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ABSTRACT Condition monitoring and inspection are core activities for assessing and evaluating the health
of critical infrastructure spanning from road networks to nuclear power stations. Defect detection on visual
inspections of such assets is a field that enjoys increasing attention. However, data-based models are prone to
a lack of available data depicting cracks of various modalities and present a great data imbalance. This paper
introduces a novel data augmentation technique by deploying the CycleGan Generative Adversarial Network
(GAN). The proposed model is deployed between different image datasets depicting cracks, with a nuclear
application as the main industrial example. The aim of this network is to improve the segmentation accuracy
on these datasets using deep convolutional neural networks. The proposed GAN generates realistic images
that are challenging to segment and under-represented in the original datasets. Different deep networks are
trained with the augmented datasets while introducing no labelling overhead. A comparison is drawn between
the performance of the different neural networks on the original data and their augmented counterparts.
Extensive experiments suggest that the proposed augmentation method results in superior crack detection in
challenging cases across all datasets. This is reflected by the respective increase in the quantitative evaluation
metrics.

INDEX TERMS Crack segmentation, generative adversarial networks (GANSs), nuclear inspections, data
augmentation, image-to-image translation.

I. INTRODUCTION Therefore, inspections are carried out regularly to assess

Health inspection, structural monitoring and fault detection
are fields that cover a wide area of applications and meet
challenges from different fields like mechanical systems [1],
electronics [2] and structural engineering. Of particular inter-
est is the latter case as inspections in structural assets can
be performed visually, therefore allowing the use of a broad
range of applications and methods.

In the nuclear sector, health inspection processes are of
great importance as they allow the condition assessment of
critical components. In the UK, the vast majority of nuclear
power stations belong to the Advanced Gas-Cooled Reactor
(AGR) family and are near the end of their extended lifespan.
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the condition of the inspected infrastructure, detect any poten-
tial damaged components, and allow the return to operation,
provided all the high standards of safety are met. Previous
work [3] has focused on developing a piece of software that
automatically creates stitched image-montages of the whole
inner cylindrical surface of the graphite fuel channels within
AGR cores, commonly known as ‘“chanoramas” (channel
panoramas). It is therefore imperative that the inspections are
conducted efficiently and accurately, to minimize the off-line
time of the components under investigation. Assessment of
graphite channels within the AGR core is conducted with
Remote Visual Inspections (RVI) as the hazardous conditions
do not allow direct inspections. The detection and sizing of
defects following the data acquisition is conducted manually
by human experts and is a time-consuming, tedious, and
partially subjective process. Developing assisting methods
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FIGURE 1. An example of a smaller part of an inspection image depicting some of the challenges present in the visual data, like varying contrast
and shading in the inspection surface. The respective crack detection map generated by an image segmentation network is also presented.

that automatically detect cracks and defects is a field of
active research as it can drastically decrease the data analysis
duration and provide the human-in-the-loop with valuable
feedback.

Industrial monitoring is lately focusing more on learning-
based methods belonging to the field of artificial intelligence
and machine learning [4]. These approaches are preferred for
their high predictive capabilities and the fact that the models
are agnostic to the data, thus requiring minimal modifica-
tions. The most widely used methods are Artificial Neural
Networks (ANN) as they outperform most models and can
be adjusted to perform in a variety of applications. However,
the area where ANNS really excel is in image recognition
and computer vision tasks; one of the most common tasks in
structural health monitoring is crack detection. Visual crack
detection is a research field that is increasingly gaining more
attention with applications on structural assets like buildings
and bridges [5], roads and pavements [6], [7] and even nuclear
power stations [8]. The fact that deep learning approaches for
real-time crack detection have been developed [9], further
encourages the development of similar methods for nuclear
power inspections, where the data analysis duration is of great
importance.

Crack detection poses many challenges for image recogni-
tion algorithms. To perform pixel-level detection, commonly
known as image segmentation, an annotation process of the
defects is required to obtain training pairs between images
and the desired output of the algorithm; this process is labor-
intensive, time-consuming, and often subject to human bias.
A significant challenge in the nuclear case is that cracks tend
to occupy proportionally only a small fraction of the overall
inspection image or video surface which can be hundreds of
Megapixels [10].

An example of this can be seen in Fig. 1. This creates
a great imbalance in the data, which leads to a bias in the
model to discriminate against classifying a pixel belonging
to the positive class. Moreover, inspections are typically long
processes, especially in the nuclear field, thus generating
great amounts of data. Defects and cracks are not com-
monly encountered in inspections but are scarcely distributed,
or even absent in long inspections. This scarcity of cracks
enhances the imbalance of the data even further, requiring
specially engineered datasets or modifications to the detec-
tion algorithms for correct performance.
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To tackle problems like the ones mentioned above, data
augmentation methods are developed. For generation of real-
istic data, Generative Adversarial Networks (GANs) have
excelled in visual tasks since their creation [11]. The gener-
ative capabilities of GANSs include a range of tasks like style
transfer and image-to-image translation [12], [13].

GANSs have been steadily incorporated as a research tool
in the field of fault detection and monitoring. Earlier works
include using GANSs to create artificial wind turbine fault
information data for better fault detection [14], denoising
acoustic emission signals for better rail crack detection [15],
or even for generating 3D contact-stress distributions on
tire-pavement surfaces [16], a novel application of GAN
models in the structural inspection field, with many more pos-
sibilities for future exploration. Recently, adversarial models
have also been used for the task of visual crack detection.
In, [17] a GAN model is deployed for direct unsupervised
crack detection; the GAN is trained to learn the texture space
of the data free of defects and perform detection through a
classification of the difference between original and texture
images. While useful for classification, this approach does
not perform accurate image segmentation because of the lack
of annotation. Similarly, in [18] a GAN is used on the output
of a convolutional autoencoder to improve the classification
accuracy on steel defects, showcasing how generative models
can assist health inspection systems.

The authors of [19] propose a framework where a GAN
model is trained to reconstruct x-ray images of tires for defect
detection. However, this work is based on the fact that the
GAN model is not trained on defected images, so it will
reconstruct distorted images when the input contains defects,
providing less control of the generation. In [20] the authors
deploy a GAN-based model for detecting defects and anoma-
lies on solar cell manufacturing. Although a novel approach
for such a task, this work doesn’t exploit the capabilities of
GAN models for generating new samples, which is where
GANSs excel at. In [21] the authors implement a GAN topol-
ogy to generate examples of structural adhesive applications
for visual quality inspections. Although this approach is sim-
ilar to ours, the image generation is not based on an image-
to-image translation manner, which can create very realistic
images, and also does not allow pixel-level detection, without
additional annotation costs, which is the main contribution
of our proposed approach. Similarly, in [22] the authors
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create a GAN framework for generating ultrasonic images
for non-destructive industrial evaluation, but the evaluation
of the generated images takes place manually by human
experts, which is costly, and hard to replicate. The CycleGAN
model [13] is deployed in [23] to perform road crack segmen-
tation using binary segmentation masks from random objects.
Although this innovative approach produces labor-free seg-
mentation results, as the generated labels and the ones used
for training are forced through dilation to be skeletons of the
cracks themselves, pixel-level correspondence to the cracks
cannot be achieved and region-based results are reported
instead.

Inspired by the capabilities of GANs on image generation,
and their growing presence in the inspection health moni-
toring research, we present and evaluate a novel framework
for nuclear crack data augmentation through domain transfer
from different crack datasets. We also assess how our model
generalizes on similar applications through deployment on
public benchmark data. Our work is most similar with [24],
where the authors deploy a GAN to augment pavement crack
detection and compare the predictive accuracy between the
enhanced and the standard dataset. However, the authors
of [24] perform significant manual pre-processing and use a
variational autoencoder to extract suitable features for train-
ing the GAN. Moreover, the generated images are new, so no
ground truth maps are available meaning that image seg-
mentation cannot be performed directly. As an improvement,
we instead use CycleGAN [13] to simultaneously transfer
crack morphologies between two different domains, main-
taining the shape of the source dataset to the style of the
target. As both datasets are already annotated, every image
that is generated by our GAN is mapped to a respective
binary label from the source dataset from which it originated
with no additional annotation cost. In this way both datasets
are augmented with cracks of different morphologies, adding
variance to them at no extra cost. The key advantage of this
over the previous approaches using GANSs for direct segmen-
tation is that we make use of the well-established generative
capabilities of GANSs. This is used as an augmentation step
to enhance the training sets using existing data that is already
labelled. In this way we create examples that are underrep-
resented and challenging to detect. Moreover, our model is
applicable on any segmentation method used for crack detec-
tion tasks, to potentially attain superior results. The main
contributions of this work are summarized as follows:

1) We deploy CycleGAN, a cyclic-consistency GAN to
augment crack detection datasets on highly diverse
applications, including nuclear reactor fuel channel
surfaces, concrete road, and stone surfaces to acquire
realistic examples of cracks that are under-represented
in the original datasets.

2) This proposed model is, to the best of our knowledge,
the first approach to perform style transfer on structural
crack data. In doing so, extra training material is cre-
ated for the respective datasets without any additional
manual annotation as the original images are already

VOLUME 11, 2023

annotated. This allows a plug-and-play approach that
poses no model restrictions to the subsequent defect
detection process.

3) Extensive experiments are carried out to demonstrate
the additional data generated by our approach con-
tributes to superior image segmentation results, both
on the nuclear industrial case, and the public datasets
used for exploring generalization. To this end, various
data combinations between real and artificial images
are explored.

4) We deploy U-Net as a state-of-the-art model and com-
pare the segmentation results between the augmented
data and the original, while providing an ensemble-
learning scenario. The findings indicate that, when used
for training, the GAN-generated images significantly
increase the predictive capabilities of the segmentation
across all datasets.

The remainder of the paper is structured as follows.
In Section II the basics of generative adversarial networks
and the proposed architecture of CycleGAN are described.
Section III details the proposed new data augmentation
framework, including the implementation and the datasets
used, while in Section IV all the experiments carried out are
presented in detail. Finally, in Section V all the conclusions
of this work are drawn.

Il. GENERATIVE ADVERSARIAL NETWORKS

A. ADVERSARIAL LEARNING

The basis of GAN models, since their introduction in [11]
has been of an adversarial nature. The key idea is that two
different neural networks, the generator (G) and the discrim-
inator (D) are competing against each other. The generator’s
aim is to capture the distribution of the training data, while the
discriminator attempts to distinguish between the real and the
generated images.

An equilibrium state is achieved when the generator can
produce samples for which the discriminator cannot distin-
guish between, providing equal probabilities. Fig. 2 pro-
vides a graphic representation of a general GAN framework.
Both networks are trained together in an adversarial man-
ner through error backpropagation of a common loss func-
tion. The generator’s input can be an image, or a random
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FIGURE 2. A basic generative adversarial network framework. The
discriminator alternatively accepts real and generated inputs and aims to
classify them accordingly.

22053



IEEE Access

E. Branikas et al.: Novel Data Augmentation Method for Improved Visual Crack Detection Using GANs

vector z that serves as noise from a prior distribution with
variables p; (z) .

In this way, the generator’s aim is to produce varying sam-
ples from the data distribution x through the mapping G (z).
The discriminator’s output is a scalar value denoting the
probability of the input belonging to the real distribution.
Both networks then can be updated through the objective
function L,,4(G, D):

mingmaxpLg,g (G, D)
= Expy( [0g(D ()] + Ezep, o [log(1 = DIG@))]
(h

Equation (1) is a binary cross entropy loss. Here, the generator
attempts to maximize the loss through the term D(G(z)).
This corresponds to the discriminator’s prediction when the
input it receives originates from the generator. This is the
bottom path starting from the random vector in Fig. 2. The
generator aims in maximizing this term which corresponds to
the discriminator classifying this as a real example, and being
“tricked”, which increases the error for these predictions.
At the same time, the discriminator’s aim is to maximize
both log(D (x)) and log(l — D(G(z))) which correspond to
both input paths of the discriminator block in Fig. 2. The
maximization of the former term suggests the discriminator
detects the real examples, while the latter minimizes the error
for detecting the generated examples. Through an alternating
optimization and update of the gradients by error backpropa-
gation, the 2 models are trained until convergence.

The expected value in Equation (1) and the following equa-
tions correspond to the respective values of the distributions
that are denoted. In practice, the values of the losses are
calculated across the batch size.

Source Target
Domain e e e T e T O I = O e e Domain
Image I NN NN Image
FeatureMap Block
x9

Contracting Block
JResidual Block
Expanding Block

[E=31x1 Convolution

Input W R N R R Real/fake
Image rediction

FIGURE 3. The architecture of the Generator (top) and the Discriminator
(bottom) networks.

B. CycleGAN MODEL

Since the creation of GANs, numerous pieces of work and
different architectures have been developed, serving various
tasks, but all have maintained an adversarial training as their
key component. CycleGAN is one of the most widely used
GAN architectures; it performs image-to-image translation,
a general task under which various applications can be fit,
ranging from style transfer [25] to image segmentation [23].
In this research study, we also implement the CycleGAN
model, as it will be described in the following paragraphs.
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The basic CycleGAN architecture can be seen in Fig. 3.
The aim of this model is to perform translation of images
between two domains, X and Y. This architecture performs
a mutual translation in parallel and in an unpaired manner.
This imposes no need for pairs of images and their respective
counterpart in the second domain, allowing the use of various
datasets of different sizes. This mapping takes place using two
generators: G : X — Y and F : Y — X. Two discriminators
are also introduced, Dx and Dy to distinguish between real
samples x € X and y € Y or mapped images on domains X
and Y respectively. The overall objective function for training
the model consists of three different loss functions: an adver-
sarial loss, similar to that in Eq. 1, a cyclic consistency loss,
and an identity loss.

Sample Dy | ) G : = Dy Sample

1 from X ;Ef.

Lody: 1-3-5 & 6-4-2
Leye: 1-3-4-1 & 6-4-3-6
LID: 1-4-1 & 6-3-6

Domain Y

Domain X

FIGURE 4. The architecture of the CycleGAN model. Numbers correspond
to either domain samples, generators, or discriminators for better
comprehending the flow of information for different loss functions.

The adversarial loss function tries to match the distribution
of the source domain to that of the target through the gener-
ated images. For the mapping ¥ — X the loss function can
be expressed as:

Ladv (F, DXv Xv Y) = EX“’Pdata(x) [log(DX (x))]
+ Ey~paaam llog(l = Dx (F()))]  (2)

A similar term, L.g, (G, Dy, X, Y) is used for the transla-
tion task X — Y. In theory, this architecture can learn
any mapping from one domain to the other. It is therefore
desirable to limit these mappings to be reverses of each other
and bijections, in order to produce controllable translations
between the domains. This can be enforced implicitly by
using a cycle consistency loss [13]:

Leye (G, F) = Bxepgyo) [IF (G (1) = 2)111]
+ Eypaaan) [IGF ) =0 3)
The loss for each mapping aims to minimize the reconstruc-
tion error between samples x and y and their respective cyclic
mappings to the other domain and back to the original. These

losses are represented graphically as paths 1-3-4-1 and 6-4-
3-6 in Fig. 3. Finally, an identity loss is introduced:

Lip (G, F) = Expyo [IF @) —xI{] + TIG &) — vlI]
4

Equation (4) corresponds to paths 1-4-1 and 6-3-6 in Fig. 3.
These terms ensure the generators do not impose unnecessary
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transformations to the source images that could otherwise be
valid mappings. This is implicitly enforced by the loss; if
the generators impose additional transformations, other than
mapping an image to the target domain, the identity loss will
penalize that. Paths 1-4-1 and 6-3-6 essentially feed an image
from one domain to the generator that attempts to map it to the
same domain. If additional, unintended transformations are
applied through the generators, the identity loss will quantify
this as the difference between the original and the altered
version of the image. With the identity loss, the generators
try to negate these additional transformations directly, rather
than trying to counter the unwanted effect through the cyclic
loss, after they are imposed. The identity loss has proven to
limit the possible mappings between domains and maintain
the source image composition [13].

The structure of the generator follows that of [12]. Inspired
by the Pix2Pix model, we follow a similar approach. A deep
autoencoder serves as the generator, where input images pass
through a number of encoding blocks and are eventually
restored through respective expanding blocks. We also use
residual blocks between the contracting and the expanding
path as the backbone of the network. All the blocks consist
of convolutional layers and non-linear activations; in con-
trast to traditional architectures used for detection purposes,
no pooling operations are used, as they tend to create blurry
generated images. Moreover, we substitute instance normal-
ization layers, that are originally used in CycleGAN [13] and
in style transfer literature as they allow some droplet artifacts
to pass as real through the discriminator. Instead, weight
demodulation is selected, inspired by StyleGAN2 [26].

TABLE 1. Components of Network Blocks.

Block Layers

Feature Map 7x7 convolution + demodulation

Contracting 3x3 convolution + demodulation
ReLU activation

Expanding Bilinear up-sampling
3x3 convolution + demodulation
ReLU activation

Residual 3x3 convolution + demodulation

ReLU activation
3x3 convolution + demodulation
Summation with block input

The discriminator belongs to the patchGAN architecture,
similarly to [12]; it classifies images at a patch scale and is
convolutionally applied across the surface of the input image,
providing a prediction per patch. Fig. 4 depicts the basic
structure of the generator and the discriminator, while the
respective block architectures are presented on Table 1.

1. DATA AUGMENTATION FRAMEWORK

In this section, the architecture and the functionality of
the proposed method as well as a detailed description of the
implementation, the datasets used, and the evaluation of the
augmentation process are presented.
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A. CRACK DETECTION FRAMEWORK

The proposed model is trained and tested using three different
datasets. These datasets consist of a small number of images
each, while structural cracks have a very limited surface,
resulting in datasets with very few examples of cracks avail-
able for training. In addition, different modalities of defects
are present in the data, leaving even less training data per
type of crack. The main application focuses on an industrial
case where the dataset has been created using real inspection
footage captured during inspections of graphite fuel channels
in the UK’s fleet of nuclear power stations. Two other publicly
available datasets were also used to allow benchmarking
and to demonstrate how the proposed approach is able to
generalize to other, related applications. These two datasets
correspond to concrete pavement [27] and stone cracks [6]
respectively. Detailed descriptions for each are presented
below.

The main industrial application where we assess our
approach is done using a dataset assembled by the authors
using video inspection footage of fuel channels that form
the reactor cores of the UK’s fleet of nuclear power stations.
The resultant dataset created from these chanoramas consists
of 108 images of varying sizes [8]. The images are highly
diverse and depict cracks in a variety of different conditions.
Variations include dynamics in lighting, image texture and
reflectance, illumination and contrast between the defect and
the background. These variations all present challenges for
any image processing task that is required to detect the pres-
ence of cracks in spite of so many dynamics in the data itself.
The resulting original training set on which a segmentation
model was trained before the data augmentation consists of
78000 patches.

CrackForest dataset (CFD) [27] is one of the most widely
used datasets in the field of crack detection using image
processing; it consists of 118 images of road pavements with
cracks in different conditions including shadows, spots, and
stains. CFD is established as a benchmark dataset for testing
the capabilities of crack detection algorithms [27], [6], [7].
The image resolution is 480 by 320 pixels. The cardinality of
the original training set for the detection of the cracks is equal
to 112000 patches.

Stone331 [6] consists of 331 images of rock surfaces
with cracks, as rocks tend to develop cracks on the cutting
surfaces. The lighting of the dataset is relatively uniform
but different surface textures are present in the data, and
the contrast between cracks and the background also varies.
The resolution of the stone images is 1024 by 1024 pix-
els. The size of this training set is approximately equal to
55000 patches.

The process for extracting the training patches for the
crack segmentation from the original images is the same
as the one described in detail in [8]. For the AGR and the
Stone331 dataset, the patch size is 96 pixels per side. For the
CFD, as the original images are significantly smaller in terms
of resolution, the extracted patches are 64 pixels wide per
side.
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B. CycleGAN IMPLEMENTATION AND TRAINING DETAILS
The implementation and the training process of the proposed
CycleGAN architecture is carried out using Python and the
PyTorch deep learning library. To accelerate the training pro-
cess, the optimization and the training calculations are carried
out using GPU instead of CPU devices. The Adam optimizer
is selected with a batch size of 5 images for both generators
and the optimizer’s initial learning rate is set to 0.0001.
The batch size was empirically selected for a reasonable
trade-off between GPU memory, and speed of convergence.
For validating the model, 15% of the training data is used.
After an epoch of training is completed, the validation data
are used, and the score of the loss functions is used as an
evaluation metric. Moreover, some examples are generated
per epoch, for visually assessing them manually, as this is
the gold standard for evaluating generated images. 50 epochs
of training are repeated, unless no convergence of the metric
is observed. The final model to use for testing is the one
with the lowest loss score, provided the respective generated
images are realistic. Methods like cross-validation are not
used because of the computational toll of CycleGAN, but the
strategy described above is shown to be effective and results
in convergence of the trained model.

For the adversarial training of the networks, the discrimina-
tors are updated alternatively with their respective generators.
Using the error backpropagation method, the gradients of the
parameters are updated to minimize the objective loss func-
tions described in Section II. For updating the discriminators,
only the adversarial loss is deployed, while the generators’
outputs (paths 3 and 4 in Fig. 3) are not updated in order not
to hinder the generator’s abilities. During the optimization
of the Generators, all loss functions are used to update the
parameters of the networks, as both the cyclic and the identity
loss are applied to the generators for better generative results.

The data require minimum preprocessing in order to train
the CycleGAN model. Patches with dimensions 180 by
180 pixels are extracted from each dataset and are directly
inserted to the model. The patches were selected as the ones
where the predictions contained the most failures in detect-
ing a crack, based in a segmentation model trained in this
dataset [8]. A small number of 100 patches with cracks per
dataset is found to be adequate for training the model as
every batch of patches from one domain is combined with
all the examples of the opposite domain within one epoch of
training. 10% of the training data is used for validation pur-
poses. As the CycleGAN topology is symmetric, data from
both domains are required to have an equal number of input
channels. For this reason, the CFD images were converted to
grayscale to match the AGR and Stone data. The generated
grayscale images were later used for evaluating the aug-
mentation improvement of crack detection on the grayscale
version of the dataset. For every dataset, an additional 10%
of patches is generated for augmentation and incorporated to
the training set.

In Fig. 5 some examples of how the trained generator
networks map images between two domains are illustrated.

22056

In these examples, the mapping takes place from the CFD
to the Stone331 domain. It can be seen that the morphology
of the original crack is maintained and transferred, while the
style of the image changes to resemble the grain-like surface
of the stone, similarly to Fig. 6.

FIGURE 5. Examples of the domain transfer between CFD (source) and
Stone331 (target) domain. The input images on the left are mapped to the
images on the right.

C. DATA AUGMENTATION EVALUATION PROCESS

The purpose of the proposed domain transfer for aug-
menting existing datasets is to potentially improve the
predictive capabilities of crack detection models by
creating more training examples of challenging and under-
represented cases. To evaluate the proposed model, we imple-
ment U-Net [28], an image segmentation neural network
that is well-established in the field of visual crack detec-
tion [7] and with many variations developed recently [6], [8].
U-net is an autoencoder neural network, consisting of blocks
of convolutions, non-linear activations and pooling layers.
For the interested reader, more details on the network imple-
mentation and how it is trained for providing pixel-level crack
predictions can be found in [8].

The evaluation is performed by comparing the segmen-
tation results produced by U-Net when applied to the test-
ing set of each dataset between the model trained on the
original training set and the augmented counterpart. For the
augmented test results, an ensemble of the results of two
different U-Net segmentation models is presented; a model
trained on the augmented training set, and a model pre-trained
on real data and trained subsequently for a small number of
epochs on generated data only. This method is selected as
experiments show that both models contribute to detecting
different aspects of cracks.

The evaluation metrics reported on the testing set of each
dataset are the precision, the recall, and the F1 score and are
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defined as:
. TruePositives
Precision = — — 5)
True Positives + False Positives
True Positives
Recall = — - 6)
True Positives + False Negatives
2 x precision * recall
F1 score = @)

precision + recall

Following the same approach as in [7], [22], and [8], we do
not consider false positives that are within a 5-pixel radius
from true positive predictions as errors. In this way, the model
is not penalized for “thick” predictions. We also allow a
radius for not penalizing false negative predictions that are in
the close vicinity of true positive predictions, similarly to [8].
Within this radius, pixels that are false negatives, are treated
as true negatives.

This relaxation is introduced to counter mismatches
present in the label maps of the data, as a result of human bias.
In this way, the reported metrics reflect in a fairer way on the
model’s capability to detect a crack, rather than penalizing a
thinner prediction or errors in ground truth maps.

IV. EXPERIMENTAL RESULTS

The comparative results of the crack detection process
between the U-net model trained on the original data and
the augmented versions of the data using our new training
approach is summarized in Tables 2 — IV for all the respective
datasets. Column “R” corresponds to the different values of
the relaxation radius introduced (as described in Section III)
for false negative predictions and refers to the pixel value of
the radius. Experiments across all different datasets suggest
a clear improvement in crack detection when generated data
are included in the training space of the algorithm. This is
reflected by the recall metric which corresponds to the ratio
of cracks correctly detected.

It is worth mentioning that the precision metric remains
unchanged for different values of R, as the relaxation asso-
ciated with R handles the affected pixels as true negatives,
which does not affect the precision metric, as can be seen in
Equation (5).

In the case of the AGR data, the improvement attributed to
the augmentation is witnessed when a few pixels of relax-
ation radius are deployed. This dataset was not annotated
using specialized tools or human experts; therefore, it benefits
most from the relaxation. For a task like crack detection,
the most important task is not to miss any cracks when they
are present, because of the challenges imposed by the class
imbalance and the scarcity of cracks. Fig. Sc depicts the most
challenging defect example where the original model ignores
the visual crack almost completely. The model trained on
artificial data significantly improves the prediction, setting a
new state-of-the-art standard for this dataset on these highly
diverse images. Furthermore, the augmentation with CFD
improves the precision of the model as well, which can be
seen in Table 2.
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TABLE 2. Crack Detection Results on AGR Dataset.

Original Augmented (CFD)  Augmented (Stone)
(Prec = 0.988) (Prec = 0.993) (Prec = 0.962)

R Rec. F1 Rec. F1 Rec. F1

0 0807 0.888 0.799  0.886 0.807  0.877
1 0.873 0927 0874 0.930 0.876  0.917
2 0910 0948 0919 0.955 0918  0.940
3 0927 0956 0.939  0.965 0940 0.951
4 0936 0961 0950 0971 0951 0.956

TABLE 3. Crack Detection Results on CFD Dataset.

Original Augmented (AGR)  Augmented (Stone)
(Prec = 0.996) (Prec = 0.942) (Prec = 0.990)
R Rec. F1 Rec. F1 Rec. F1
0 0.705 0.825 0.857 0.897 0.798 0.884
1 0845 0915 0.923 0.933 0.906 0.946
2 0.880 0.935 0.941 0.941 0.931 0.960
3 0.896 0943 0.949 0.946 0.942 0.965
4 0907 0.949 0.955 0.948 0.949 0.969
TABLE 4. Crack Detection Results on Stone331 Dataset.
Original Augmented (AGR)  Augmented (CFD)
(Prec =0.979) (Prec = 0.985) (Prec = 0.952)
R Rec. F1 Rec. F1 Rec. F1
0 0.676 0.800 0.692 0.813 0.741 0.833
1 0732 0.837 0.753 0.853 0.793 0.865
2 0743 0.845 0.764  0.860 0.805 0.873
3 0750 0.849 0.770  0.864 0.812  0.876
4 0.756  0.853 0.776  0.868 0.817  0.880

Based on the results presented on Table 3, augmenting
CFD with both the AGR and the Stone331 dataset greatly
improves the crack detection efficiency, reflected on a sig-
nificant increase in the recall metric even when no relax-
ation is applied. The AGR case provides a higher recall
at the cost of precision (evident also in Fig. 5a) while the
Stone331 provides a smaller improvement in recall, almost
without compromising the precision metric; in both cases the
proposed method significantly increases the detection capa-
bilities of the segmentation model. Although the grayscale
version of this dataset is used, the augmented results are on
par with state-of-the-art methods used on the original CFD.
However, a direct comparison with other detection algorithms
would not be fair, as the proposed U-Net model is trained
on different data. The example presented in Fig. 5 clearly
shows that the proposed model detects challenging cases of
low contrast and faint cracks.

Results on Stone331 dataset also depict a clear improve-
ment in crack detection; the respective recall values on
Table 4 for both AGR and CFD augmentation are higher than
that of the original training set. Although augmenting this
dataset with AGR data provides a higher precision as well,
as the CFD results increase the recall by a greater margin,
the F1 score is higher in the case of the CFD augmentation,
even though there is a small decrease in the precision metric.
In both cases, the crack detection rate is superior, and this is
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FIGURE 6. Testing examples between crack detection results obtained from training U-Net with only real data (middle) and the respective
augmented datasets (right). Images correspond to CFD (a), Stone331 (b) and one of the most challenging examples of the AGR dataset (c).

also evident in Fig. 5b where representative improvements in
detecting these defects are presented.

V. CONCLUSION

Structural health inspection monitoring and defect detection
is a field that is suffering from data imbalances when quanti-
fying this problem for learning-based methods while acquir-
ing fully annotated datasets is extremely time consuming.
It would be desirable to tackle these challenges in a manner
that can both generalize across different data modalities and
require minimal manual work. Therefore, in this paper an
approach to this end is presented, by modifying and imple-
menting a well-established generative adversarial network
for a cyclic image-to-image translation to perform domain
transfer in two domains. In this way an augmentation is
achieved on both domains and in the case where an existing
annotation is available for only one dataset, the new generated
data on the other domain can share this annotation, creating an
artificial annotated dataset. Through extensive experiments
conducted in three different test cases, it is shown that the
proposed augmentation framework alleviates the challenges
mentioned above and improves the crack segmentation pro-
cess, providing state-of-the-art results in some cases.

The main contribution of this research lies on the fact
that already annotated datasets are used for the augmentation
process. In this way, through transforming data, as illustrated
in Fig. 5, new examples are generated that maintain the struc-
tural information of the defects. As the binary maps from the
original domains are reusable for the new cases, the additional
data can be used directly as extra training material without
any annotation cost. This is the biggest difference with other
similar approaches, as the generated data can be used directly.
To our best knowledge, this is the first time GAN-based data
augmentation is exploited for structural crack segmentation,
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and the generated images are already annotated. The evalu-
ation of the augmented data shows that indeed the proposed
framework improves the segmentation performance.

As one specific segmentation neural network is deployed
to test the effectiveness of the proposed augmentation frame-
work, in future work it could be beneficial to further investi-
gate how the GAN topology is associated with the detection
results of other segmentation algorithms. In this way a com-
parison between U-Net and other state-of-the-art methods
could further cement the proposed model’s effectiveness. It is
outside the scope of this research paper to deploy differ-
ent detection models, as our main aim is to establish the
framework for generating the images using CycleGAN, and
compare the detection results with and without the augmen-
tation data. Comparing with other approaches is not feasible,
as performance on the augmented data would be compared
against other algorithms on the original data. In this paper,
U-Net model was selected for its wide success in many
image segmentation methods [28], with crack detection being
one of them [7], [8]. In all the experiments, including the
original datasets, the precision was very high, which can be
attributed to the nature of this challenge and the inherent class
imbalance. The purpose of the augmentation was to improve
the crack detection rate, and this is achieved in all the cases,
resulting both in higher recall metrics reported, and in many
cases an overall better F1 and precision score.
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