
by adding probability settings with guiding effect to make the
exploration direction move quickly toward the target point.

3) IMPROVED RRT ALGORITHM
The RRT algorithm uses a random search method when
searching for paths, which leads to the disadvantage of

having generated paths with poor smoothness and many
redundant points. When in a complex obstacle environment,
the UAV will produce too much unnecessary steering and the
flight path will be too tortuous, which will reduce the flight
performance of the UAV, aggravate the mechanical loss and
power consumption of the UAV parts, and reduce the service
life of the UAV, so the pruning strategy is used to prune
the UAV flight path after the RRT algorithm completes the
obstacle avoidance planning.

Take the RRT algorithm to generate any three consecutive
points in the path, As shown in Figure 2, X1,X2,X3 are three
consecutive points in the path. Remove the redundant points
and determine the angle of the line between X1,X2 and X3
points in the following way:

1) 1200 < θ ≤ 1800:The path at node X2 is straighter and
does not need to be processed for node X2.
2) 00 ≤ θ ≤ 1200:The path curves at node X2. At this

point, the position of the point is trimmed.

FIGURE 2. Pruning operation diagram.

First, determine whether the line between node X1 and
node X3 passes through the obstacle; if not, then directly
discard node X2, the line X1X3 as the new path; If the line
passes through an obstacle, take the midpoint X ′2 of X2X3, and
determine whether the path X1X ′2 of the line between X1 and
X ′2 holds, and if it does not pass through the obstacle, then ac
is the new path; If it passes through an obstacle, the original
node X2 is retained.

Bt,N (t) = C i
N t

k (1− t)N−i. (27)

For a path with N+1 control points, a polynomial curve
with N times can be determined. The parametric equation for
the individual points of the curve can be obtained as

P(t) =
∑

N
i=1PiBi,N (t), (28)

where Bi,N is the Nth B spline basis function, also called the
summation function. Pi is the coordinate of the control node.
Taking the cubic curve as an example, the parametric equation
of the cubic Bezier curve can be obtained as

P(t) = P0(1− t)3 + 3P1t(1− t)2 + 3P2t2(1− t)+ P3t3.

(29)

The B spline curve is obtained by joining each Bezier
curve.

In summary, the basic working steps of the algorithm are
as follows:

Step 1: Algorithm initialization.
Step 2: determine whether the target position is reached; if

it is reached, then the random tree construction is completed
to step 6; if the target point is not reached to step 3.

Step3: randomly sample the search space with a certain
probability of getting the point q_rand , and find the nearest
point q_nearest in the tree

Step 4: Generate new points according to the step length
q_new

Step5: Determine if the line between q_nearest and q_new
will collide with the obstacle; if it does, then discard the point;
if it is feasible, then add it to the tree.

Step6: Find the path from the start point Q_init to the end
point q_goal in the constructed tree.

Step7: Prune the planned path.

B. SALP SWARM ALGORITHM
The salp swarm algorithm is an intelligent algorithm pro-
posed by MirjaLiLi et al. based on the aggregation foraging
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behavior of the bottlenose sheath. The salps are a group of
small pelagic glial chordates that feed on mayfly plants in the
water and move through the water by inhaling the exhaled
seawater.

1) POPULATION INITIALIZATION
The search space for bottlenose sea squirt individuals is
defined as a D × N -dimensional space, where N is the
population size and D represents the spatial dimension,
The location of each salp in the population is defined
as Xn = [X1

n ,X2
n , . . . ,X in], n = 1, 2, . . . ,N , i =

1, 2, . . . ,D.Equation (30) indicates that the position vec-
tor X in the salps algorithm consists of N salps with
dimension d :

X=rand(N,D)× (ubin-lb
i
n)+lb

i
n, n ∈ [1,N ], i ∈ [1,D] (30)

where ubin is the upper bound of the search for the nth
population in the i-th dimension. lbin is the search lower
bound of the nth population in the i-th dimension. In the
population, the leader is defined in each dimensional value as
X1
n , and the follower is defined in each dimensional value as
X in, i = 2, 3, . . . ,N .

2) LEADER POSITION UPDATE
In the SSA algorithm, the position of the leader needs to be
determined first, and the position update of the leader needs
to determine the food position, that is, the target position F of
the salps, and the position of the leader is updated according
to the following rules.

X1
n =

{
Fi + c1((ub− lb)c2 + lb), c3 ≥ 0.5
Fi − c1((ub− lb)c2 + lb), c3 < 0.5,

(31)

where Fi is the value of the target position in the
i-th dimension; c1, c2, c3 is the position control parameter,
c2 and c3 are random numbers between [0,1] that determine
the direction and length of the leader’s movement to the next
position in the j-th dimension. The leader’s location update
is mainly influenced by the location of the food source, The
parameter c1 is called the convergence factor, which is used
to balance the convergence speed of the algorithm in the
iterative process, its gradual increase with the number of
samples strengthens the algorithm’s ability to find the best
in complex environments and reduces the number of samples
the algorithm has to take. where k is the current number of
samples, kmax is the maximum number of samples

c1 = 1/2e−(4×k/kmax)2 (32)

For the trajectory planning problem, the location of food
source F cannot be determined. In this paper, the leader is
updated by adding SSA random perturbation to the RRT
algorithm global random point taking and introducing a tar-
get biasing strategy. The leader’s position T l1,i in the direc-
tion of i in the lth generation is updated by the formula

pi = 0.8(T l1,i − lb
i
n)/(ub

i
n − lb

i
n)

T l+11,i =


T l1,i − c1c2(T

l
1,i − lb) r ≤ pi

T l1,i + c1c2(ub− T
l
1,i) pi ≤ r < 0.8

q_goal 0.8 ≤ r
(33)

Among them, r = rand(0, 1), pi = 0.8(T l1,i−lb
i
n)/(ub

i
n−lb

i
n),

denote the probability bounds for the upward and downward
searches in three directions.

3) FOLLOWER’S LOCATION UPDATE
In the SSA algorithm, the position of the follower is only
related to the position of a salps in front of it. According to
Newton’s law of motion, the simplified formula is

Xni =
1
2
(Xn−1i + Xni ), (34)

where: Xni is the position of the n-th(n ≥ 2) follower on the
i-th dimension.

Due to the complexity of the position update in the track
planning problem, the position update of the follower cannot
be derived from a simple kinematic relationship.:

T l+1,n1,i =


T l,n−11,i r ≤ pi
T l,n1,i pi ≤ r < 0.8
q_goal 0.8 ≤ r .

(35)

C. IMPROVED SALP SWARM ALGORITHM
1) ADAPTIVE LEADER STRATEGY
In the basic SSA algorithm, the leader is the first in the
population, and this mechanism is prone to fall into local
optimality when solving solutions with a large number of
local optima. In this regard [22] proposed an adaptive leader
structure of the bottle sea-sheath algorithm to enhance the
development of the algorithm at a later stage. The adaptive
leader strategy allows the algorithm to adaptively increase
the number of leaders from 1 to N/2 in an iteration. In the
pre-iterative stage, more followers allow the algorithm to
explore the current optimal solution, making the algorithm
more exploitable. As the iteration progresses, the increase
in the number of leaders can generate larger disturbances in
the solution space, which enhances the global optimization
ability of the algorithm. Denote the number of leaders and
followers by N1 and N2, respectively

N1 = ⌈(t/T )× (N/2)⌉ , (36)

N2 = N − N1, (37)

where ⌈⌉ denotes rounding up.

2) REVERSE LEARNING
In this paper, we combine the law of refraction of light to find
the optimal solution based on reverse learning. The refractive
backward learning mechanism is a better improvement mech-
anism to optimize the initial assignment and optimize the
candidate solutions. It is able to better optimize the location
area and direction when the followers of the bottle sea squirt
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population are updated in their location. The specific equation
is as follows.

T l+1,n
∗

1,i =


ubin + lb

i
n

2
+
ubin + lb

i
n

2k
−
T l,n−11,i

k
r ≤ pi

ubin + lb
i
n

2
+
ubin + lb

i
n

2k
+
T l,n−11,i

k
pi ≤ r < 1,

(38)

where T l+1,n1,i denotes the position of the n-th follower in

the current population in the i-th dimension. T l+1,n
∗

1,i is the
refractive inverse solution of T l,n−11,i , ubin and lb

i
n are the mini-

mum and maximum values in the i-th dimension in the search
space.

In summary, the pseudo-code of the improved LASSA-
RRT algorithm is shown below:

Algorithm: LASSA-RRT
G: maximum number of iteration
pop: Number of populations Output: Optimal flight path

1: population initialization
2: while(i<G)
3: random churning in space based on the bottleneck

swam algorithm leader sampling
4: finding the nearest location in the tree
5: random sampling based on the location of followers
6: generate new nodes based on step length
7: if path is valid then
8: add the new point to the tree
9: else
10: round off
11: end if
12: find the path from the tree,and prune the paths
13: result←calculate the cost of the trajectory
14: i←i+1
15: end while
16: perform reverse learning operations
16: Return Tree,result

IV. SIMULATION AND ANALYSIS
A. UAV PLATFORM
This article uses the DJI Royal 2 Industry Advance as the
drone platform. The UAV is equipped with a 640× 512 res-
olution thermal imaging camera, a 48-megapixel visible light
camera, and supports 32x digital zoom to meet the image
requirements of storage inspection and detection. In addition,
the UAV is equipped with an RTK-GPS module, which can
achieve accurate positioning and guarantee the realization of
autonomous flight. Table 1 shows the relevant parameters of
the UAV.

TABLE 1. UAV-related parameters.

B. IRRT ALGORITHM AND PRUNING OPERATION
VALIDATION
Firstly, in order to verify the effectiveness of the improved
RRT algorithm in path planning, MATLAB2017a is used as
the simulation platform in this paper. Simulation experiments
are conducted in a 50km×50km environment, exploring a
step size of 3 and reducing the obstacle threat to a cir-
cle of radius 4. The results of the RRT, LASSA-RRT and
pruned LASSA-RRT algorithms are compared by analyzing
the search time, path length, and path curvature under the
same conditions. Figure 3 shows the operation results of
the RRT algorithm, Figure 4 shows the operation results of
the LASSA-RRT algorithm, and Figure 5 shows the results
after pruning.

TABLE 2. Comparison of simulation data of two methods.

The blue paths in the figure are randomly sampled points in
the environment, and the red paths are the finalized planning
paths. As shown in Table 2, the average planning time of
the LASSA-RRT algorithm improved 89% over the RRT
algorithm, and the average travel cost of IRRT was 75% of
that of the RRT algorithm. It can be seen that in each iteration,
the RRT algorithm tends to explore randomly toward the
unknown region. The improved RRT algorithm strengthens
the orientation of exploration and is able to explore in the
direction of q_goal in the planning space, reducing the num-
ber of redundant points and searches in the wrong direction,
decreasing the search time, and enhancing the stability of the
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FIGURE 3. The result of RRT algorithm.

FIGURE 4. The result of LASSA-RRT algorithm.

FIGURE 5. The result of Trimmed and smoothed LASSA-RRT algorithm.

path. The above figure shows the route after pruning opti-
mization. After pruning optimization, there are only five path
points, and the path length is 73.23km, which is 83% fewer
path points and 33% shorter path length. It is proved that the
pruning operation can remove a large number of unnecessary
redundant nodes, reduce some unnecessary direction changes
and shorten the path length. Then after the Bessel curve
smoothing, the connection between nodes is smoother and
can adapt to the actual flight demand of the UAV.

C. LASSA ALGORITHM VALIDATION
To verify the performance of LASSA algorithm, this paper
compares the performance of this algorithm with other
heuristic algorithms such as CSA (Crow Search Algo-
rithm), PSO (Particle SwarmOptimization), BES (Bald Eagle
Search), and SSA (Sparrow Search Algorithm). Six standard
test functions were selected as the fitness functions, and
the selected test functions contained functions with different

characteristics such as single-peak, multi-peak and fixed-
dimensional multi-front functions for testing, and for reliable
experimental results. The population sizes were all set to 30,
and each standard test function was run 50 times indepen-
dently for comparison tests, and the objective functions for
conducting the tests are shown in Equations (39)-(44).

f1 =
30∑
i=1

x2i (39)

f2 =
30∑
i=1

(
i∑

j=1

xj)2 (40)

f3 = −20 exp

−0.2
√√√√ 1

30

30∑
i=1

x2i


− exp

(
1
30

30∑
i=1

cos 2πxi

)
+ 20+ c (41)

f4 =
π

30

{
10 sin2(πy1)+

29∑
i=1

(yi − 1)2

× [1+ 10 sin2(πyi+1)]+ (yn − 1)2
}

+

30∑
i=1

u(xi, 10, 100, 4) (42)

f5 =

 1
500
+

25∑
j=1

1

j+
∑2

i=1 (xi − aij)
6

−1 (43)

f6 =
(
x2 −

5.1
4π2 x

2
1 +

5
π
x1 − 6

)2

+ 10
(
1−

1
8π

)
cos x1 + 10 (44)

TABLE 3. Test function basic parameters.

The average convergence curves of the six benchmark
functions are given in Figures 6 to 11. As can be seen from the
figures, LASSA has the fastest convergence speed among the
single-peak test functions and has high accuracy in finding
the best. LASSA has a flat part in the process of finding
the optimum, but it quickly jumps out of the local optimum
because the adaptive leader strategy makes LASSA converge
quickly from the beginning, and it has a stronger exploration
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ability in the early stage while it can jump out of the local
optimum in the later stage.

The optimal values in Table 4, the average values reflect the
convergence speed and the ability to find the optimal value
of the algorithm, and the bold letters indicate the optimal
value found when compared with other algorithms. For the
single-peak function, the LASSA solution performs the best,
and the results all reach the theoretical result values. Due to
the complex characteristics of Penalized function, it is more
difficult for all algorithms to find the optimal value of the
function. As the dimensionality of the solution increases,
the solution accuracy of all five algorithms decreases, and
when the dimensionality increases to 200 dimensions, the gap
between the five algorithms and the ideal value is too large.
LASSA reached the theoretical value in five of the tested
functions, and the standard deviation was significantly better
than the other four algorithms, which verified the effective-
ness and better robustness of LASSA.

FIGURE 6. f1: Sphere Function.

FIGURE 7. f2: Schwefel’s Problem 1.2.

FIGURE 8. f3:Ackley’s Function.

D. LASSA-RRT ALGORITHM VALIDATION
To verify the practicality and effectiveness of the proposed
LASSA-RRT algorithm for UAVs to traverse terrain obsta-
cles and complete inspection tasks in open-air warehouses.

FIGURE 9. f4:Penalized Function.

FIGURE 10. f5:Shekel’s Foxhole Function.

FIGURE 11. f6:Branin Function.

This section introduces three scenarios with different lev-
els (Shen et al. proposed to measure the complexity of the
environment by calculating the information entropy of the
environment map by computing the aggregated features of
the gray distribution of the images [31], the higher the level,
the higher the entropy, the more complex the environment)
and designs comparative experiments for comparative analy-
sis. Complete the simulation experiment in MATLAB2017a.
As shown in Figure 13 the size of the planning space is
set to 1000 × 1000 x 400, the unit length is 1m. Starting
from the initial position and returning to the starting point
after completing the inspection task at all task points, where
blank areas represent safe areas, rectangles, cylinders and
spheres indicate obstacles, and circles indicate the task points
to be reached. Table 6 shows the parameters in the scenario.
We selected five algorithms, standard RRT, RRT∗ [17], IRRT
[19], PF-RRT∗ [20] and the LASSA-RRT proposed in this
paper, for simulation experiments and Table 5 shows the
values of relevant parameters taken in the model, where it
is assumed that the parameters in the flight of the UAV are
consistent with the theoretical values.

We selected the standard RRT, RRT∗ [17], IRRT [19],
PF-RRT∗ [20] and the LASSA-RRT algorithm proposed in
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TABLE 4. Test function verification results.

TABLE 5. Algorithm-related parameters.

this paper, a total of five algorithms for simulation exper-
iments, and the pseudo-codes of several algorithms are as
follows.

FIGURE 12. Schematic diagram of three scenarios.

Fig. 12 shows a schematic diagram of the three scenarios
of different complexity. RRT, RRT∗, IRRT, PF-RRT∗, and
LASSA-RRTwere run 50 times in each of the three scenarios.
Table 7 shows the average cost, average run time, average
path length, and the average number of samples for each algo-
rithm in the three scenarios. The results of the five algorithms
in scenario A are shown in Fig.13; The results of the five
algorithms in scenario B are shown in Fig.14; The results of
the five algorithms in scenario C are shown in Fig.15. Where
the blue line is the UAV trajectory.

Since the sampling strategy of IRRT is still based on RRT,
it has a long search time and many path redundancy points.
RRT∗ and PF-RRT∗ add the process of reselecting the parent
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FIGURE 13. Running results of each algorithm under scenario A.

node in the sampling process, the route is straighter, and
the search efficiency of the algorithm is improved because
PF-RRT∗ and LASSA-RRT introduce target-based proba-
bilistic sampling. The improved bottle swarm search strategy
added by LASSA-RRT enhances the planning capability of
the algorithm in the later stages and reduces the number of
samples, enabling the algorithm to plan trajectories more
effectively in complex scenarios. Pruning and smoothing
operations make the planned paths smoother and conform to
UAV dynamics constraints.

As the entropy of the scenario increases, it is difficult for all
the above algorithms to find good paths in a scenario full of

obstacles. As can be seen from Table 7, LASSA-RRT is able
to find the fastest solutions in all three scenarios. The average
running time of 50 experiments in Scenario 3 is 1.6849s,
which is 72% (RRT), 42% (RRT∗), 59% (IRRT), and 27%
(PF-RRT∗) better than the other four algorithms. The total
cost, average path length and the average number of samples
are reduced by 120,000, 164.3m and 412 times respectively
compared to the PF-RRT∗ algorithm. These data demonstrate
the significant superiority of LASSA-RRT for planning tasks
in complex scenarios.

According to the trajectory plots of several algorithms in
3 scenarios, it can be seen that algorithms such as RRT tend to
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FIGURE 14. Running results of each algorithm under scenario B.

fall into a local minimum in more complex scenarios, result-
ing in low search efficiency. The trajectory of the proposed
algorithm is smoother and more efficient. Compared with
other algorithms, the algorithm in this paper has great advan-
tages, reducing the path redundancy points, less running time
and less sampling. The results show that LASSA-RRT has the
best performance in all scenarios and can well accomplish the
open-air warehouse inspection task proposed in this paper.

As shown in Fig.16 and Table 7, the designed LASSA-
RRT algorithm reduces 0.18%, 0.14%, 0.17% and 0.06%,
respectively, in terms of total cost compared to the RRT,

RRT∗, IRRT and PF-RRT∗ algorithms in Scenario A, with an
average reduction of 0.1375%. There were 86%, 73%, 56%,
and 20% reductions in run time, with an average reduction of
58.75%; 16%, 15%, 10%, and 9% reductions in path length,
with an average reduction of 12.5%; and 96%, 22%, 79%, and
14% reductions in the number of samples, with an average
reduction of 52.75%.

In Scenario B, the designed LASSA-RRT algorithm
reduces the total cost by 0.17%, 0.16%, 0.14% and 0.11%,
respectively, compared to the RRT, RRT∗, IRRT and PF-
RRT∗ algorithms, with an average reduction of 0.145%.
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FIGURE 15. Running results of each algorithm under scenario C.

There were reductions of 65%, 40%, 56%, and 28% in run
time, with an average reduction of 47.25%; 21%, 17%, 13%,
and 6% in path length, with an average reduction of 14.25%;
and 94%, 34%, 78%, and 22% in the number of samples, with
an average reduction of 57%.

In Scenario C, the designed LASSA-RRT algorithm
reduces the total cost by 0.21%, 0.18%, 0.15% and 0.12%,
respectively, compared to the RRT, RRT∗, IRRT and PF-
RRT∗ algorithms, with an average reduction of 0.165%. The
reductions in run timewere 72%, 42%, 58% and 27%, with an
average reduction of 49.75%; in path length were 21%, 16%,
11% and 5%, with an average reduction of 13.25%; and in

sampling frequency were 94%, 30%, 82% and 25%, with an
average reduction of 57.75%.

The feasible paths planned based on the RRT∗ algorithm
(RRT∗, PF-RRT∗) outperform the paths generated based on
the RRT algorithm (RRT, IRRT), and LASSA-RRT outper-
forms other algorithms based on the total cost of flight,
running time, path length, and number of samples in all cases.

In the three environments with different complexity,
LASSA-RRT has an average reduction of 55.83% in sam-
pling times, 51.91% in run time, 13.17% in track length,
and 0.1491% in flight cost compared to the other four algo-
rithms. This shows that the design of this paper introduces
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FIGURE 16. Comparison results of five algorithms.

an improved search strategy for the bottle sea squirt group
that can effectively improve the quality of the path nodes. The

TABLE 6. Parameters in the scenario.

Algorithm: RRT∗
1: population initialization
2: while(i<G)
3: q_rand←random churning in space
4: q_near←finding the nearest location in the tree
5: q_new←generate new nodes
6: if path is valid then
7: add the new point to the tree
8: else
9: round off
10: end if
11: q_parent←find a new parent node
12: rewrite the path
13: result←calculate the cost of the trajectory
14: i←i+1
15: end while
16: Return Tree,result

TABLE 7. Simulation results.

pruning and smoothing strategies canmake the paths conform
more to the dynamical constraints and optimize the trajectory
results effectively.

In summary, this paper presents the inspection planning
method of the LASSA-RRT algorithm based on adaptive
leader strategy and reverse search strategy under a com-
plex open-air warehouse. Based on the random sampling of
RRT, the exploration strategy of the population in the bottle
sheath swarm algorithm is introduced, and the corresponding
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Algorithm: IRRT
1: population initialization
2: while(i<G)
3: q_rand←random churning in space
4: q_near←finding the nearest location in the tree
5: q_new←generate new nodes
6: Selection of the root node according to the improved
strategy
7: if path is valid then
8: add the new point to the tree
9: else
10: round off
11: end if
12: result←calculate the cost of the trajectory
13: i←i+1
14: end while
15: Return Tree,result

Algorithm: PF-RRT∗
1: population initialization
2: while(i<G)
3: q_rand←random sampling based on probability
4: q_near←finding the nearest location in the tree
5: q_new←Generation of new nodes based on artificial
potential fields
6: if path is valid then
7: add the new point to the tree
8: else
9: round off
10: end if
11: q_parent ←find a new parent node based on
dichotomy
12: Rewrite the path
13: result←calculate the cost of the trajectory
14: i←i+1
15: end while
16: Return Tree,result

sampling method is selected according to the complexity of
the environment, so that LASSA-RRT can plan a lower-cost
inspection path in a shorter time. The adaptive leader and
reverse search strategies improve the problem of easily falling
into local minima in complex environments and increase
the efficiency of tree search. Finally pruning and smoothing
operations reduce the redundant points in the random tree
and make the flight path smoother to better meet the flight
requirements of UAVs.

V. CONCLUSION
This study explores the planning method for UAV inspec-
tion in open-air warehouses and proposes a LASSA-RRT
algorithm based on an improved SSA algorithm. To verify
the effectiveness and optimality of the algorithm, LASSA-
RRT is compared with four other advanced algorithms under

three environments. It is proved that the algorithm proposed
in this paper has the following advantages, (I) The LASSA-
RRT algorithm optimizes the sampling strategy and reduces
the sampling of invalid nodes. The CPU running time is
greatly reduced. (II) The number of nodes of the random tree
is reduced and the path length is much lower than that of
PF-RRT∗, etc. (III) The paths are pruned and optimized to
meet the UAV dynamics constraints considering the actual
needs of UAV flight. The algorithm proposed in this paper
can effectively optimize the search path and reduce the power
cost and time cost of the UAV in performing complex open-
air warehouse inspection tasks. In future research, we will
combine the path planning of UAVs with the dynamic envi-
ronment, and plan the flight path through real-time feedback
on the environment to improve the response capability of
UAVs to emergencies and provide more favorable security
and technical support to warehouse managers.
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