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ABSTRACT Object detection and recognition of road scenes are crucial tasks of the autonomous driving
environmental perception system. The low inference speed and accuracy in object detection models hinder
the development of autonomous driving technology. Searching for improvement of detection accuracy and
speed is still a challenging task. For solving these problems, we proposed an MCS-YOLO algorithm. Firstly,
a coordinate attention module is inserted into the backbone to aggregate the feature map’s spatial coordinate
and cross-channel information. Then, we designed a multiscale small object detection structure to improve
the recognition sensitivity of dense small object. Finally, we applied the Swin Transformer structure to the
CNN to enable the network to focus on contextual spatial information. Conducting ablation study on the
autonomous driving dataset BDD100K, MCS-YOLO algorithm achieves a mean average precision of 53.6%
and a recall rate of 48.3%, which are 4.3% and 3.9% better than the YOLOv5s algorithm respectively.
In addition, it can achieve real-time detection speed of 55 frames per second in a real scene. The results show
that the MCS-YOLO algorithm is effective and superior in the task of automatic driving object detection.

INDEX TERMS Coordinate attention mechanisms, autonomous driving, road environmental object
detection, swin transformer, YOLOv5.

I. INTRODUCTION
In the 21 century, cars have become an indispensable means
of transportation and transport for people. The number of new
vehicle registrations and newly licensed drivers worldwide
is proliferating. The rapid increase in the number of motor
vehicles has also brought about problems such as traffic
accidents, traffic congestion, and environmental congestion.
Autonomous driving technology is of great importance in
resolving safety issues and decision-making in route planning
during the driving process of motor vehicles [1], [2]. The
primary task of the environmental perception system is to
identify object information in the road environment precisely
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and quickly. After that, it will feed the identified informa-
tion to the decision system to make the best route driving
decision [3].

In the early development of autonomous driving tech-
nology, expensive single-sensor or multi-sensor fusion was
employed to capture environmental object information.
A technician sets the vehicle parameters subjectively and
adjusts the parameters manually after several repeated sim-
ulations and field trials. At this stage, environmental percep-
tion technology requires significant human involvement and
it is difficult to extend to new application scenarios [4]. With
the rapid development of deep learning, sensing, and hard-
ware technologies, Computer Vision (CV) and Natural Lan-
guage Processing (NLP) fields have blossomed. Compared
to sensor fusion methods, Deep Learning (DL) based object
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detection algorithms can cost fewer computer resources and
obtain higher detection accuracy, making it possible to sat-
isfy real-time, accurate, and efficient environmental sensing
systems.

Girshick et al. proposed the Regions with Convolu-
tional Neural Networks Features (R-CNN) [5] model, which
improved the recognition efficiency to a great extent. R-CNN
converts the traditional object detection problem into a fea-
ture acquisition problem for regions and a classification prob-
lem for proposals. He et al. devised a Spatial Pyramid Pooling
(SPP) [6] method to solve the problem ofmissing information
in R-CNN models due to normalization. Fast R-CNN [7]
reduces network training and testing time significantly. Faster
R-CNN [8] uses Region Proposal Network (RPN) to extract
bounding boxes, further improving the algorithm training and
computing speed. Mask R-CNN [9] can perform detection
and segmentation tasks with high quality.

The You Only Look Once (YOLO) series of algorithms
[10], [11], [12], [13], [14], [15], [16] and the Single Shot
MultiBox Detector (SSD) series of algorithms [17], [18],
[19] adopt regression methods for object classification and
bounding box prediction. The YOLO algorithm takes the
entire image as input and regresses the position and class of
the bounding box directly in the output layer. The YOLO and
SSD algorithms are widely used in industry for their faster
real-time detection than the R-CNN algorithm. Liu et al. used
the Transformer as the backbone of a convolutional neural
network for dense vision tasks. The success of the Swin
Transformer [20], [21] demonstrates the powerful potential of
the transformer for classification, detection and segmentation
tasks. ConvNext [22] uses the same optimisation strategy as
Swin Transformer to train the convolutional neural network.
With the same FLOPs, ConvNext has faster inference and
higher accuracy than Swin Transformer.

Chen et al. [23] proposed a DW-YOLO algorithm that
improves vehicle object detection performance by increas-
ing the depth and width of the network. Zhou et al. [24]
proposed a lightweight MobileYOLO algorithm that reduces
the number of parameters and improves detection speed.
Wang et al. [25] appliedMobileNet to a YOLOv4 network for
driving scenarios and achieved a detection speed of 35 FPS.
Tian et al. [26] proposed a SA-YOLOv3 detector that strikes
a better compromise between detection speed and accuracy.
Gupta et al. [27] applied both detection and segmentation
to the task of road environment object detection to enhance
the intelligent adaptive behaviour of self-driving cars.
Wang et al. [28] propose an autonomous driving detection
network for foggy weather that improves the accuracy of
object detection in foggy weather scenarios as well as the
speed of detection. Li et al. [29] designed a Res-YOLO net-
work model that significantly reduced the missed-detection
rate and improved the detection accuracy of vehicle object
detection.

Object detection algorithms are constantly being improved
and enhanced, demonstrating increasingly powerful perfor-
mance. The success of state-of-the-art object detectors proves

that techniques such as backbone network design and effi-
cient feature fusion are essential to improve object detec-
tion performance. However, currently, problems such as low
accuracy and inference speed hinder the development of
autonomous driving technology in autonomous driving envi-
ronment perception tasks. Achieving a compromise between
inspection accuracy and speed is a challenging task. We pro-
pose a multiscale object detection algorithm for autonomous
driving road environment object recognition. Our proposed
algorithm achieves a bidirectional improvement in detection
speed and accuracy for autonomous driving detection tasks.

The significant contributions of this paper are summarized
as follows:

(1) Proposed a MCS-YOLO algorithm applied to the task
of automatic driving object detection. We conducted abla-
tion experiments and comparative trials of the MCS-YOLO
algorithm on the BDD100K dataset. Compared to exist-
ing algorithms, the MCS-YOLO algorithm offers significant
improvements in detection accuracy and speed.

(2) Designed a structure suitable for dense small object
detection tasks. By using the new structure designed, the
performance of the network in detecting small objects is
effectively improved.

(3) Conducted several experiments to verify the effective-
ness of the attention mechanism. The experimental results
show that the coordinate attention mechanism performs best
in the autonomous driving object detection task.

(4) Combining the Swin Transformer structure with CNNs
enabled the network to have local relevance as well as global
modelling capabilities.

The rest of this paper is organized as follows: Section II
introduces attention mechanisms, multiscale feature fusion
and real-time object detectors. In Section III, theMCS-YOLO
algorithm is described in detail. Section IV, experimental
datasets, parameter settings, and evaluation metrics are pre-
sented. Section V shows the results of ablation experiments
and comparison experiments. The proposed algorithm is sum-
marized, and future work is looked forward to in Section VI.

II. RELATED WORK
A. ATTENTION MECHANISM
Attention mechanisms have been proven to be an effective
way to improve network performance. SENet [30] acquires
the importance of feature channels by means of autonomous
learning in order to establish dependencies between chan-
nels. Convolutional Block Attention Module (CBAM) [31]
obtains the importance of the feature channels as well as the
feature space via a similar approach. Global Attention Mech-
anism (GAM) [32] improves the performance of deep neural
networks by reducing information diffusion and amplifying
global interactions. The Acmix attention mechanism [33]
integrates self-attention with convolution to further improve
performance. In this paper, we have verified through sev-
eral experimental comparisons that the Coordinate Atten-
tion (CA) mechanism [34] outperforms other attention
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FIGURE 1. Coordinate Attention mechanism structure.

mechanisms for self-driving object detection tasks. And it
does not increase the computational overhead of the network.

B. MULTISCALE FEATURE FUSION
The fusion of features between different scales is an impor-
tant means to improve detection performance. Early object
detectors used features extracted directly from the backbone.
In contrast, Feature Pyramid Network (FPN) [35] combines
multiscale features in a top-down approach. Path Aggregation
Network (PANet) [36] adds a bottom-up vertical connection
path to the FPN. NAS-FPN [37] uses a neural architecture
search to find the best FPN structure. The Recursive Feature
Pyramid (RFP) [38] adds feedback connection paths to enrich
the feature representation. Although, NAS-FPN and RFP
obtain an increase in performance, they have a large computa-
tional overhead. In this paper, we propose a multiscale feature
fusion structure. In the structure, a detection layer suitable for
small object detection tasks is added. And adding a horizontal
spanning link to fuse multi-scale semantic information. Our
proposed structure can effectively improve the network detec-
tion performancewithout increasing the computational effort.
Experiments demonstrate that the structure we designed can
be better applied to the task of self-driving target detection.

C. REAL-TIME OBJECT DETECTORS
Currently, object detectors are widely used in various com-
puter vision tasks, such as classification, detection and seg-
mentation. Efficient object detection classifiers are mainly
based on CNN and Transformer. CNNs capture local features
in a hierarchical manner for better feature maps, but have
limitations in capturing global feature representations. Doso-
vitskiy et al. [39] used the transformer structure for dense
visual tasks by constructing a hierarchical feature map, which
has achieved exciting results. The success of the transformer
in vision tasks is largely due to the global modelling capa-
bility over long distances. In this paper, taking the speed and
accuracy of the model into consideration, we use YOLOv5s

network as the basis. We combine the CNN network with the
Transformer structure so that the network has local relevance
as well as capturing feature dependencies over long distance.
The proposed algorithm is applied to an autonomous driving
object detection task to improve detection accuracy while
maintaining a high real-time detection speed.

III. MCS-YOLO
A. COORDINATE ATTENTION MECHANISM
The dense small objects present in the road environment
occupy less pixel information and are vulnerable to back-
ground factors. The YOLOv5 network tends to lose small
objects information when convolutional sampling of them is
performed. The coordinate attentionmechanism is introduced
in the MCS-YOLO algorithm to focus the network on crucial
content and location information. For smaller objects, the
location and spatial information can be extracted effectively
to improve the accuracy of network detection.

The spatial and channel features are equally crucial for the
generation of feature maps in the process of feature extraction
by the network. Squeeze-and-Excitation (SE) block causes
loss of spatial location information in global encoding opera-
tions. Bottleneck Attention Module (BAM) [40] and CBAM
cannot obtain comprehensive range dependence informa-
tion. Coordinate attention can solve the above problem well.
Coordinate attention decomposes the global encoding from
channel attention into one-dimensional parallel encodings
along the horizontal and vertical directions. For an input
feature map, the coordinate attention mechanism aggregates
the position-aware features in each of the two directions.
Each location-aware feature has cross-channel dependencies
along the feature map in that direction. Coordinate attention
enhances the network’s perception of spatial location infor-
mation and solves the problem of missing location informa-
tion. The coordinate attention operation consists of two main
processes: information embedding and attention generation.

As shown in Fig. 1., the coordinate attention mecha-
nism decomposes the global pooling operation into pooling
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encoding operations along the horizontal and vertical direc-
tions. Global pooling is described as (1). For the input feature
map X with dimension C ×H ×W , a pooling kernel of sizes
(H , 1) and (1,W ) is used to encode it. The feature map is
then output with respect to the x and y axes and the location
information is aggregated along the spatial direction of the
features. The generated feature maps Zhc and Zwc as shown
in (2) and (3).

Zhc =

H∑
i=1

W∑
j=1

xc(i, j)

H ×W
(1)

Zhc (h) =

∑
0≤i≤w

xc(h, i)

W
(2)

Zwc (w) =

∑
0≤j≤H

xc(j,w)

H
(3)

Meanwhile, coordinate attention gets the long-term depen-
dence of spatial direction and keeps the position information
in another spatial direction. Zhc and Zwc obtain the global
sensory field of the input feature map with the exact location
encoding information. Both are stitched together in the spatial
dimension for the operation. The number of channels is then
compressed by 1 × 1 convolution to obtain the attention
feature map f , defined as (4).

f = δ(F1[Zhc ,Zwc ]) (4)

where [·, ·] denotes a stitching operation along the
spatial dimension. δ is a non-linear activation function.
f ∈ RC×(H+W )/r is a feature mapping of spatial information
in the horizontal and vertical directions. Feature mapping
encodes spatial information in the horizontal and vertical
directions through batchnorm and non-linear operations.

Then, slice f into two different tensors, f h and f w, along
the spatial dimension. And then transform the feature maps
f h and f w by two 1 × 1 convolutions Fh and Fw to the same
number of channels as the input feature map X . The results
are obtained as follows:

ghc = σ (Fh(f h)) (5)

gwc = σ (Fw(f w)) (6)

ghc and gwc are subjected to a sigmoid activation function
and then weighted with the original input information in
both directions to obtain the result. The final output of the
coordinate attention mechanism module can be expressed as
shown in (7).

yc(i, j) = xc(i, j) × ghc(i) × gwc (j) (7)

The coordinate attention mechanism embeds location
information into channel attention, allowing lightweight net-
works to focus on a larger area. Meanwhile, the coordinate
attention mechanism avoids incurring significant computa-
tional overhead. Coordinate attention drives the network to
focus on small objects and objects containing fewer features

present in the object detection task. Features and informa-
tion that are more useful to the network for recognition are
obtained.

B. MULTISCALE SMALL OBJECT DETECTION STRUCTURE
During the forward calculation stage of the YOLOv5s algo-
rithm, the Conv module plays the role of down-sampling.
Moreover, the C3 module focus on learning the residual
features. After each standard convolution operation, the size
of the output feature map will reduce by half. Thus, five
feature maps are generated in the feature extraction pro-
cess: {C1,C2,C3,C4,C5}. The YOLOv5s algorithm com-
bines FPN and PAN structures for feature fusion to identify
objects of different scales. The FPN architecture merges the
features obtained by up-sampling with {C3,C4,C5} through
the Concat operation. At this time, the produced feature
representations {P3,P4,P5} contain abstract high-resolution
semantic information and the underlying positioning detail
information. The PAN structure adds a bottom-up path based
on the Feature Pyramid Networks. {Ni} and {Pi+1} are then
fused by a Concat operation to obtain {Ni+1}.

Fig. 2. shows the YOLOv5s network feature extraction
process and feature fusion process. It can be observed that the
original YOLOv5s network has three different sizes of output.
One of the 80 × 80 feature maps is used to detect small-size
targets. For an image with an input size of 640 × 640, the
receptive field size of one grid in the feature map is 8 × 8.
It is difficult for the network to learn feature information for
targets less than 8 pixels tall or wide in the original image.
The trained model also has difficulty detecting such targets,
leading to an excessive missed detection rate.

To improve the network’s friendliness for smaller object
detection, we have designed a small object detection struc-
ture, as shown in the blue background box section in
Fig. 2. We continue to perform convolution operations, fea-
ture extraction, and up-sampling operation on the feature
map {P3} to further expand the feature map. Then the output
is fused with the feature map {C2} to generate {P2} with
a size of 160 × 160. After feature extraction by the C3
module, {N2} is used as the output layer to detect small
targets with a size over 4 × 4, which is equivalent to {P2}.
In addition, we add a shallow to deep spanning connection to
the YOLOv5s network structure. As shown in the red arrow
in Fig. 2., {C2,C3,C4} and {N2,N3,N4} are subjected to
Concat operation. In this way, the detailed information of the
feature map can be supplemented in space, and more accurate
features can be extracted in the following sampling process,
which is conducive to the detection of dense small targets.

C. SWIN TRANSFORMER LAYER
The transformer is not only powerful in its ability to
model global contextual information, but large-scale pre-
training also shows excellent transferability to downstream
tasks. It has widely witnessed the success of the trans-
former in machine translation and natural language process-
ing and provides new possibilities for visual feature learning.

VOLUME 11, 2023 22345



Y. Cao et al.: MCS-YOLO: A Multiscale Object Detection Method for Autonomous Driving Road Environment Recognition

FIGURE 2. Multiscale small object detection structure.

The transformer constructs a global information interaction
mechanism that helps to establish an adequate representation
of features. However, there are two significant problems with
applying the transformer to vision tasks. On the one hand, the
expensive computational cost of the transformer, which uses
sequences as input, dramatically limits its application to high-
resolution input and intensive prediction tasks. On the other
hand, unlike local inductive bias in convolution, transformer
mines correlations from global relationships and requires
training with large amounts of data to have excellent results.

The emergence of the swin tranformer opens up new
possibilities for the application of transforms to visual
tasks. The swin transformer has a small computational
overhead. It processes images by constructing hierarchi-
cal structures, so that the transformer model can handle
multi-scale intensive tasks. We applied the swin transformer
structure to the YOLOv5s network structure, allowing the
network to have global modelling capabilities while spending
less computational resources. Fig. 3. demonstrates the swin
transformer block structure. Swin transformer proposed the
Multi-head Self Attention module for Windows (W-MSA).

The image is divided into multiple windows. Swin trans-
former performs attention calculations on only the window
pixel regions, reducing the computational complexity to a
linear relationship. Crucially, the swin transformer operates
using a Multi-head Self-Attention module for Shifted Win-
dows (SW-MSA) for information interaction between non-
overlapping windows.

The locality is a typical characteristic of CNN, an inductive
bias based on the assumption that neighboring pixels have
a significant correlation. CNN extracts features by sharing
convolution kernels, dramatically reducing the number of
parameters to improve the efficiency of network computing.
On the other hand, the combination of convolution and pool-
ing gives the network a certain translation invariance and
translation equivalence. However, the limited perceptual field
of CNN makes it challenging to capture global contextual
information. In contrast, swin Transformer relies on more
flexible self-attention information communication and shows
excellent performance in extracting global semantic informa-
tion and performance ceiling. Therefore, we combined CNN
with the swin transformer, which helps the network to achieve

22346 VOLUME 11, 2023



Y. Cao et al.: MCS-YOLO: A Multiscale Object Detection Method for Autonomous Driving Road Environment Recognition

FIGURE 3. Swin transformer block.

interaction between local and global information and build an
adequate feature representation.

D. MCS-YOLO STRUCTURE
Fig. 4. shows the overall structure of the MCS-YOLO net-
work. The boxes in red represent the newly added modules.
The YOLOv5s operates with convolution for downsampling
and uses the C3 module for feature extraction. The features
extracted by backbone are transmitted to the neck for feature
fusion. The wealth of shallow location and channel informa-
tion is critical to the diversity of deep feature fusion, which
helps to boost the sensitivity of the model for road environ-
ment target recognition. Therefore, we embed the coordinate
attention module before the SPPF layer in the YOLOv5s
backbone to guide the allocation of different weights. Coor-
dinate attention can fully use the channel and spatial infor-
mation to promote feature perception in the channel. The
YOLOv5s network with a coordinate attention module can
effectively focus on the relevant feature information of small
targets in the road environment, enabling the extraction of
weak and minor features of targets.

In the actual scenario of autonomous driving environmen-
tal perception, there are more small and dense objects on peak
travel periods or crowded streets. The accuracy of detecting
dense small targets and the timeliness of making decisions
play a decisive role in driving safety. The YOLOv5s network
output detection head is not suitable for detecting targets with
a size of more than 4 × 4. We have designed a structure
suitable for dense small object detection. We added a new
detection head, Detect0, to the YOLOv5s network to detect
small targets. It will lose the shallower location information
during the deepening process of YOLOv5s feature extraction.
Therefore, attaching location information to the output layer
is particularly essential. Taking it into account, we added a
spanning connection from the backbone to the neck of the
YOLOv5s network, as shown in the blue connection line
in Fig. 4.

The convolution operation in CNN is local. It is chal-
lenging to obtain global semantic interaction and context
information directly. To take advantage of the transformer’s
global modeling capabilities and avoid excessive memory
overhead. We add the swin transformer layer behind the
C3 module and use the swin transformer layer as output. The
output detection heads now contain diverse local information
and rich contextual interaction messages, which are crucial
for enhanced detection performance.

IV. EXPERIMENT
A. DATASET
In order to verify the effectiveness and authenticity of the
MCS-YOLO algorithm in the autonomous driving envi-
ronment perception process, we use the authoritative pub-
lic dataset BDD100K [41] for the evaluation experiment.
The BDD100K dataset was collected in real-life scenarios,
labeled with ten categories of targets in different weather,
driving scenarios, and times of the day. The BDD100K
dataset is large and diverse, containing 100,000 images.
Moreover, the background of the dataset contains six differ-
ent weather conditions: sunny, cloudy, cloudy, rainy, snowy,
and foggy. To better validate the model’s performance,
we removed the 20,000 images in the dataset that did not con-
tain labels and re-partitioned the remaining image data at an
8:1:1 ratio. The number of training sets is 64800, the number
of validation sets is 7200, and the number of test sets is 8000.
In Fig. 5., the object center points are primarily distributed in
the central part of the image, the overall distribution of the
object is uniform, and the small targets in the dataset account
for a large proportion. Fig. 6. shows a graph of an example
dataset.

B. EXPERIMENT PARAMETERS AND ENVIRONMENT
SETTINGS
We conducted ablation experiments and comparison tests
on the BDD100K dataset to verify the effectiveness of
the MCS-YOLO algorithm. The operating system used to
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FIGURE 4. MCS-YOLO network architecture.

FIGURE 5. Location and size distribution of object center point.

perform the experiments is Ubuntu 18.04. The CPU model
is Intel Xeon Platinum 8124M. The GPU model is GeForce
RTX 3070 Ti. The programming language is Python 3.8.13.
The acceleration environment is CUDA 11.4, and the deep
learning framework is Pytorch 1.10.0.

Experiment parameters are set as shown in Table 1.

TABLE 1. Experiment parameter settings.

V. RESULTS AND ANALYSIS
A. ANALYSIS OF ABLATION EXPERIMENTS
To verify the effectiveness and superiority of each improve-
ment point in the proposed algorithm. We conducted ablation
experiments on the test set divided by the BDD100K dataset.
‘‘
√
’’ represents the use of this modular method. Table 2

shows the experimental results.
The experiment results show that every improvement point

in the MCS-YOLO algorithm improves performance for the
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TABLE 2. Experimental results of MCS algorithm ablation on the test set of the BDD100K dataset.

FIGURE 6. Example of a dataset image.

network compared to YOLOv5s. In scheme 2, we add amulti-
scale small object detection structure to the network. The test
results show that mAP@.5 increases by 3.6%, mAP@.5:.95
increases by 1.7%, and recall increases by 3.5%. In scheme 3,
we apply the swin transformer structure to the network.
The test results show that mAP@.5 increases by 1.8%,
mAP@.5:.95 increases by 0.7%, and recall increases
by 2.4%.

Coordinate attention can focus on critical features of inter-
est to the network, effectively improving the network’s ability
to aggregate features. The multiscale small object detection
structure can easily capture small objects in the road envi-
ronment and is highly sensitive to small targets. The swin
transformer structure does self-attention operations within
the window to better capture contextual semantic information
for efficient extraction of global features.

B. ALGORITHM PERFORMANCE ANALYSIS
We compare the experimental results of scheme 0 and
scheme 5 in Table 2, showing that the MCS-YOLO algorithm
outperforms the YOLOv5s algorithm. Under the same exper-
iment environment, all evaluation indicators of MCS-YOLO

have been improved; mAP@.5 reached 53.6%, mAP@.5:.95
reached 28.6%, Precision reached 73.7%, and Recall reached
48.3%. The real-time detection speed reaches 55 frames
per second. The MCS-YOLO algorithm model effectively
improves detection accuracy, reduces the missed-detection
rate of small targets, and meets real-time detection.

Fig. 7. shows the results of the single-class average accu-
racy comparison between the MCS-YOLO algorithm and the
YOLOv5s algorithm. The single-class average precision of
the MCS-YOLO algorithm is higher than that of YOLOv5s.
Among them, the average precision of categories such as
Traffic signs, traffic lights, persons, and cars has been dra-
matically improved because there are more dense small tar-
gets in the above categories. The MCS-YOLO algorithm can
improve the accuracy of small targets and effectively reduce
the missed detection rate. The results prove the effective-
ness of the MCS-YOLO algorithm in object detection in
autonomous driving road environments.

FIGURE 7. Single-class average precision comparison.

Fig. 8. shows the PR curve comparison between the MCS-
YOLO algorithm and the YOLOv5s algorithm. The recall
is the horizontal coordinate, and Precision is the vertical
coordinate. The area enclosed by the PR curve and the
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TABLE 3. Performance comparison of YOLOv5s and MCS-YOLO algorithms for road environment object detection of different sizes.

FIGURE 8. PR curve comparison.

horizontal and vertical axes is the average precision value.
The PR curve of the MCS-YOLO algorithm encloses the PR
curve of YOLOv5s, demonstrating the superior performance
of the proposed algorithm. Fig. 9. shows the confusion matrix
obtained for the YOLOv5s network model on the test set.
Fig. 10. shows the confusion matrix obtained for the MCS-
YOLO network model on the test set. The MCS-YOLO
algorithm has a higher accuracy rate and a lower error and
missed-detection rate. Fig. 11. shows the heat map compari-
son between the MCS-YOLO algorithm and the YOLOV5s
algorithm. According to the heat map, it can be observed
that the object receives more attention from the MCS-YOLO
model than YOLOv5s. The results show that theMCS-YOLO
algorithm can focus more on feature information, has greater
sensitivity to detect objects, and performs better.

To further evaluate the superiority of the MCS-YOLO
algorithm for the detection performance of small objects
in the road environment. According to Microsoft’s COCO
benchmark evaluation metrics, we divided the road environ-
ment objects into small, medium and large objects. Among
them, the area of small object is less than 322 pixels, the area
of medium object is more than 322 pixels and less than 962

pixels, and the area of large object is more than 962 pixels.

TABLE 4. Experiment results comparing different algorithmic models on
the BDD100K dataset test set.

In Table 3, for all detection objects, theMCS-YOLO detec-
tor has higher AP values andAR values in the case of different
Intersection over Union (IoU). For different sizes of detected
objects, the AP and AR values obtained by the MCS-YOLO
algorithm are higher than those of the YOLOv5s algorithm
for the same IoU. In particular, the AP and AR values for
small objects increased more significantly. Specifically, the
MCS-YOLO algorithm achieved an AP value of 18.7% for
small object detection, an increase of 4 percentage points.
The AR value of MCS-YOLO algorithm for small object
detection reaches 38.9 %, which is increased by 7.5 per-
centage points. Experimental results illustrate the superior
performance of the MCS-YOLO algorithm for small object
detection in road environments.

C. COMPARATIVE EXPERIMENTAL ANALYSIS
Table 4 shows the experimental results of different algo-
rithm models on the test set of the BDD100K dataset. The
MCS-YOLO algorithm achieves a mean average precision of
53.6%, a 4.3% improvement over YOLOv5s, and a real-time
detection speed of 55 frames per second. The results show
that the MCS-YOLO algorithm outperforms the single-stage
and two-stage algorithms, has higher detection accuracy, and
can meet real-time detection.
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FIGURE 9. Confusion matrix for YOLOv5s network model.

FIGURE 10. Confusion matrix for MCS-YOLO network model.
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FIGURE 11. Heat map comparison.

FIGURE 12. Comparison of actual test results.
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Fig. 12. shows the actual detection results of the MCS-
YOLO algorithm and YOLOv5s in different scenarios with
different weather. It can be observed that the MCS-YOLO
algorithm has better generalization and applicability in dif-
ferent weather and scenarios. It can detect more small targets
in the road environment. In contrast, the YOLOv5s network is
unable to detect smaller targets. Compared to the YOLOv5s
algorithm, the MCS-YOLO algorithm has a higher confi-
dence level for detecting the same object. The MCS-YOLO
algorithm effectively reduces the missed detection and error
rate, proving the effectiveness and superiority of the proposed
algorithm. The MCS-YOLO algorithm is robust and can be
applied to different autonomous driving scenarios with a
higher accuracy rate.

VI. CONCLUSION
To address the problems of low inference speed and low
object detection accuracy in autonomous driving road envi-
ronments. We proposed a multiscale road object detection
algorithm called MCS-YOLO. We introduced a coordinate
attention mechanism in the backbone section to enhance the
network’s ability to aggregate features. We designed a multi-
scale small object detection structure that allows the network
to perform multiscale detection of large, medium, small, and
smaller targets. We apply the swin transformer structure to
the neck part of the network, which can obtain accurate con-
textual feature information. The ablation experiments were
conducted on the BDD100K dataset. The experiment results
show that the MCS-YOLO algorithm achieves an average
detection accuracy of 53.6% on the test set, an improvement
of 4.3%. The MCS-YOLO model achieves 55 FPS in real
scenarios, meeting the accuracy and real-time requirements
for the detection of autonomous road environments. Com-
pared with other mainstream algorithms, the MCS-YOLO
algorithm is more suitable for application in autonomous
driving environment perception tasks and has effectiveness
and superiority. Multiple object tracking is an essential and
challenging research in autonomous driving vision tasks.
In future work, we will apply the MCS-YOLO algorithm
to the autonomous driving Multiple Object Tracking (MOT)
task to verify the performance of the proposed algorithm in
this task.
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