IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 21 December 2022, accepted 13 February 2023, date of publication 3 March 2023, date of current version 8 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3252002

== RESEARCH ARTICLE

Casper: Accelerating Stencil Computations
Using Near-Cache Processing

ALAIN DENZLER™, GERALDO F. OLIVEIRA ™, NASTARAN HAJINAZAR, RAHUL BERA,

GAGANDEEP SINGH“, JUAN GOMEZ-LUNA“, (Member, IEEE),
AND ONUR MUTLU, (Fellow, IEEE)

Department of Information Technology and Electrical Engineering (D-ITET), ETH Ziirich, 8092 Ziirich, Switzerland

Corresponding author: Juan G6mez-Luna (juang @ethz.ch)

ABSTRACT Stencil computations are commonly used in a wide variety of scientific applications, ranging
from large-scale weather prediction to solving partial differential equations. Stencil computations are char-
acterized by three properties: 1) low arithmetic intensity, 2) limited temporal data reuse, and 3) regular and
predictable data access pattern. As a result, stencil computations are typically bandwidth-bound workloads,
which experience only limited benefits from the deep cache hierarchy of modern CPUs. In this work,
we propose Casper, a near-cache accelerator consisting of specialized stencil computation units connected
to the last-level cache (LLC) of a traditional CPU. Casper is based on two key ideas: 1) avoiding the
cost of moving rarely reused data throughout the cache hierarchy, and 2) exploiting the regularity of the
data accesses and the inherent parallelism of stencil computations to increase overall performance. With
small changes in LLC address decoding logic and data placement, Casper performs stencil computations
at the peak LLC bandwidth. We show that by tightly coupling lightweight stencil computation units near
LLC, Casper improves performance of stencil kernels by 1.65x on average (up to 4.16x) compared to a
commercial high-performance multi-core processor, while reducing system energy consumption by 35% on
average (up to 65%). Casper provides 37x (up to 190x) improvement in performance-per-area compared
to a state-of-the-art GPU.

INDEX TERMS Stencil computation, near-cache processing, processing-in-memory, near-data processing,
memory systems, caches.

I. INTRODUCTION 90% and 60% of the overall runtime in a computational fluid

A stencil operation [1] defines a computation pattern where
elements in a multidimensional grid are updated based on
the values of a fixed pattern of neighboring points. Com-
putations using stencil operations (called stencil computa-
tions) are a key building block of important high-performance
computing (HPC) applications [2] and are used in a wide
range of workloads including climate modeling [3], seismic
imaging [4], fluid dynamics [5], and electromagnetic simula-
tions [6]. Stencil computations encompass a large percentage
of the overall runtime of such applications [7], [8], [9], [10],
and [11]. For example, stencil computations represent over

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Nitin

dynamics solver [11] and the COSMO climate simulation
model [10], [12], respectively. Consequently, a large body of
research [1], [3], [9], [13], [14], [15], [16], [17], [18], [19],
(201, [21], [22], [23], [24], [25], [26], [27], [28], [29], [301,
[311, [32], [33], [34], [35], [36], [37], [38] highlights the need
for highly efficient stencil computations. However, the cur-
rent compute-centric processing systems, such as multi-core
CPUs and GPUs, fail to fully utilize their on-chip resources
(e.g., deep cache hierarchy, high throughput floating-point
engines) when computing stencil operations [14], [33]. This
results in low performance and low energy efficiency for sten-
cil computations in current systems. In this work, we show
that a careful domain-specific hardware/software co-design
can improve the performance and energy efficiency of

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

22136

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0009-0007-5443-1841
https://orcid.org/0000-0003-1557-4819
https://orcid.org/0000-0002-3502-7401
https://orcid.org/0000-0002-6514-1571
https://orcid.org/0000-0001-5686-1131

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

IEEE Access

Peak = 537.6 GFLOPS

102

X Gaussian Blur
)g X 7-point 1D
\:5 33-point 3D/ Heat 3D

Jacobi 2D
Jacobi 1

Performance [GFLOPS]

T T T T T
0.1 1 10
Arithmetic Intensity [FLOP/Byte]

FIGURE 1. Roofline plot for a multi-core system [40], [41] running six
stencil kernels.

stencil computations, at a much lower overhead than existing
general-purpose solutions.

A. WHY A STENCIL ACCELERATOR?

Figure 1 shows the roofline plot [39] of important sten-
cil kernels on a server-class CPU (a 16-core Intel Xeon
CPU [40], [41]). The horizontal line is the peak floating-point
performance of the system. The stencil kernels are multi-
threaded and vectorized, and operate on double-precision
floating-point values. The DRAM and L3 lines show the
peak main memory and last-level cache (LLC) bandwidth,
respectively. We make two observations. First, the stencil ker-
nels are not compute bound, having low arithmetic intensity
ranging from 0.09 FLOP/B to 0.2 FLOP/B. Second, all the
kernels are bounded by memory resources, i.e., located on
the left side of the inflection point and below the memory
lines. More precisely, all the kernels are located below the
L3 line and above the DRAM line, which shows that the
stencils are bound by the LLC bandwidth rather than the main
memory bandwidth. Given these observations, we conclude
that the high number of LLC accesses is the main bottleneck
for stencil computations, which causes such computations to
experience only limited benefits from the deep cache hierar-
chies in modern CPU architectures.

Prior works [42], [43], [44], [45] also show that stencil
kernels are bottlenecked by memory due to their low arith-
metic intensity, leading to under-utilization of computational
resources in compute-centric platforms (e.g., CPU and GPU).
These prior works demonstrate that stencil kernels can lever-
age only 21.8% [42], 46% [46], 34% [46], and 46% [43] of
the computational resources of a multi-core CPU, a 2-socket
server-grade CPU, a 4-socket CPU, and a GPU, respec-
tively, even in presence of code optimizations (e.g., temporal
blocking). These percentages are inline with Figure 1, where
all tested stencils achieve less than 20% of the peak perfor-
mance (537.6 GFLOPS). Therefore, existing general-purpose
processors cannot deliver high performance and high energy
efficiency for stencil computations, thus opening up the space
for custom stencil-based accelerators [1], [13], [14], [15],
(161, [18], [20], [26], [27], [28], [29], [30], [31], [32], [32],
[33], [34], [35], [36], [37], [38], [47].

VOLUME 11, 2023

Processing-in-Memory (PIM) is a promising paradigm for
accelerating memory-bandwidth-bound workloads, which
have low arithmetic intensity [34], [48], [49], [50], [51], [52],
[53], [54], [55], [56], [57], [58]. The key idea of the PIM
paradigm is to move computation close to or even into the
memory devices where the data resides (i.e., caches [48],
[59], [60], [61], [62], [63], [64], [65], DRAM [33], [34],
(491, [501, [511, [521, [53], [54], [55], [561, [57], [58], [66],
(671, [68], [69], [701, [71], [72], [73], [74], [75], [76], [77],
(781, [79], [801, [81], [82], [83], [84], [85], [86], [87], [88],
[891, [90], [91], [92], [93], [94], [95], [961, [97], [98], [99],
[100], [101], [102], [103], [104], [105], [106], [107], [108],
storage [109], [110], [111], [112], [113], [114], [115], [116],
[117]), eliminating the need to move the data to the proces-
sor and resulting in higher performance and lower energy
consumption. Stencil computations are a prime candidate
for acceleration using the PIM paradigm. In this work,
we explore the opportunity to improve the performance
and energy efficiency of stencil computations in traditional
multi-core CPUs using computation near the LLC.

B. WHY NEAR LLC?

We exploit LLC as the prime location for computation,
as opposed to offloading the computation to the off-chip
main memory [30], [31], [33], [34], [37] or higher levels of
caches (e.g., L2 [61]) for three main reasons. First, the per-
thread datasets for stencil kernels in widely-deployed scien-
tific applications are typically tiled to fit inside the LLC of
traditional workstation-class CPUs [3], [118]. Hence, placing
computation near LLC minimizes unnecessary data trans-
fers between main memory and caches and cores. Second,
the on-chip LLC bandwidth is multi-fold (e.g., about 10x
in Intel Xeon [41]) higher than the traditional DDR-based
DRAM main memory bandwidth. Third, though computing
in higher-level caches (e.g., L2) can theoretically provide
higher bandwidth, the additional data transfers required by
cache management protocols (e.g., back invalidations, write
backs, etc.) reduces the effective bandwidth significantly.
Moreover, bringing data with low reuse (common in stencil
computation data) to the higher-level caches results in major
energy waste that can be alleviated by keeping such data in
lower-level caches and performing the computation there.

Our goal in this paper is to design a near-LLC accel-
erator that improves the performance and energy efficiency
of stencil computations by minimizing the unnecessary data
movement between the memory and CPU, and within the
cache hierarchy.

To this end, we propose Casper, a novel hardware/software
codesign specifically targeted at stencil computations.
We minimize data movement by placing a set of stencil
processing units (SPUs) near the LLC of a traditional CPU
architecture. Casper provides novel mechanisms to incor-
porate data mapping changes and support unaligned loads
needed for high-performance stencil computations. Compu-
tation is mapped to SPUs in such a way that each stencil

22137

IEEE Access

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

processing unit (SPU) operates on the data that is located in
the closest LLC slice. This reduces the overall data access
latency and energy consumption while matching the compute
performance to the peak bandwidth of the LLC.

Placing a stencil accelerator next to the LLC of a CPU
introduces two key challenges. The first challenge is to maxi-
mize LLC bandwidth utilization. To address this challenge,
Casper leverages the notion of streams [36], [119], [120],
[121], [122] to expose the memory level parallelism that
exists in the stencil computation to the SPUs. Each stream
represents a set of consecutive memory accesses with a fixed
stride. The notion of streams enables Casper to maximize
memory bandwidth utilization without requiring complex
structures (e.g., those that exist in high-performance cores to
perform dynamic instruction scheduling [123], [124], [125]).

The second challenge is to minimize the data movement
between different cache slices. In stencil computations, the
neighboring grid points need to be accessed to compute
the stencil operation for each grid point. However, current
systems employ an address mapping scheme that distributes
data over different LLC slices and provides load balance and
fairness across CPU cores [126]. Such a mapping scheme
can potentially map neighboring grid points to different LLC
slices, introducing data transfers over the network-on-chip
(NoC) and thereby eliminating the benefits of near-cache
computing. To address this challenge, Casper uses a new hash
function to align the data mapping to the grid structure of the
stencil computation and place neighboring grid points in the
same slice of the LLC.

We evaluate Casper using six widely used stencil ker-
nels with up-to 3-dimensional grid domains. Casper outper-
forms a commercial multi-core CPU, on average, by 1.65x
(up to 4.16x) and reduces the energy consumption
by 35% (up to 65%). Compared to a state-of-the-art GPU,
Casper improves performance-per-area, on average, by 37x
(up to 190x).

We make the following key contributions:

o We propose Casper, the first near-cache accelerator for
stencil computations. Casper addresses the memory bot-
tleneck in stencil computations by (1) eliminating the
need to move data to the processing core for compu-
tation, (2) minimizing the data movement within the
cache hierarchy, and (3) maximizing the utilization of
the LLC bandwidth. Casper achieves this with an area
overhead of less than 1% for 16 SPUs in a Marvell
ThunderX 2 [127], a server-class ARM CPU.

o We present a memory-centric execution model that max-
imizes the LLC bandwidth utilization by exposing the
memory level parallelism that exists in the stencil com-
putation to the near-cache accelerators.

« We provide hardware support to minimize data move-
ment between different cache slices using a new map-
ping scheme that improves spatial locality for stencil
data.

o« We evaluate the effectiveness of Casper using six
widely used stencil kernels and demonstrate that Casper

22138

outperforms a commercial multi-core CPU, on average,
by 1.65x (up to 4.16x) and reduces the energy con-
sumption by 35% (up to 65%). Compared to a state-
of-the-art GPU, Casper improves performance-per-area,
on average, by 37x (up to 190x).

Il. BACKGROUND

A. STENCIL COMPUTATIONS

Stencil computations [1] update the points in a data grid based
on a fixed pattern of neighboring points. This fixed pattern,
called the stencil, is applied on the complete grid iteratively
until either a convergence criterion or a fixed number of steps
are reached. Stencil computations are widespread in scientific
computing, and are considered one of the thirteen dwarfs of
scientific computing [2].

Stencil computations exhibit several common properties.
We explain these properties using a Jacobi stencil [128] that
is commonly used to solve discretized partial differential
equations, as an example. Figure 2 shows the source code
and data access pattern of a 2-dimensional Jacobi stencil.
The computation performs arithmetic mean of each point in
the grid and its immediate neighbors in all directions. This
implementation uses three nested loops where the outermost
loop iterates over time steps and the two inner loops sweep
over the complete 2D grid. From this example, we can iden-
tify four common properties of stencil computations. First,
the computation is embarrassingly parallel because the read
and write data sets are disjoint. Second, the computation
is regular and statically analyzable. The data dependencies
and the structure of the computation can be analyzed ahead-
of-time and do not depend on a dynamic input. Third, the
arithmetic intensity of the stencil is low. Fourth, only a few
types of operations are needed to compute the stencil. For
example, in case of Jacobi stencil, only a floating-point
multiply-accumulate (MAC) operation is performed for each
input grid point (e.g., multiply A[] [] by 0.2 and accumu-
late) when computing an output grid point (B[] []). These
properties make stencil computations a suitable candidate
for high-performance acceleration (due to the highly-parallel
and regular computation) while making them a natural fit for
near-memory acceleration (due to the low arithmetic intensity
and relying on only few types of operations).

for (int t = 0; t < T; t++) {
for (int i = 1; i < N-1; i++) {
for (int j = 1; j < N-1; j++) {
B[i][j] = 0.2 * (A[i][]] I
+ A[i] [J-1]
+ A[i] [j+1] I
+ A[i-1][3]
+ A[i+1]1([31); I I I
}
) I I
// swap pointers
temp = A; A = B; B = temp;
}

FIGURE 2. 2D Jacobi stencil pseudo-code and data access pattern.

VOLUME 11, 2023

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

IEEE Access

B. MEMORY-CENTRIC ARCHITECTURES: OVERVIEW AND
LIMITATIONS

Processing-in-Memory (PIM) architectures (e.g., [33], [34],
(48], [49], [50], [51], [52], [53], [541, [551, [561, [57], [58],
[591, [601, [61], [62], [63], [64], [66], [67], [68], [69], [70],
(711, [721, [73], [741, [75], [761, [771, [78], [79], [80], [81],
[82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [921],
[93], [94], [95], [96], [97], [98], [99], [100], [101], [103],
[104], [109], [110], [111], [112], [113], [114], [115], [116],
[117], [129], [130], [131], [132]) attempt to address the
memory bottleneck issue by performing computation in prox-
imity to the memory and thereby reducing the overheads
of data movement in the system. There are two approaches
to PIM [52]: (1) processing-using-memory (PuM), which
performs computation inside the memory array itself, using
the analog operational properties of the memory cells [33],
[34], [48], [49], [511, [52], [53], [54], [55], [56], [57], [58],
[59], [60], [61], [62], [63], [64], [68], [71], [74], [79], [81],
[82], [83], [86], [87], [88], [89], [90], [91], [92], [93], [94],
[97],[98],[99],[100], [101], [103], [104], [105],[106], [107],
[109], [110], [111], [112], [113], [114], [115], [116], [117],
[129], [130], [131], [133], [134], [135]; and (2) processing-
near-memory (PnM), which employs compute elements close
to the memory arrays, for example on the logic layer of a 3D-
stacked DRAM device [50], [66], [67], [69], [70], [72], [73],
[75], [76], [77], [78], [801, [841, [85], [95], [96], [102], [136],
[137], [138], [139], [140], [141], [142], [143], [144], [145],
[146], [147], [148], [149], [150], [151], [152], [153].

The PuM proposals, either in DRAM [49], [71], [74], [81],
[98], [99], [100], [105], [106], [107], [130], [133], [134],
[135] or SRAM [48], [59], [60], [149], perform bulk bit-
wise and arithmetic (e.g., addition, multiplication, reduction)
operations. Even though these works benefit from the large
internal bandwidth provided by the memory device (DRAM
or SRAM), they require the application to follow a rigid
data layout and data mapping scheme to align the operands
correctly within the memory arrays. Such data layout and
alignment management are not straightforward and remain an
open research problem. In contrast, our work introduces hard-
ware and software optimizations to efficiently orchestrate the
data movement or handle unaligned operands.

PnM proposals span a wide range of applications, such
as neural networks [64], [70], [101], [108], databases [102],
[103], [148], mobile workloads [75], bioinformatics [67],
[154], image processing [104], and graph processing [61],
[66], [69], [153]. PIMS [34] proposes a PnM approach (in
the logic layer of Hybrid Memory Cube (HMC) [155]) to
accelerate stencil operations. The proposed solution lever-
ages the computational capabilities that are already present
in an HMC device! to execute the addition operation that
is commonly used in stencil computations. Despite the per-
formance improvement compared to a CPU-centric model,
PIMS suffers from two important shortcomings. First, prior

— —_———

IThe HMC specification [155] defines a series of 8 to 16-byte atomic
operations that can be executed directly within the memory device.

VOLUME 11, 2023

works [156], [157] show that the atomic operations provided
by the HMC device can only exploit a small fraction of the
total internal memory bandwidth, creating a bottleneck for
the bandwidth-hungry stencil computations. Second, due to
the limited area and power budget available inside the logic
layer of HMC, PIMS only supports the addition operation and
continues to rely on the host processor to execute other more
complicated operations such as multiplication. Therefore,
PIMS still incurs a high memory traffic between the host and
the memory device to compute a single stencil operation.

To our knowledge, Casper is the first work to tightly inte-
grate specialized compute units into the LL.C of a traditional
CPU to accelerate stencil computations. In contrast to prior
works, Casper accounts for the fundamental properties of
stencil computations, such as data access pattern, aiming to
provide a hardware/software co-design that can fully exploit
the high memory bandwidth provided by the cache, while
efficiently orchestrating the data movement required to exe-
cute the stencil operation.

Ill. Casper: OVERALL ARCHITECTURE

We propose Casper, a novel near-cache accelerator,
to improve the performance and energy efficiency of sten-
cil computations. This section introduces the high-level
overview of our architecture (Section III-A), the execution
model of Casper (Section III-B), and stencil processing unit
(Section III-C).

A. OVERVIEW

Casper is a near-cache accelerator that leverages a memory-
centric execution model and hardware support to accelerate
stencil operations. A typical shared last-level cache (LLC) is
partitioned into multiple cache slices, connected through the
network on chip (NoC). Casper’s hardware is composed of a
set of stencil processing units (SPUs), placed in each cache
slice of the LLC. In addition to accessing the local cache slice,
each SPU can load data from remote LLC slices through the
NoC. Similar to a regular LLC, SPUs can load data from other
levels of the cache hierarchy into the LLC.

Computing at the LLC’s peak throughput is only possible
when each SPU in the system loads data from its local LLC
slice, thus avoiding overheads related to NoC traffic. How-
ever, the existing mapping of memory addresses to the LLC
slices does not guarantee mapping consecutive cache lines
to the same slice. In fact, while mapping scheme informa-
tion remains undisclosed, prior work shows that consecutive
cache lines are usually mapped to different LLC slices in
order to provide fairness and load balancing across CPU
cores [158]. Due to the streaming nature of stencil com-
putations and the dependency on a small group of neigh-
boring grid points, scattering data through the cache slices
would increase the number of remote data requests made by
each SPU, penalizing performance and energy consumption.
To address this issue, Casper maps blocks of consecutive
memory addresses to the same LLC slice. To this end,
we introduce hardware support for a stencil segment i.e., a

22139

IEEE Access

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

contiguous region of physical memory that contains the data
set of the stencil kernel. Casper customizes the mapping of
memory addresses to LLC slices for the stencil segment in
order to optimize data locality when computing stencils. Data
mapped outside the stencil segment follows the conventional
address mapping scheme.

B. EXECUTION MODEL

At a high-level, each SPU performs the stencil operation on
each grid point sequentially. The points are accessed in row-
major order, following their layout in memory. For each grid
point, the SPU loads the input data from LLC. Once the data
arrives at the SPU, the SPU’s execution unit performs a single
multiply operation with a predefined constant, whose output
is added to the accumulator. The final result is stored in the
results array after all computations for the grid point have
been performed. Then, the SPU proceeds to calculate the next
grid point.

To accelerate this process, Casper abstracts data movement
through a series of stream operations, which enable feeding
data to the executing units at a high throughput. A stream
is a sequence of data elements of the same type located in
consecutive physical memory addresses. Each stream is char-
acterized by a start address, data type width, a number of ele-
ments, and a position pointer. When iterating over a stream,
initially, a position pointer indicates the start of a stream.
Upon receiving a control signal, this pointer is incremented
to point to the stream’s next element. The stream can then
be advanced until the final element in the stream is reached.
The stream abstraction facilitates iterating over stencil data
by simply incrementing the position pointer, as opposed to
loading each data element using absolute memory addresses.
Since a stencil computation moves through the entire grid
at the same pace, maintaining the same relative offsets for
the stencil pattern, it is naturally possible to use streams to
abstract such an access pattern. Accordingly, all the streams
can be advanced at the same pace, marshaled by the SPU
moving through the grid.

@ Stream @ cConstant
Buffer Buffer
Y
o 5| [@)
Instruction g Load Execution
Buffer 8 Queue Unit LLC
LLC NoC

+—————————— 512 bits {

[op8 [op7 | opé | op5 | op4 | op3 | op2 | opl |

SEsbEoot

I out8 I out?7 I outb I out5 I out4 I out3 I out2 I outl I

Constant

31un 403297

FIGURE 3. Components of one SPU.

22140

C. STENCIL PROCESSING UNIT

Figure 3 shows the architecture of a SPU. The main building
blocks of an SPU are @ the instruction buffer, @ the load
queue, O the stream buffer, @ the constant buffer, and @ the
execution unit. The complete SPU is pipelined to maintain
single-cycle instruction throughput. The SPU controls the
complete computation, from instruction fetch until retire.
Therefore, it does not require any interaction with the CPU.

1) INSTRUCTION BUFFER

The instruction buffer has a capacity to hold 64 compressed
instructions to compute a stencil. Every instruction encodes
the operands and the control signals necessary for one type
of stencil operation. The same sequence of instructions is
applied to every stencil grid point due to the regular nature
of the stencil computation. We introduce the instruction set
used in Casper in Section V.

2) LOAD QUEUE

The load queue is responsible for issuing data requests to
the memory subsystem. While the SPU processes instructions
in-order, the varying memory access latency of the memory
subsystem can result in responses that arrive out-of-order. The
load queue acts as a buffer to hold the data until all the pre-
vious longer-latency memory requests have been completed.
This buffer space ensures that the correct instruction order
is maintained. The load queue is sized to hide the latency of
accessing the LLC’s local slice because as it is the preferred
location for fetching the data.

3) STREAM AND CONSTANT BUFFERS

The stream buffer holds the current state of the streams. For
every decoded instruction, this state is loaded from the stream
buffer, and the effective address is calculated to issue the
memory requests to the LLC. The constant buffer holds the
constant factors needed for the MAC operation. The stream
and constant buffers are initialized by API calls (Section V-B)
before the SPU starts the stencil computation.

4) EXECUTION UNIT

As shown in Figure 3, the execution unit of a SPU is com-
prised of a 512-bit vector unit which operates on vectors of
8 double-precision floating-point elements.

For every input grid point, the SPU loads the data elements
from the neighboring points, multiplies them with a constant
factor, and accumulates the results. This final accumulated
result is then stored in the output grid point. Therefore, each
SPU execution unit only computes one kind of instruction: a
double-precision floating-point MAC operation.

IV. Casper: MICRO-ARCHITECTURAL SUPPORT

The design and implementation of Casper require us to solve
several key system integration challenges, as we discuss in
this section. First, the SPUs access frequently data from two
cache lines. We introduce two simple changes to the LLC row

VOLUME 11, 2023

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

IEEE Access

decoder for efficient access (Section IV-A). Second, the cache
lines accessed by an SPU should preferably reside in the same
LLC slice. We introduce lightweight remapping to ensure
that contiguous blocks of stencil data map to the same LLC
slice (Section IV-B). Third, Casper should be compatible
with existing cache coherency mechanisms (Section IV-C).
Fourth, Casper should be able to concurrently run with other
CPU processes (Section IV-D).

A. SUPPORTING UNALIGNED LOADS

While the stream abstraction offers efficient memory
accesses for SPUs, the LLC architecture only supports data
accesses that are aligned to the 64 B cache line boundaries.
As the relative offsets used in streams are not necessarily
aligned to cache line boundary, the loaded data might need
to be realigned before it can be used by MAC compute. For
example, in Figure 4 each SPU computes eight 64-bit output
grid points (B [i]) for a 3-point Jacobi-1D stencil. The access
to the center point of the stencil A[1] is correctly aligned to
the 64 B boundary of the cache line (shaded in yellow) such
that the data for this point can be used for computation as soon
as it arrives at the SPU. However, to gather several input grid
points at indices +3 (A[i+3])and —3 (A[1-3]), the data
coming from the cache needs to be correctly shifted (shaded
in orange and red), and two cache lines need to be combined
to assemble the operands for the computation. As a result,
preparing the operand for the MAC unit involves two loads,
one shift, and one combine operation on the data from the two
cache lines. These additional operations to resolve unaligned
data accesses lead to two main inefficiencies: (1) underuti-
lization of MAC units, and (2) cache bandwidth overhead.
The reason is that the number of load/store operations per
MAC operation increases. For example, the sequential code
shown at the top of Figure 4 needs 4 load/store operations
per 3 MAC. However, the vectorized execution of this stencil
(bottom part of Figure 4) would need 6 load/store operations
per 3MAC,i.e., two cache line loadsforA[5] toA[12], 0one
cache line load for A[8] to A[15], two cache line loads for
A[11] toA[19], and one cache line store for the elements
of B.

a vectorized execution of the stencil:
for (int i = 3; i < N-3; i++) {
B[i] = 0.2 * A[i-3] + 0.2 * A[i] + 0.2 * A[i+3]
}
using the data layout:
A[i] =10 8

leads to memory accesses:

B[8..16] = 0.2*A[|5 12]]

Not aligned to
cache line
boundaries

+ 0.2*A[|8 1511

]

+ 0.2*A[[11

FIGURE 4. Unaligned loads occurring during the vectorized execution of a
stencil.

To address the above challenges, we introduce two simple
modifications to the LLC row decoding logic to (1) support

VOLUME 11, 2023

loading data aligned to any 8 B boundary, and (2) correctly
align data for SPU execution. These two modifications allow
us to load values from two adjacent cache lines (e.g., values
A[5] to A[12] in Figure 4) in one access. Our modified
LLC row decoding logic reduces SPU’s complexity and area
footprint by avoiding the need to add a large register file
and/or extra logic for shifting and packing the partial cache
lines inside the SPU.

1) IMPLEMENTATION CHALLENGES

Loading data aligned to 8 B boundaries can potentially result
in loading data located on two cache lines. This introduces
two key challenges. First, two tags need to be matched to
locate the two cache lines in one access (i.e., using one
address). Second, the correct data from each of the two cache
lines must be loaded using only one provided address.

To address the first challenge, we enable the cache to match
two tags in parallel by adding a second read port to the tag
array. Since the two cache lines involved in an unaligned load
are always at consecutive addresses (e.g., values A[5] to
A[12] in Figure 4), they are guaranteed to be mapped to
different cache sets, and thus, there are no conflicts during
the tag matching process. If at least one cache line is not in
a readable state, a regular cache miss is generated, and the
request is stalled until the miss resolves.

To address the second challenge, we make changes into
the LLC row decoding logic to load data either from the
requested address or one of the cache lines located inside
the 64B-vicinity of the requested address. More specifically,
we add one 3-to-1 multiplexer for each LLC SRAM row. The
inputs to the multiplexer are set to the row decoder output of
the current row and both the adjacent rows. The multiplexer
selects the appropriate row(s) based on the row selection
signal.

We explain next the solutions to both challenges.

2) LOADING SHIFTED CACHE LINES

Figure 5 shows the execution sequence of an unaligned access
to the LLC. In this example, we consider the request to the
cache line holding elements 8 to 15, shifted to the right by
three positions. This corresponds to the access to input grid
points A[i-3] in Figure 4 (i.e., values A[5] to A[12]).
First, we consider the case where the two cache lines involved
in the access are mapped to the same cache way. One cache
way consists of 4x32kB data arrays, each having 2x16kB
subarrays. One 16 kB subarray holds 64 consecutive bits of a
cache line for all the 2048 sets. Thus, each 64-bit segment of
acache line is stored in a different SRAM subarray. As shown
in Figure 5, all the elements required to build the requested
64 B block of data are stored in different subarrays of a single
cache way (orange and green elements on the left part of
the figure). Therefore, by selecting the correct data at the
subarray level (using shift direction shdr and amount shamt)
it is possible to load all the elements using only one com-
mand, while maintaining the same throughput as a regularly
aligned load (any extra latency is negligible, since there are no

22141

IEEE Access

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

conflicts during the matching of the two tags, and pipelined
accesses hide it). To complete the unaligned access, we need
to rotate the data such that the correct element is at the first
position of the 64 B block of response data. To accomplish
this, we use a rotate network that performs this operation
before the final output. This approach provides the SPUs
with the ability to load data that is aligned to arbitrary 8B
boundaries from the LL.C.

If the two cache lines involved in an unaligned load are
mapped to different ways, the load sequence is similar. As the
data and tag access happen in parallel inside the cache, the
data load is initiated on all cache ways before the way hit has
been confirmed. Thus for any access, all the ways present
the data for the requested set on their output bus. Based
on the way hit, the data from the correct way is selected
for the output. We modify the way hit selection to select
each subarray’s output independently, depending on the shift
amount and direction that is provided with the request.

cache line

holding elements 0 to 7

08 05
09 06
10 07
address: 0x8 1" 08

shift amount: 3 —>»> > Rotate [~

DS Ny 16kB >seu
shift direction: Right 12 ol 12 09
= [T " TekBT T
05 subarray 05 10
06 sk 06 1
07 data array 07 12

FIGURE 5. Loading unaligned data from the LLC. The two cache lines
involved in the access are mapped to the same cache way. One cache way
consists of 4x32kB data arrays, each having 2 x 16kB subarrays.

3) ROW DECODING

Locally at each SRAM array, the shift amount and the direc-
tion are used to determine whether to load the data from the
requested address or one of the two rows immediately adja-
cent to it. To this end, we include a local selection signal that
reroutes the row selection signal to the correct row. Figure 6
shows the layout of the added logic for local selection signal
which consists of one 3:1 multiplexer for each SRAM row.
The inputs to each multiplexer are the row decoder output
for the current row and the signals for both of the adjacent
rows. The multiplexer then selects which input to forward.
If the subarray needs to select elements from the cache lines
specified in the request’s address, the multiplexer forwards
the middle signal (the row activation does not change). If the
element from the adjacent cache line should be loaded, the
output depends on the shift direction. If the shift direction is to
the right (left), the row at index —1 (41) should be activated.
This shifts the row selection signal by one position in the
requested direction, and loads data stored on the adjacent
cache line. We include logic at the edge of each subarray to
compute the select signal for the multiplexers based on the

22142

shift direction, shift amount, and the subarray ID (i.e., the
position of the bits stored in this subarray within a complete
cache line). All the multiplexers for one SRAM subarray are
controlled using the same select signal.

N
|

j_

—
L

FIGURE 6. Additional logic added between the row decoder and the
SRAM array. All the multiplexers receive the same select signal.

Row Decoder SRAM

N /N /

B. LLC DATA MAPPING

Sliced LLCs employ address mapping schemes that aim to
provide load balance and fairness across CPU cores. These
mapping schemes use hash-functions that are not disclosed by
CPU vendors [158], but are shown to map consecutive cache
lines to different LLC slices. This is a challenge for Casper,
since the performance of the SPU can only be maximized
if the SPU mainly accesses data stored on the local LLC
slice. The computation for one data point depends on input
data from its neighboring grid points which as consecutive
cache lines can be mapped to different LLC slices. This leads
to significant data transfers over the NoC, thus reducing the
benefits of near-cache computing.

To address this challenge and enable maximum perfor-
mance for each SPU, we introduce a mechanism to adapt
the mapping of data to LLC slices to the needs of stencil
computation. The new data mapping scheme maps blocks of
consecutive memory addresses to the same slice, allowing
neighboring grid points to be stored in the same slice of
the LLC. Thus, remote slice accesses are reduced to only
accesses to points that lie on the other side of the boundaries
between the blocks.

We enable remapping of the data used for the stencil
computation without affecting the mapping for other system
data by introducing a stencil segment. Following the proposal
by [159], a physically contiguous block of memory is used
by the system to hold stencil data. Casper ensures that the
physically contiguous blocks of data in the stencil segment
are mapped to the same LLC slice. At each NoC injection
point, the system checks whether or not the address is part of
the stencil segment. In case the address belongs to a stencil
segment a new hash function is applied to issue a stencil
segment memory request to the LLC. Otherwise, the conven-
tional hash function is applied. By deciding which mapping
function to use based on a memory request’s physical address,
each address is mapped to exactly one cache slice, regardless
of whether or not it contains stencil data.

Sizing blocks to map stencil data to the LLC comes
with a trade-off. Smaller blocks introduce more remote slice

VOLUME 11, 2023

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

IEEE Access

accesses for multidimensional grids, which hurts perfor-
mance. The boundary elements are all located on separate
cache lines, and cannot be loaded using the unaligned load
mechanism as the affected cache lines are stored on separate
LLC slices. On the other hand, smaller blocks allow partition-
ing physically contiguous arrays across these blocks and thus
distributing the data evenly to cache slices. Therefore, data
for the same grid points from different source arrays can map
to the same slice. This mapping scheme improves locality
for multi-source stencils at the expense of more remote slice
accesses on the blocks’ boundary. For example, in a 16 core
system, data aligned to a 2MB boundary is mapped to the
same slice, and the system can consume data from up to
16 arrays for one grid point from the local slice. In this work,
we design the hash function to map stencil data as a linear
hash that statically maps contiguous blocks of 128kB to LLC
slices in round-robin fashion.’

C. COHERENCE SUPPORT

An SPU loads data from the LLC by directly injecting a
load/store request in the LLC controller’s request queues.
Casper does not impact the current cache coherency mech-
anism, as requests from the SPU are injected into the same
request queues as conventional requests from the CPU cores
and the private caches. If a write request from an SPU targets
a cache line that is not in writable state in the LLC, the
coherency mechanism will trigger necessary state transitions
and invalidations to allow the write to complete.

D. CONCURRENT EXECUTION WITH CPU AND CONTEXT
SWITCHING

To enable concurrent execution with the CPU, we reserve
one way of the LLC for other applications running in the
CPU, similar to prior work [48]. Additionally, high priority
is assigned to the SPU process to minimize the occurrence
of context switches. If a context switch happens, the state of
the SPU remains unchanged as it is not allowed to start a new
stencil computation before the current computation finishes.

V. Casper: PROGRAMMING MODEL SUPPORT
A. CasperiSA
Casper makes use of specialized instructions to compute each
point involved in the stencil operation. Figure 7 shows the
layout of a Casper instruction. Every Casper instruction is
15-bits wide and comprises of (1) 4b constant buffer index,
(2) 4b stream buffer index, (3) 1b shift direction, (4) 3b shift
amount, and (5) 3b control bits. 15-bits instructions lead to
a compact stencil code in Casper.®> Note that Casper reuses
the instructions for all the grid points, thus reducing the
instruction count.

After decoding a new instruction, the SPU uses the
4-bits present in the constant field to index the constant buffer

2128kB blocks provide a good tradeoff across our evaluated stencils.
We leave the design of a configurable hash function for future work.
3Common complex stencils have input sizes in the order of 30-40 points.

VOLUME 11, 2023

4 4 | | s |
Constant Stream Shift Direction
iShift Amount
Clear Accumulator

{Enable Output
iAdvance Stream

FIGURE 7. Instruction layout for stencil computation.

(a small SRAM buffer), loading the requested double-
precision constant value that is used by the execution unit
during the computation. The SPU uses the 4-bits in the
stream field to index the stream buffer and find the memory
address of the requested stream. The shift direction and the
shift amount fields are used to assemble the correct memory
address that point to the appropriate data. The final 3 bits are
control bits clear accumulator, enable output, and advance
stream that are used to reset the accumulators in the execution
unit, enable the contents of the accumulator to be stored
into the results array, and to advance the stream pointers,
respectively.

We also provide a programming library that allows the
user to easily generate Casper instructions from user-level
code. The generated instructions to execute a given stencil
computation are then stored in a contiguous array that holds
all the stencil instructions. This array is then stored in the
instruction buffer of all the SPUs. In this paper, we statically
analyze stencil operations and generate the appropriate set
of Casper instructions using our library. However, this step
could be fully automated by a compiler due to stencil opera-
tions’ regular nature.

B. CasperAPI

Table 1 shows Casper API functions. Calls to API func-
tions are mapped directly to ISA instructions, which are
broadcasted to all SPUs. These instructions are inte-
grated into the existing ISA (e.g., x86 [160], ARM [161],
RISC-V [162]) using spare instruction opcodes. We use the
ARM ISA in our implementation (Section VII-A). Similar to
other offload-based accelerators like GPUs, the CPU is not
allowed to modify stencil data while the SPUs are running,
to avoid corrupting the data. Enforcing this policy is the
responsibility of the programmer.

VI. AN EXAMPLE: JACOBI-2D STENCIL

We illustrate how to program Casper using the code in
Figure 8 as an example. The code implements the Jacobi-
2D stencil presented in Section II-A. We explain the example
using a system consisting of 4 LLC slices and SPUs.

First, a stencil segment covering 4 MB is allocated (line 4).
Then, we define the start of the arrays A and B such that
the same grid point of both arrays is mapped to the same
LLC slice (lines 6-8). The programmer then initializes the
arrays with the stencil data. Furthermore, the constant for the
multiplication (line 12) and the stencil instructions (line 14)
are sent to the SPU. The streams for all the SPU are
configured inside the loop (lines 22-29). In this example,

22143

IEEE Access

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

TABLE 1. Casper Programmer API.

Function Parameters Description

initStencilSegment int size

Requests a physically contiguous memory region of the specified size from the system to hold the stencil data

Takes a pointer to the microcode and the length of the code. After generating the code with helper functions

initStencilcode addr A, int length provided by the programming library, the code is then broadcast to the SPU
i double const, int Iinitializes constant values that will be used during the multiplication step of a stencil operation. The function
initConstant 5
index sets the specified constant value at the given index in the constant buffer
initStream addr A, int Configures the streams used in the stencil code. The streams are configured per SPU to enable the programmer to
streamID, int accID tune the data layout to the grid’s structure and minimize the number of off-slice cache accesses
)) To communicate to each SPU how many elements to compute. All the SPUs maintain a counter to keep track of
setNElements int n, int acclD . .
their progress and stop when the desired number of elements has been computed
The final function starts with the execution of all the SPU. After calling the start function, one of the SPUs acts
startAccelerator - as the leader and maintains a state to track the progress of all SPUs. Once all the SPUs finish their computation,

the leader signals the completion to the CPU

1 void computeStencil (void* code) {

2

3 /* stencil segment holding 4MB */

4 uint64_t segment = initializeStencilSegment (4194304)
5

6 double* A = (double*) segment;

7 /* results start halfway through segment */
8 double* B = (double*) segment + 2097152;

9

10 /* initialize data ... */

11

12 initConstant (0.2, 0);

13

14 initStencilcode (code, 5);

15

16 /* 128kB block holds 16384 doubles */

17 int blockSize = 16384;

18

19 /* rows of 128 elements */

20 int rowLength = 128;

21

22 for (int i = 0; i < 4; i++) {

23 initStream(&A[i*blockSize-rowLength], 1, i);
24 initStream(&A[i*blockSize], 2, 1i);

25 initStream(&A[i*blockSize+rowLength], 3, i);
26 initStream(&B[i*blockSize], 0, i);

27 /* 512kB is 65536 doubles */

28 setNElements (65536, i);

29 }

30 startAccelerator() ;

31 }

FIGURE 8. Program code for Jacobi 2D stencil.

four streams are configured: three input streams to load
the elements at A[j—-1]1[1],A[Jj][1] and A[J+1] [i]
(lines 23-25), and one output stream to store the result
(line 26). As the elements A[j] [1-1], A[Jj]1[i], and
A[J][1i+1] are laid out in consecutive memory addresses,
we can reuse the same stream and leverage the support for
unaligned loads by shifting the access to the left (right) by
one element to load the data. Finally, the number of elements
to compute for each SPU (line 28) is configured, and the
computation starts.

Figure 9 shows the stencil instructions executed on
the SPU. As the stencil loads data from five input points,
the instruction sequence consists of five instructions. All the
input points are multiplied by the constant 0.2. This means
all the instructions encode the same constant factor cO. The
instructions load data from three different streams: the first
stream points to the value A[j-1] [1], aligned to a cache
line boundary. The values A[j][i-1]1, A[Jj][i], and

22144

// 0.2 * A[J-1][4]
c0, s1, 0, 0, 1, 0, 1 //no shift, clear acc, inc stream
// 0.2 * A[§][i-1]
c0, s2, 1, 1, 0, 0, 0 //shift right by 1
.2 * A[J][4i]
c0, s2, 0, 0, 0, 0, O //no shift
// 0.2 * A[j][i+1]
c0, s2, 0, 1, 0, 0, 1 //shift left, inc stream
// 0.2 * A[§+1][i]
0 c0, s3, 0, 0, 0, 1, 1 //enable output, inc stream

HRoodoud wNhK
~
~
o

FIGURE 9. Instruction sequence for the Jacobi-2D stencil.

A[J][1i+1] are stored in consecutive memory addresses.
These three accesses all use the same stream, but using a shift
amount and direction included in the request for the elements
atindices i+1 and 1-1. This loads the correctly aligned data
using the unaligned load mechanism. Finally, the third stream
is configured to load the value at A[j+1] [1].

As mentioned earlier (Section V), the final 3 bits of each
Casper instruction hold control information for the SPU. The
first bit, i.e., clear accumulator bit, must be set by the first
instruction of a grid point (line 2). The next bit is the enable
output bit which is set in the last instruction of the sequence
(line 10) and generates a store request. The final bit or the
advance stream bit signals the SPU to advance the stream
pointer and has to be set in the last instruction consuming
data from each stream (lines 2, 8, 10).

Vil. METHODOLOGY

A. EXPERIMENTAL SETUP

We simulate the performance of Casper using the gem5
simulator (v20.0) [163], [164] in syscall emulation mode.
Table 2 describes our system configuration in details. We use
the ARM ISA and the Ruby memory model. The system
is based on a generic modern server-class CPU, consisting
of 16 out-of-order cores and three levels of cache, having
a sliced LLC with 2 MB per slice. Our baseline configura-
tion uses the same system configuration without the SPU
and the LLC changes we propose. Also, we include stride
prefetchers at all levels of the cache hierarchy. We evaluate
the performance and energy benefit of Casper against the
baseline CPU architecture, an NVIDIA Titan V GPU [165].
We use an energy model based on CACTI 7.0 [166] and

VOLUME 11, 2023

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

IEEE Access

energy models proposed by prior works [167], [168]. We use
the area model presented in [169] scaled down to 22nm to
estimate the area of the SPU.* For the GPU performance/area
comparisons, we use the complete die size of 815mm? of the
Titan V [171] because typical GPU-accelerated systems also
need a host CPU to perform the computation. As a result,
the total area for the end-user is either the complete GPU or
the Casper hardware modifications, added to the area of the
existing host CPU.

TABLE 2. Simulation Parameters for the baseline CPU and Casper.

Component Configuration

16 SPUs, 1 SIMD unit/SPU (512-bits wide)

10 entry load queue, 0.016 nJ/instruction

CPU 16 out-of-order cores, 2 GHz, 8-wide issue,

72 entry load queue, 64 entry store queue,

1 SIMD unit/core (512-bits wide)

224 entry ROB, 0.08 nJ/instruction

32 kB, private, 8-way, 16 MSHRs,

4 cycle round-trip latency, 2 load ports, 1 store port
15/33 pJ per hit/miss [167]

Casper

LI1I/D Cache

L2 Cache 256 kB, private, 8-way, 16 MSHRs,
12 cycle round-trip latency, 1 load port, 1 store port
46/93 pJ per hit/miss [167]

L3 Cache 32 MB, shared, 16-way, 16 slices, 32 MSHRs/slice

36 cycle round-trip latency, 1 load/store port per slice
945/1904 pJ per hit/miss [167]

Coherence Protocol MESI

Replacement Policy LRU replacement

Hardware Prefetchers Stride prefetchers at all levels of the cache

On-Chip Network mesh, XY-routing, 64 B/cycle per direction

Main Memory 16 GB, DDRA4, 4 channels, 160nJ per read/write [168]

B. BENCHMARKS

We evaluate Casper on six stencil benchmarks, including
up to 3-dimensional stencils with varying data reuse char-
acteristics, ranging from 3 input points (Jacobi 1D) up to
33 points for the 33-point 3D stencil. We use Jacobi 1D, —2D,
7-point 3D (heat diffusion) from Polybench [172], a 5 x 5
Gaussian blur filter [173], the 7-point 1D kernel from [174],
and a 33-point 3D kernel to represent higher-order scientific
simulations [43], [175]. All the benchmarks use Jacobi-style
stencils with disjoint read and write data sets. They all oper-
ate on double-precision floating-point values. These bench-
marks are elementary stencils that can be conjugated to form
more complex stencils occurring in real-world applications.
In addition to the standard data set sizes (which fit inside the
LLC of the CPU), we also evaluate Casper on data sets that
(1) exceed the size of the LLC (named DRAM), and (2) fit
within the private L2 caches of the CPU (L2). Table 3 lists
the domain sizes. In the appendix, Table 4 shows the dynamic
instruction counts of all evaluated stencils and datasets for the
baseline CPU and for Casper.

VIIl. RESULTS

This section analyzes the performance, the energy consump-
tion, and the hardware cost of Casper, and compares to the
baseline CPU, the baseline GPU, and a PnM accelerator for

4We conservatively scale down the model as analyzed in [170].

VOLUME 11, 2023

TABLE 3. Domain size used for evaluations.

Level 1D 2D 3D

L2 131,072 512 x 256 64 x 64 x 32
L3 1,048,576 1024 x 1024 128 x128x 64
DRAM 4,194,304 2048 x 2048 256256 x 64

stencil operations. The appendix includes Table 5 and Table 6,
which contain our detailed measurements.

A. PERFORMANCE

Figure 10 shows the speedup of Casper compared to a 16-
core CPU baseline system. For the datasets that fit within the
LLC, which represent typical data set sizes for stencil compu-
tations, we observe an average speedup of 1.65x. The 1- and
2-dimensional stencils achieve speedups between 1.66x and
3.0x. However, the 3-dimensional stencils cannot achieve the
same performance and even experience a slowdown in the
33-point stencil case. The reason for this performance loss is
twofold. First, 3-dimensional stencils need to load a signifi-
cant part of their input data from remote LLC slices, which
introduces longer access latencies and lowers the throughput
of the SPU. Second, the 33-point 3D stencil has good L1
cache behavior in the baseline, achieving a hit-rate of 95%,
making it a good fit for execution on a traditional CPU.
We conclude that the performance benefits of Casper are
larger on lower-dimensional stencils that load most of their
input data from the local LLC slice.

The average performance improvement for the smaller data
sets that fit in the L2 caches of the CPU (i.e., L2 in Figure 10)
is 1.89x. Even though the data is stored closer to the core and
does not need to travel through the entire cache hierarchy, the
speedups are similar to the larger data sets that fit in the LL.C.
This is due to the fact that the access latency from CPU to
the L2 cache is similar to the latency between SPU and the
closest LLC slice (12 vs 8 cycles load-to-use).

Our results show that for large data sets that exceed the
size of the LLC (i.e., DRAM in Figure 10), Casper improves
performance by 1.4, on average. The highest speedups are
achieved by the 2-dimensional stencils, with Blur 2D reach-
ing 4.16x. We explain this by the fact that the baseline CPU
implementation of Blur 2D has a very low LLC hit-rate (only
2%), and thus the number of main memory accesses is 4x
higher compared to Casper. The main reason for this low hit-
rate of the baseline CPU implementation is that the prefetch-
ers are interfering with demand accesses, evicting cache lines
out of the LLC before they are used. The remaining stencils
(i.e., Jacobi 1D, 33-point 3D) perform similar to the baseline
or even experience slowdowns. The reason for this is the
fact that the main memory bandwidth is the main bottleneck.
The 33-point 3D stencil experiences a slowdown because it
is well-suited for computation with smaller private caches
for each core. We conclude that even though Casper cannot
alleviate the main memory bandwidth bottleneck in the case
of large data sets, it does not lead to significant slowdowns
for most stencils.

22145

IEEE Access

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

DRAM

7-point 1D Jacobi 2D Blur 2D

5 B2 ELC
g_4
-3
g2
o
a9 I
0 T T
Jacobi 1D 7-point 3D 33-point3D Geomean

FIGURE 10. Speedup compared to the baseline multi-core system.

1.25
1 2 LLC DRAM
.75
0.5
0.25 I I
0 T T T T T T

Jacobi 1D 7-point 1D Jacobi 2D Blur 2D

Normalized energy
o

7-point 3D 33-point3D Geomean

FIGURE 11. Normalized energy consumption compared to the 16-core
baseline.

B. ENERGY CONSUMPTION

Figure 11 shows the normalized energy consumption of
Casper compared to the baseline CPU. For the data sets that fit
into the LL.C (i.e., LLC in Figure 11), Casper reduces energy
consumption by 55%, on average. Casper reduces energy
consumption by 49% even for the 33-point 3D stencil, whose
performance is slower in Casper than in the baseline. The
reduction in energy consumption is larger for simpler stencils
(Jacobi 1D/2D, 7-point 3D), reaching up to as 65% for 7-point
3D. This is due to the fact that complex stencils perform more
LLC accesses. Furthermore, since the SPUs are situated close
to the LLC slice, accessing LLC is not as energy-efficient as
accessing the smaller L1 cache. This results in lower energy
savings for the more complex stencils because of higher L1
reuse in baseline CPUs.

For both the smaller and larger data sets (i.e., L2 and
DRAM in Figure 11), Casper reduces energy consumption
by 26% and 23%, on average respectively. We make two
observations. First, Casper increases the energy consumption
of the 1-dimensional benchmarks (Jacobi 1D and 7-point 1D)
when compared to the baseline, for both small and large
data sets. For the large data sets, this is the case because
the CPU cores can be idle for most of the runtime, waiting
for memory. For the smaller data set, the baseline’s energy
consumption is very low because there are very few LLC
accesses. Since Casper loads the data from the shared LLC,
it increases energy consumption in such cases. Second, for all
the other benchmarks, Casper reduces energy consumption
significantly. Casper is more energy-efficient even for the
benchmarks that the CPU baseline outperforms since our
SPU design is more energy-efficient than the CPU baseline.
Thus, we conclude that Casper achieves significant reduc-
tions in energy consumption compared to a traditional out-
of-order CPU.

C. COMPARISON WITH GPU

Figure 12 shows Casper’s performance and performance-per-
area normalized to an NVIDIA Titan V GPU. GPU out-
performs Casper by 3.71x, 2.89x, and 36.64x on average
across all stencils that fit inside L2, LLC, and DRAM

22146

respectively. However, in all stencil kernels, Casper pro-
vides higher performance-per-area (up to 190x compared
to GPU). The reason for this large performance-per-area
improvement is that 16 SPUs occupy 349x less area than
the Titan V, i.e., 16 x 0.146 mm? (see Section VIII-F)
versus 815mm?). We observe that the L2- and LLC-sized
data sets achieve performance-per-area improvements of 47 x
and 60x, respectively. For these data set sizes, Casper has
the advantage of its tight integration into the large LLC.
At the same time, the data does not fit into the GPU caches.
For the large DRAM-sized data sets, however, the average
improvement in performance/area is only 4.78 x. In this case,
GPU improves relative performance due to higher main mem-
ory bandwidth.

1000

Perf/area -O-Perf

100

Perf normalized to GPU

Perf/area normalized to GPU
.
1S

FIGURE 12. Performance/area compared to an NVIDIA Titan V GPU for
three different domain sizes.

D. COMPARISON WITH PIMS

PIMS [34] proposes a PnM accelerator targeting stencil
operations. PIMS accelerator leverages the atomic opera-
tions available in the HMC architecture to compute addition
instructions in a stencil. Since PIMS represents the closest
related work to Casper, we compare both accelerators using
our stencil kernels. To evaluate the performance of PIMS,
we conservatively consider only the latency of executing the
atomic add operations, without accounting for the extra over-
head of (1) loading the results back from the HMC device,
and (2) executing the multiply operations required by each
stencil on the host CPU. We use as a reference in our analysis
the peak throughput of the HMC atomic operations reported
by prior work [157].

Figure 13 shows the speedup of Casper in compari-
son to PIMS. We make the following observations. First,
Casper provides an average speedup of 5.5x (up to 10x)
compared against PIMS, for the data set sizes that fit inside
the on-chip caches. This happens because of the low through-
put of the atomic operations HMC provides, which becomes
the main bottleneck. Second, the stencils that do not fit into
the caches perform worse using Casper compared to PIMS.
We attribute this to the fact that computing on the logic
layer of the HMC has much higher memory bandwidth than
the off-chip memory bus connected to the CPU for these
bandwidth-bound stencils. We conclude that Casper performs
significantly better than PIMS on typical stencil datasets, i.e.,
those that fit within the LLC.

E. EFFECT OF INDIVIDUAL OPTIMIZATIONS
The SPUs in Casper take advantage of two key optimiza-
tions: (1) a custom data mapping in LLC, which improves

VOLUME 11, 2023

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

IEEE Access

Jacobi 1D 7-point 1D Jacobi 2D Blur2D 7-point3D 33-point3D Geomean

FIGURE 13. Speedup compared to PIMS [34].

performance by increasing the locality of stencil data in the
LLC and reducing the need for SPUs to access remote LLC
slices, and (2) the near-cache (near-LLC) location of the
SPUs, which minimizes data access latency and leverages
the peak bandwidth of the LL.C. In this section, we evaluate
the contribution of each of these two optimizations to the
overall performance of Casper. The baseline for this analysis
is a system where the SPUs are located next to the private
L1 caches of CPU cores. The baseline LLC data mapping
conventionally places consecutive cache lines in consecutive
LLC slices (similar to [158]). First, we apply only the data
mapping optimization and compare the Casper against the
baseline. Next, we apply both the data mapping optimization
and the near-cache optimization. Then, we normalize to 100%
the speedup that results from the two optimizations together,
and obtain the percentage that comes from the data mapping
and from the near-cache location. Figure 14 shows bars with
blue and green parts. The blue part represents the percentage
of the speedup due to the data mapping, while the green part
represents the percentage of the speedup due to the near-cache
location.

We make two observations from the results in Figure 14.
First, computing near-cache (green portion of the bars) is the
major contributor to the speedup. Second, the custom data
mapping (blue portion of the bars) produces up to 30% of
the speedup (Jacobi 1D with LLC data set), but its effect is
negligible (or even negative) in several cases (1D and 2D
benchmarks with L2/DRAM data sets, 7-point 3D with LLC
data set). In these cases, the custom data mapping results in a
number of accesses to remote LLC slices which is similar to
the baseline data mapping.

2 YC pram

\ J / mmm Data Mapping mmm Near-Cache
100
s
2 75
(9]
8 50
2]
G
< 25
0
Q Q Q Q Q Q O
N > 7 > P P S
I & 3 N N &
& < & M < <
N A7 N A el

FIGURE 14. Contribution of custom data mapping and near-cache SPU
location to the speedup of Casper over a baseline system with SPUs near
L1 for L2-/LLC-/DRAM-sized data sets.

F. HARDWARE COST

1) STENCIL PROCESSING UNIT

The area of one SPU scaled to 22nm technology is
0.146 mm?. The most significant contributors to this area

VOLUME 11, 2023

are the execution unit and the SRAM array used to buffer
complete memory requests.

2) UNALIGNED LOADS

Our hardware mechanism to support unaligned loads con-
sumes an additional 0.14 mm? compared to the baseline 2 MB
SRAM cache slice. This amounts to a 5% increase in area per
LLC slice. Almost the complete area overhead is attributed
to the second read port of the tag array, which consumes
0.12 mm? of space. The remaining hardware overhead of one
3:1 multiplexer per SRAM row, the barrel shifter to rotate the
final output, and the split multiplexers for way selection are
minimal compared to the tag array overhead.

3) ADDRESS TO LLC SLICE MAPPING

Identifying the stencil segment requires two registers to store
the start and the length of the segment. The address compar-
ison needs one adder and one comparator. The new mapping
is a simple bit-select from the physical address, and thus
requires minimal additions. This hardware is introduced at
every NoC injection point.

In summary, the hardware additions proposed in this paper
require an additional 4.65 mm? of die area for a system
using 16 SPUs. This amounts to a 0.77% area increase
compared to the Marvell ThunderX 2 CPU [127], a server-
class ARM CPU implemented in 16 nm hosting 32 MB
of LLC.

IX. DISCUSSION

1) WHY A STENCIL ACCELERATOR?

Because of their large contribution to the overall run-
time of HPC workloads, improving the performance and
energy-efficiency of stencil computations is critical. A wide
body of research [1], [3], [9], [13], [14], [15], [16], [17], [18],
(191, [201, [211, [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38] highlights
the need for highly efficient stencil computations. While
more general-purpose solutions based on GPUs, FPGAs, and
3D-stacked memory attempt to trade off generality for perfor-
mance and efficiency, we show that a careful domain-specific
hardware/software co-design can improve the performance
and energy efficiency even further, at a much lower overhead
compared to the existing general-purpose solutions.

2) OTHER WORKLOADS FOR Casper

Apart from stencils, the near-LLC execution model is
well-suited for applications with the following properties:
(1) their memory access pattern shows temporal locality,
(2) they operate on datasets that exceed the capacity of pri-
vate caches, and (3) have streaming memory access pattern,
and as a result do not benefit from deep cache hierarchies.
Two examples of workloads that satisfy these properties are
high performance computing (HPC) workloads operating on
structured grids [176], [177], and dense linear algebra com-
putations [178]. While we study our proposal specifically

22147

IEEE Access

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

for stencils, which are one of the most widely used kernels
in HPC domain, supporting a wider set of applications is
possible by redesigning the SPU pipeline to add support
for data-dependent divisions that are present in some other
HPC workloads. Together with the MAC operations (that
Casper already supports), this extends Casper to a wider set
of use-cases and applications.

X. RELATED WORK

To our knowledge, we present the first work that tightly inte-
grates specialized computation units into the last-level cache
of a CPU to perform stencil computations. In this section,
we succinctly compare prior works against Casper.

Due to the high contribution of stencil computation to the
overall execution time of HPC applications, a wide body of
research has focused on studying and analyzing stencil com-
putations [1], [3], [9], [13], [14], [15], [16], [17], [18], [19],
(201, [211, [22], [23], [24], [25], [26], [27], [28], [29], [30],
[311, [32], [33], [34], [35], [36], [37], [38]. Prior works show
the applicability of four different processing types in accel-
erating stencil computations: (1) Near-memory, (2) CPU,
(3) GPU, (4) FPGA.

1) NEAR-MEMORY

PIMS [34] exploits the high-bandwidth provided by 3D-
stacked memories (e.g., HMC [155], Hybrid Bandwidth
Memory (HBM) [179], [180]) to accelerate stencils. Casper,
being a near-LLC accelerator, can be integrated with any
commodity processor without requiring costly interfacing
using through-silicon vias.

2) CPU

Szustak et al. [181] accelerate the MPDATA stencil kernel on
a multi-core CPU. Thaler et al. [118] use a many-core system
to accelerate weather stencil kernels. Szustak and Bratek [46]
propose parametric optimization techniques for the MPDATA
application on shared-memory systems.

3) GPU

GPUs [3], [182], [183] have been shown to increase perfor-
mance due to the high degree of parallelism present in the
stencil computation. Pattnaik,et al. [184] develop an analyti-
cal performance model for choosing an optimal GPU-based
execution strategy for various scientific stencil kernels.
Gysi et al. [1] provide guidelines for optimizing stencil ker-
nels for CPU-GPU systems.

4) FPGA

More recently, the use of FPGAs to accelerate stencils has
been proposed [29], [30], [31], [32], [33], [47], [185], [186],
[187], [188], [189], [190]. Augmenting general-purpose
cores with specialized FPGA accelerators is a promising
approach to enhance overall system performance. How-
ever, designing and deploying FPGA-based stencil acceler-
ators have three inherent drawbacks compared to integrating
Casper’s SPUs near LLC and programming them. First, data

22148

needs to be moved to these off-chip external FPGA-based
accelerators. The fraction of the total execution time needed
for this data movement is not negligible, and it may become
larger if the entire stencil data does not fit in the limited
FPGA memory (typically smaller than the host main mem-
ory). Second, taking full advantage of FPGAs for accelerating
a workload is not a trivial task, as this requires sufficient
FPGA programming skills to map the workload and optimize
the design for the FPGA microarchitecture. Third, bitstream
generation is a very time-consuming process, especially for
high-end FPGAs. In contrast, Casper integrates compute units
close to the LLC, which avoids unnecessary data movement
to an external accelerator. Casper programming is easier
and faster than FPGA programming, even if high-level syn-
thesis tools (e.g., OpenCL [191], [192]) are used, because
Casper only needs a small number of API functions (Table 1)
and does not require time-consuming bitstream generation
process.

XI. CONCLUSION

We present Casper, the first near-cache acceleration mecha-
nism for stencil computations. Casper enables high perfor-
mance and energy-efficient execution of stencil computa-
tions by (1) placing throughput-optimized stencil processing
units near the last-level cache (LLC) and eliminating the
need to move data to the processor, (2) orchestrating data
accesses to minimize data movement within the cache hier-
archy, and (3) maximizing the utilization of the LLC band-
width. Casper achieves this with an area overhead of less than
1% for 16 SPUs in a Marvell ThunderX 2 [127], a server-
class ARM CPU. We evaluate Casper using six widely
used stencil kernels with up-to 3-dimensional grid domains.
We show that Casper outperforms a commercial multi-core
CPU, on average, by 1.65x (up to 4.16x) and reduces the
energy consumption by 35% (up to 65%). Compared to
a state-of-the-art GPU, Casper improves performance-per-
area, on average, by 37x (up to 190x). We conclude that
Casper is a promising near-cache-processing mechanism for
accelerating stencil computations and addressing the memory
bottleneck for such computations. We believe and hope that
future work builds on Casper to further ease accelerating
important high-performance computing applications that use
stencil computations.

APPENDIX

This appendix presents some detailed measurements, which
correspond to our analyses in Section VIII. Table 4
shows the dynamic instruction count for all evaluated sten-
cils and datasets on the baseline CPU (16 cores) and
Casper (16 SPUs). Table 5 shows the number of execution
cycles for all evaluated stencils and datasets on the baseline
CPU (16 cores), the baseline GPU, and Casper (16 SPUs).
Table 6 shows the energy consumption for all evaluated
stencils and datasets on the baseline CPU (16 cores) and
Casper (16 SPUs).

VOLUME 11, 2023

A. Denzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing I EEEACC@SS

TABLE 4. Dynamic Instruction Count for the Baseline CPU (16 cores) and Casper (16 SPUs).

Jacobi 1D 7-point 1D Jacobi 2D Blur 2D 7-point 3D 33-point 3D
L2 LLC DRAM L2 LLC DRAM L2 LLC DRAM L2 LLC DRAM L2 LLC DRAM L2 LLC DRAM

CPU (16 cores) 165840 1312867 5245651 | 297277 2361924 9440116 [537100 4311784 17255191 [1804260 16552680 66329169 | 736767 6083864 24330380 | 2452622 20958248 83845023
Casper (16 SPUs) 3106 23038 3034882 | 26470 211402 3422962 5482 186718 12640918 38350 337858 4135498 20002 198730 21826798 | 261562 1050790 9321778

TABLE 5. Execution Cycles for the Baseline CPU (16 cores), the Baseline GPU, and Casper (16 SPUs).

Jacobi 1D 7-point 1D Jacobi 2D Blur 2D 7-point 3D 33-point 3D
L2 LLC DRAM L2 LLC DRAM L2 LLC DRAM L2 LLC DRAM L2 LLC DRAM L2 LLC DRAM
CPU (16 cores) 13358 95251 3838447 14702 125138 5715526 | 26457 178032 8720011 | 95428 742734 22729495 | 39029 296436 7986968 115884 1009021 9060219
GPU 4030 36134 135360 4108 36594 139320 4646 37248 140160 6950 41318 153480 5184 36633 140856 6758 52491 278784

Casper (16 SPUs) | 4569 33220 4370993 8449 66393 4514872 | 7658 58734 3931701 | 55764 446300 5454431 29572 286675 6784185 | 100243 1385955 13420984

TABLE 6. Energy Consumption (J) for the Baseline CPU (16 cores) and Casper (16 SPUs).

Jacobi ID 7-point 1D Jacobi 2D Blur 2D 7-point 3D 33-point 3D
‘ L2 LLC _ DRAM ‘ L2 LLC _ DRAM ‘ L2 LLC _ DRAM ‘ L2 LLC___ DRAM ‘ L2 LLC DRAM ‘ L2 LLC DRAM
CPU (16 cores) 0.00012 _ 0.00113 02631221 | 0.00014% 000145 0.28253 ‘ 0.000256 0002 0.3483045 ‘ 0.0000 00075 0.64639877 ‘ 0.000386 0.003364 _ 0.469465 ‘ 0.0011542 0.010266 04424779
Casper (16 SPUs) | 0.000468 0.00341 0.3114322 | 0.000629 0.00469 0.59888 | 0.00073 0.0055 0.8809648 | 0.0015 00118 1.19655244 | 0.001737 0014002 14752518 | 0.0028739 0.027749 1.8090142
ACKNOWLEDGMENT [13] M. Christen, O. Schenk, and H. Burkhart, “PATUS: A code generation
The authors would like to thank the SAFARI Research Group and autotuning framework for parallel iterative stencil computations on
b f luable feedback d th . lati . 1 modern microarchitectures,” in Proc. IPDPS, May 2011, pp. 676-687.
members for valuable teedback and the stimulating intel- [14] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick, “Opti-
lectual environment they provide. They also acknowledge mization and performance modeling of stencil computations on modern
support from the SAFARI Research Group’s industrial part— microprocessors,” SIAM Rev., vol. 51, no. 1, pp. 129-159, Feb. 2009.
. . . [15] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel, “Cache oblivious
ners, especially ASML, Google, Huawei, Intel, Microsoft, - R . I
. . . parallelograms in iterative stencil computations,” in Proc. SC, Jun. 2010,
VMware, Xilinx, and Semiconductor Research Corporation. Pp. 49-59.
An earlier version of this work [193] was posted on arxiv.org [16] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and
(https://arxiv.org/abs/2112.14216) on December 28, 2021. €. E. Leiserson, “The pochoir stencil -compiler.” in Proc. SPAA,
Jun. 2011, pp. 117-128.
[17] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
REFERENCES S. Amarasinghe, “Halide: A language and compiler for optimizing par-
[1] T. Gysi, T. Grosser, and T. Hoefler, “MODESTO: Data-centric analytic allelism, locality, and recomputation in image processing pipelines,” in
optimization of complex stencil programs on heterogeneous architec- Proc. PLDI, Jun. 2013, pp. 519-530. . . .
tures,” in Proc. SC, Jun. 2015, pp. 177-186. [18] J. Meng and K. Skadron, “A performance study for iterative stencil
[2] P. Colella. (2004). Defining Software Requirements for Scientific loops on GPUs with ghost zone optimizations,” Int. J. Parallel Program.,
Computing. [Online]. Available: https://www.krellinst.org/doecsgf/conf/ vol. 39, no. 1, pp. ‘115—142, Feb. 201 L. .
2013/pres/pcolella.pdf [19] A.Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-D block-
[3] O. Fuhrer, T. Chadha, T. Hoefler, G. Kwasniewski, X. Lapillonne ing optimization for stencil computations on modern CPUs and GPUs,”
D. Leutwyler, D. Liithi, C. Osuna, C. Schir, T. C. Schulthess, and H. Vogt, in Proc. SC, Nov. 2010, pp. 1-13.))
“Near-global climate simulation at 1 km resolution: Establishing a per- [20] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and
formance baseline on 4888 GPUs with COSMO 5.0, Geosci. Model P. Sadayappan, “Data layout transformation for stencil computations on
Develop., vol. 11, no. 4, pp. 16651681, May 2018. short-vector SIMD architectures,” in Proc. CC, 2011, pp. 225-245.
[4] G.A.McMechan, “Migration by extrapolation of time-dependent bound- [21] J. Jaeger and D. Barthou, “Automatic efficient data layout for multi-
ary values,” Geophys. Prospecting, vol. 31, no. 3, pp. 413-420, Jun. 1983. threaded stencil codes on CPU sand GPUs,” in Proc. HiPC, Dec. 2012,
[5] J. D. Anderson and J. Wendt, Computational Fluid Dynamics an Intro- pp. 1-10.
duction, vol. 206. 1995. [22] M. Frigo and V. Strumpen, “The memory behavior of cache oblivi-
[6] A. Taflove, “Review of the formulation and applications of the finite- ous stencil computations,” J. Supercomput., vol. 39, no. 2, pp. 93-112,
difference time-domain method for numerical modeling of electromag- Mar. 2007.
netic wave interactions with arbitrary structures,” Wave Motion, vol. 10, [23] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick, “Impact of
no. 6, pp. 547-582, Dec. 1988. modern memory subsystems on cache optimizations for stencil computa-
[71 N. Maruyama and T. Aoki, “Optimizing stencil computations for tions,” in Proc. MSP, 2005, pp. 36-43.
NVIDIA Kepler GPUSs,” in Proc. HiStencils, 2014, pp. 89-95. [24] H. Stengel, J. Treibig, G. Hager, and G. Wellein, “Quantifying perfor-
[8] O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, M. Bianco, and mance bottlenecks of stencil computations using the execution-cache-
T. Schulthess, “Towards GPU-accelerated operational weather forecast- memory model,” in Proc. ICS, Jun. 2015, pp. 207-216.
ing,” in Proc. GTC, 2013, pp. 18-21. [25] T.Brandvik and G. Pullan, “SBLOCK: A framework for efficient stencil-
[9] C. Olschanowsky, M. M. Strout, S. Guzik, J. Loffeld, and J. Hittinger, based PDE solvers on multi-core platforms,” in Proc. ICCIT, Jun. 2010,
“A study on balancing parallelism, data locality, and recomputation in pp- 1181-1188.
existing PDE solvers,” in Proc. SC, Nov. 2014, pp. 793-804. [26] A. Armejach, H. Caminal, J. M. Cebrian, R. Gonzilez-Alberquilla,
[10] COSMO Physics Modules are Accelerated as a Part of HP2C Initiative C. Adeniyi-Jones, M. Valero, M. Casas, and M. Moretd, **Stencil codes
Using OpenACC, OpenACC-Toolkit Documentation, 2016. [Online]. on a vector length agnostic architecture,” in Proc. PACT, Nov. 2018,
Available: https://developer.download.nvidia.com/compute/OpenACC- pp. 1-12.
Toolkit/docs/215493.7_OpenACC_COSMO_SS_v3.pdf [27] H.M. Waidyasooriya, Y. Takei, S. Tatsumi, and M. Hariyama, ‘“‘OpenCL-
[11] B. Mostafazadeh, F. Marti, F. Liu, and A. Chandramowlishwaran, based FPGA-platform for stencil computation and its optimization
“Roofline guided design and analysis of a multi-stencil CFD solver for methodology,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 5,
multicore performance,” in Proc. IPDPS, May 2018, pp. 753-762. pp. 1390-1402, May 2017.
[12] G. Doms and U. Schittler, ““The nonhydrostatic limited-area model LM [28] J. de Fine Licht, M. Blott, and T. Hoefler, “Designing scalable FPGA
(lokal-model) of the DWD. Part I: Scientific documentation,” DWD, GB architectures using high-level synthesis,” in Proc. PPoPP, Feb. 2018,
Forschung und Entwicklung, 1999. pp. 403-404.

VOLUME 11, 2023 22149

IEEE Access

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

[29]

[30]

[31]

[32]

[33

[34]

[35]

[36]

[37]

[38]

[39]

[40

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

22150

K. Sano, Y. Hatsuda, and S. Yamamoto, ‘“Multi-FPGA accelerator for
scalable stencil computation with constant memory bandwidth,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 3, pp. 695-705, Mar. 2014.

J. V. Lunteren, R. Luijten, D. Diamantopoulos, F. Auernhammer,
C. Hagleitner, L. Chelini, S. Corda, and G. Singh, “Coherently attached
programmable near-memory acceleration platform and its application to
stencil processing,” in Proc. DATE, Mar. 2019, pp. 668—673.

G. Singh, D. Diamantopoulos, C. Hagleitner, S. Stuijk, and H. Corporaal,
“NARMADA: Near-memory horizontal diffusion accelerator for scalable
stencil computations,” in Proc. FPL, Sep. 2019, pp. 263-269.

Y. Chi, J. Cong, P. Wei, and P. Zhou, “SODA: Stencil with optimized
dataflow architecture,” in Proc. ICCAD, Nov. 2018, pp. 1-8.

G. Singh, D. Diamantopoulos, C. Hagleitner, J. Gomez-Luna, S. Stuijk,
O. Mutlu, and H. Corporaal, “NERO: A near high-bandwidth mem-
ory stencil accelerator for weather prediction modeling,” in Proc. FPL,
Aug. 2020, pp. 9-17.

J. Li, X. Wang, A. Tumeo, B. Williams, J. D. Leidel, and Y. Chen,
“PIMS: A lightweight processing-in-memory accelerator for stencil com-
putations,” in Proc. ISMS, 2019, pp. 41-52.

H. M. Waidyasooriya and M. Hariyama, ‘“Multi-FPGA accelerator archi-
tecture for stencil computation exploiting spacial and temporal scalabil-
ity,” IEEE Access, vol. 7, pp. 53188-53201, 2019.

R. Cattaneo, G. Natale, C. Sicignano, D. Sciuto, and M. D. Santambrogio,
“On how to accelerate iterative stencil loops: A scalable streaming-based
approach,” ACM Trans. Archit. Code Optim., vol. 12, no. 4, pp. 1-26,
Jan. 2016.

H. E. Yantir, A. M. Eltawil, and K. N. Salama, “Efficient acceleration
of stencil applications through in-memory computing,” Micromachines,
vol. 11, no. 6, p. 622, Jun. 2020.

R. Wester and J. Kuper, “Deriving stencil hardware accelerators from a
single higher-order function,” in Proc. CPA, 2014, pp. 1-14.

S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65-76, 2009.

Intel. (2016). Intel Xeon Processor E7-4850 V4. [Online]. Avail-
able: https://ark.intel.com/content/www/us/en/ark/products/93806/intel-
xeon-processor-e74850-v4-40m-cache-2-10-ghz.html

Intel. APP Metrics for Intel Microprocessors. Accessed: Dec. 1, 2022.
[Online]. Available: https://www.intel.com/content/dam/support/us/en/
documents/processors/ APP-for-Intel-Xeon-Processors.pdf

'W. Augustin, V. Heuveline, and J.-P. Weiss, ““Optimized stencil compu-
tation using in-place calculation on modern multicore systems,” in Proc.
ECPP, 2009, pp. 772-784.

K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, *“Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures,” in Proc. SC,
Nov. 2008, pp. 1-12.

E. H. Phillips and M. Fatica, “Implementing the Himeno benchmark with
CUDA on GPU clusters,” in Proc. IPDPS, 2010, pp. 1-10.

G. Singh, D. Diamantopoulos, S. Stuijk, C. Hagleitner, and H. Corporaal,
“Low precision processing for high order stencil computations,” in Proc.
19th Int. Conf. Embedded Comput. Syst., Archit., Modeling, Simulation
(SAMOS). Samos, Greece: Springer, Jul. 2019, pp. 403-415.

L. Szustak and P. Bratek, “Performance portable parallel programming
of heterogeneous stencils across shared-memory platforms with modern
Intel processors,” Int. J. High Perform. Comput. Appl., vol. 33, no. 3,
pp. 534-553, May 2019.

G. Singh, D. Diamantopoulos, J. Gémez-Luna, C. Hagleitner, S. Stuijk,
H. Corporaal, and O. Mutlu, “Accelerating weather prediction using near-
memory reconfigurable fabric,” ACM Trans. Reconfigurable Technol.
Syst., vol. 15, no. 4, pp. 1-27, Dec. 2022.

C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaaauw, and R. Das, “Neural cache: Bit-serial in-cache acceleration
of deep neural networks,” in Proc. ISCA, Jun. 2018, pp. 383-396.

V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-
memory accelerator for bulk bitwise operations using commodity DRAM
technology,” in Proc. MICRO, Oct. 2017, pp. 273-287.

J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled instructions: A low-
overhead, locality-aware processing-in-memory architecture,” in Proc.
ISCA, Jun. 2015, pp. 336-348.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-memory
acceleration of deep neural network training with high precision,” in
Proc. ISCA, Jun. 2019, pp. 802-815.

O. Mutlu, S. Ghose, J. Gémez-Luna, and R. Ausavarungnirun, “A
modern primer on processing in memory,” in Emerging Computing:
From Devices to Systems: Looking Beyond Moore and Von Neumann.
Singapore: Springer, 2022, pp. 171-243.

S. Ghose, A. Boroumand, J. S. Kim, J. Gémez-Luna, and O. Mutlu,
“Processing-in-memory: A workload-driven perspective,” IBM J. Res.
Develop., vol. 63, no. 6, pp. 3:1-3:19, Nov. 2019.

J. Gémez-Luna, I. El Hajj, 1. Fernandez, C. Giannoula, G. F. Oliveira, and
O. Mutlu, “Benchmarking a new paradigm: An experimental analysis of
a real processing-in-memory architecture,” 2021, arXiv:2105.03814.

J. Gomez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira, and
O. Mutlu, “Benchmarking a new paradigm: Experimental analysis and
characterization of a real processing-in-memory system,” IEEE Access,
vol. 10, pp. 52565-52608, 2022.

G. F Oliveira, J. Gémez-Luna, L. Orosa, S. Ghose, N. Vijaykumar,
1. Fernandez, M. Sadrosadati, and O. Mutlu, “DAMOV: A new method-
ology and benchmark suite for evaluating data movement bottlenecks,”
IEEE Access, vol. 9, pp. 134457-134502, 2021.

S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun, and O. Mutlu,
“Enabling the adoption of processing-in-memory: Challenges, mecha-
nisms, future research directions,” 2018, arXiv:1802.00320.

O. Mutlu, S. Ghose, J. Gémez-Luna, and R. Ausavarungnirun, ‘‘Pro-
cessing data where it makes sense: Enabling in-memory computation,”
Microprocessors Microsyst., vol. 67, pp. 28—41, Jun. 2019.

D. Fujiki, S. Mahlke, and R. Das, “Duality cache for data parallel
acceleration,” in Proc. ISCA, Jun. 2019, pp. 397-410.

S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute caches,” in Proc. HPCA, Feb. 2017, pp. 481-492.

E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu, S. Gupta,
D. Sanchez, and N. Beckmann, “Livia: Data-centric computing through-
out the memory hierarchy,” in Proc. ASPLOS, Mar. 2020, pp. 417-433.
A. Subramaniyan, J. Wang, E. R. M. Balasubramanian, D. Blaauw,
D. Sylvester, and R. Das, “Cache automaton,” in Proc. MICRO,
Oct. 2017, pp. 259-272.

A. Nag, C. N. Ramachandra, R. Balasubramonian, R. Stutsman,
E. Giacomin, H. Kambalasubramanyam, and P.-E. Gaillardon, “Gen-
Cache: Leveraging in-cache operators for efficient sequence alignment,”
in Proc. MICRO, Oct. 2019, pp. 334-346.

A. V. Nori, R. Bera, S. Balachandran, J. Rakshit, O. J. Omer,
A. Abuhatzera, B. Kuttanna, and S. Subramoney, “REDUCT: Keep
it close, keep it cool! Efficient scaling of DNN inference on multi-
core CPUs with near-cache compute,” in Proc. ISCA, Jun. 2021,
pp. 167-180.

A. Pattnaik, X. Tang, O. Kayiran, A. Jog, A. Mishra, M. T. Kandemir,
A. Sivasubramaniam, and C. R. Das, “Opportunistic computing in GPU
architectures,” in Proc. ISCA, Jun. 2019, pp. 210-223.

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proc. ISCA,
2015, pp. 105-117.

J. S. Kim, D. S. Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan,
O. Ergin, C. Alkan, and O. Mutlu, “GRIM-filter: Fast seed location fil-
tering in DNA read mapping using processing-in-memory technologies,”
BMC Genomics, vol. 19, no. S2, pp. 23-40, May 2018.

R. R. Puli, “Active routing: Compute on the way for near-data process-
ing,” Ph.D. dissertation, 2018.

L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM:
Enabling instruction-level PIM offloading in graph computing frame-
works,” in Proc. HPCA, Feb. 2017, pp. 457-468.

M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:
Scalable and efficient neural network acceleration with 3D memory,” in
Proc. ASPLOS, 2017, pp. 751-764.

N. Hajinazar, G. F. Oliveira, S. Gregorio, J. D. Ferreira, N. M. Ghiasi,
M. Patel, M. Alser, S. Ghose, J. G6mez-Luna, and O. Mutlu, “SIM-
DRAM: A framework for bit-serial SIMD processing using DRAM,” in
Proc. ASPLOS, Apr. 2021, pp. 329-345.

A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia,
R. Ausavarungnirun, K. Hsieh, N. Hajinazar, K. T. Malladi, H. Zheng,
and O. Mutlu, “CoNDA: Efficient cache coherence support for near-data
accelerators,” in Proc. ISCA, Jun. 2019, pp. 629-642.

VOLUME 11, 2023

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

IEEE Access

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh,
K. T. Malladi, H. Zheng, and O. Mutlu, “LazyPIM: An efficient cache
coherence mechanism for processing-in-memory,” IEEE Comput. Archit.
Lett., vol. 16, no. 1, pp. 46-50, Jan. 2017.

M. Besta, R. Kanakagiri, G. Kwasniewski, R. Ausavarungnirun,
J. Berdnek, K. Kanellopoulos, K. Janda, Z. Vonarburg-Shmaria,
L. Gianinazzi, I. Stefan, J. G. Luna, J. Golinowski, M. Copik,
L. Kapp-Schwoerer, S. Di Girolamo, N. Blach, M. Konieczny, O. Mutlu,
and T. Hoefler, “SISA: Set-centric instruction set architecture for graph
mining on processing-in-memory systems,” in Proc. MICRO, Oct. 2021,
pp- 282-297.

A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu,
“Google workloads for consumer devices: Mitigating data movement
bottlenecks,” in Proc. ASPLOS, 2018, pp. 316-331.

I. Fernandez, R. Quislant, E. Gutiérrez, O. Plata, C. Giannoula, M. Alser,
J. Gémez-Luna, and O. Mutlu, “NATSA: A near-data processing accel-
erator for time series analysis,” in Proc. ICCD, Oct. 2020, pp. 120-129.
D. S. Cali, G. S. Kalsi, Z. Bingol, C. Firtina, L. Subramanian, J. S. Kim,
R. Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand, A. Nori,
A. Scibisz, S. Subramoney, C. Alkan, S. Ghose, and O. Mutlu,
“GenASM: A high-performance, low-power approximate string match-
ing acceleration framework for genome sequence analysis,” in Proc.
MICRO, Oct. 2020, pp. 951-966.

M. Hashemi, Khubaib, E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Acceler-
ating dependent cache misses with an enhanced memory controller,” in
Proc. ISCA, Jun. 2016, pp. 444-455.

G. Singh, M. Alser, D. S. Cali, D. Diamantopoulos, J. Gémez-Luna,
H. Corporaal, and O. Mutlu, “FPGA-based near-memory acceleration
of modern data-intensive applications,” IEEE Micro, vol. 41, no. 4,
pp. 3948, Jul. 2021.

G. Singh, J. Gémez-Luna, G. Mariani, G. F. Oliveira, S. Corda, S. Stuijk,
O. Mutlu, and H. Corporaal, “NAPEL: Near-memory computing appli-
cation performance prediction via ensemble learning,” in Proc. DAC,
Jun. 2019, pp. 1-6.

V. Seshadri and O. Mutlu, “Simple operations in memory to reduce data
movement,” in Advances in Computers. Amsterdam, The Netherlands:
Elsevier, 2017.

C. Giannoula, N. Vijaykumar, N. Papadopoulou, V. Karakostas,
I. Fernandez, J. Gémez-Luna, L. Orosa, N. Koziris, G. Goumas, and
O. Mutlu, “SynCron: Efficient synchronization support for near-data-
processing architectures,” in Proc. HPCA, Feb. 2021, pp. 263-276.

O. Mutlu, S. Ghose, J. Gémez-Luna, and R. Ausavarungnirun, “Enabling
practical processing in and near memory for data-intensive computing,”
in Proc. DAC, Jun. 2019, pp. 1-4.

A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir,
O. Mutlu, and C. R. Das, “Scheduling techniques for GPU architectures
with processing-in-memory capabilities,” in PACT, 2016, pp. 31-44.

K. Hsieh, E. Ebrahim, G. Kim, N. Chatterjee, M. O’Connor,
N. Vijaykumar, O. Mutlu, and S. W. Keckler, “Transparent offloading
and mapping (TOM): Enabling programmer-transparent near-data
processing in GPU systems,” in Proc. ISCA, Jun. 2016, pp. 204-216.

H. S. Stone, “A logic-in-memory computer,” [EEE Trans. Comput.,
vol. C-19, no. 1, pp. 73-78, Jan. 1970.

M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: The
terasys massively parallel PIM array,” Computer, vol. 28, no. 4,
pp. 23-31, Apr. 1995.

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent RAM,”
IEEE Micro, vol. 17, no. 2, pp. 34-44, Mar./Apr. 1997.

R. Nair et al., “Active memory cube: A processing-in-memory archi-
tecture for exascale systems,” IBM J. Res. Develop., vol. 59, nos. 2-3,
pp. 17:1-17:14, 2015.

M. Oskin, F. T. Chong, and T. Sherwood, “Active pages: A computation
model for intelligent memory,” in Proc. ISCA, 1998, pp. 192-203.

Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas, “FlexRAM: Toward an advanced intelligent memory
system,” in Proc. ICCD, Sep. 2012, pp. 5-14.

J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki,
J. Shin, C. Chen, C. W. Kang, I. Kim, and G. Daglikoca, ““The architec-
ture of the DIVA processing-in-memory chip,” in Proc. SC, Jun. 2002,
pp. 14-25.

VOLUME 11, 2023

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]
[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. Mckenzie,
“Computational RAM: Implementing processors in memory,” [EEE
Design Test Comput., vol. 16, no. 1, pp. 32-41, Jan./Mar. 1999.

J. B. Brockman, S. Thoziyoor, S. K. Kuntz, and P. M. Kogge, “A low cost,
multithreaded processing-in-memory system,” in Proc. WMPI, 2004,
pp. 16-22.

A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA:
Near-DRAM acceleration architecture leveraging commodity DRAM
devices and standard memory modules,” in Proc. HPCA, Feb. 2015,
pp. 283-295.

D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3D memory,” in Proc. ISCA, Jun. 2016, pp. 380-392.

D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “TOP-PIM: Throughput-oriented programmable pro-
cessing in memory,” in Proc. HPDC, Jun. 2014, pp. 85-98.

S.Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA:
A DRAM-based reconfigurable in-situ accelerator,” in Proc. MICRO,
Oct. 2017, pp. 288-301.

Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang, “DrAcc: A DRAM
based accelerator for accurate CNN inference,” in Proc. DAC, Jun. 2018,
pp. 1-6.

S. Angizi and D. Fan, “GraphiDe: A graph processing accelerator lever-
aging In-DRAM-computing,” in Proc. GLSVLSI, May 2019, pp. 45-50.
G. F. Oliveira, P. C. Santos, M. A. Alves, and L. Carro, “NIM: An HMC-
based machine for neuron computation,” in Proc. ARC, 2017, pp. 28-35.
M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi,
B. Grot, and D. Pnevmatikatos, “The Mondrian data engine,” in Proc.
ISCA, Jun. 2017, pp. 639-651.

P. C. Santos, G. F. Oliveira, D. G. Tomé, M. A. Z. Alves, E. C. Almeida,
and L. Carro, “Operand size reconfiguration for big data processing in
memory,” in Proc. DATE, Mar. 2017, pp. 710-715.

P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, and Y. Xie, “IPIM:
Programmable in-memory image processing accelerator using near-bank
architecture,” in Proc. ISCA, May 2020, pp. 804-817.

V. Seshadri and O. Mutlu, “In-DRAM bulk bitwise execution engine,”
2019, arXiv:1905.09822.

V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Buddy-RAM:
Improving the performance and efficiency of bulk bitwise operations
using DRAM,” 2016, arXiv:1611.09988.

V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch, O. Mutlu,
P. B. Gibbons, and T. C. Mowry, “Fast bulk bitwise AND and OR
in DRAM,” IEEE Comput. Archit. Lett., vol. 14, no. 2, pp. 127-131,
Jul. 2015.

A. Boroumand, S. Ghose, B. Akin, R. Narayanaswami, G. F. Oliveira,
X. Ma, E. Shiu, and O. Mutlu, “Google neural network models for edge
devices: Analyzing and mitigating machine learning inference bottle-
necks,” in Proc. PACT, 2021, pp. 159-172.

L. Yavits, R. Kaplan, and R. Ginosar, “GIRAF: General purpose in-
storage resistive associative framework,” IEEE Trans. Parallel Distrib.
Syst., vol. 33, no. 2, pp. 276287, Feb. 2022.

J. Lee, H. Kim, S. Yoo, K. Choi, H. P. Hofstee, G.-J. Nam, M. R. Nutter,
and D. Jamsek, “ExtraV: Boosting graph processing near storage with
a coherent accelerator,” Proc. VLDB Endowment, vol. 10, no. 12,
pp. 1706-1717, Aug. 2017.

S. Kang, J. An, J. Kim, and S.-W. Jun, “MithriLog: Near-storage accel-
erator for high-performance log analytics,” in Proc. MICRO, Oct. 2021,
pp. 434-448.

N. M. Ghiasi, J. Park, H. Mustafa, J. Kim, A. Olgun, A. Gollwitzer,
D. S. Cali, C. Firtina, H. Mao, N. A. Alserr, R. Ausavarungnirun,
N. Vijaykumar, M. Alser, and O. Mutlu, “GenStore: A high-performance
in-storage processing system for genome sequence analysis,” in Proc.
ASPLOS, Feb. 2022, pp. 635-654.

K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A case for intelli-
gent disks (IDISKs),” ACM SIGMOD Rec., vol. 27, no. 3, pp. 42-52,
Sep. 1998.

A. Acharya, M. Uysal, and J. Saltz, “Active disks: Programming model,
algorithms and evaluation,” in Proc. ASPLOS, 1998, pp. 81-91.

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A
convolutional neural network accelerator with in-situ analog arithmetic
in crossbars,” in Proc. ISCA, Jun. 2016, pp. 14-26.

22151

IEEE Access

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

[116]

[117]

[118]

[119]

[120]

[121

[122

[123]

[124]

[125]

[126]

[127

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

22152

S.Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, ‘‘Pinatubo: A processing-
in-memory architecture for bulk bitwise operations in emerging non-
volatile memories,” in Proc. DAC, Jun. 2016, pp. 1-6.

D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,”
in Proc. ASPLOS, Mar. 2018, pp. 1-14.

F. Thaler, S. Moosbrugger, C. Osuna, M. Bianco, H. Vogt, A. Afanasyev,
L. Mosimann, O. Fuhrer, T. C. Schulthess, and T. Hoefler, ‘Porting the
COSMO weather model to manycore CPUs,” in Proc. PASC, Jun. 2019,
pp. 1-11.

Z. Wang and T. Nowatzki, “Stream-based memory access specialization
for general purpose processors,” in Proc. ISCA, Jun. 2019, pp. 736-749.
B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong,
J. D. Owens, B. Towles, A. Chang, and S. Rixner, “Imagine: Media
processing with streams,” [EEE Micro, vol. 21, no. 2, pp.35-46,
Mar./Apr. 2001.

S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette,
and A. Saidi, “The reconfigurable streaming vector processor (RSVP),”
in Proc. MICRO, 2003, pp. 141-150.

T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “*Stream-
dataflow acceleration,” in Proc. ISCA, Jun. 2017, pp. 416-429.

O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “‘Runahead execution: An
alternative to very large instruction windows for out-of-order processors,”
in Proc. 9th Int. Symp. High-Perform. Comput. Archit. (HPCA), 2003,
pp- 129-140.

O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution: An
effective alternative to large instruction windows,” IEEE Micro, vol. 23,
no. 6, pp. 20-25, Nov. 2003.

O. Mutlu, H. Kim, and Y. N. Patt, “Techniques for efficient processing in
runahead execution engines,” in Proc. ISCA, 2005, pp. 370-381.

H. R. Zohouri, A. Podobas, and S. Matsuoka, “Combined spatial and
temporal blocking for high-performance stencil computation on FPGAs
using OpenCL,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, Feb. 2018, pp. 153-162.

Marvell. ThunderX2 CPU. Accessed: Dec. 1, 2022. [Online]. Available:
https://en.wikichip.org/wiki/cavium/thunderx2

J. W. Demmel, Applied Numerical Linear Algebra. Philadelphia, PA,
USA: SIAM, 1997.

A. Olgun, J. Gémez Luna, K. Kanellopoulos, B. Salami, H. Hassan,
O. Ergin, and O. Mutlu, “PiDRAM: A holistic end-to-end FPGA-based
framework for processing-in-DRAM,” 2021, arXiv:2111.00082.

J. S. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu, “D-RaNGe:
Using commodity DRAM devices to generate true random numbers
with low latency and high throughput,” in Proc. HPCA, Feb. 2019,
pp. 582-595.

A. Olgun, M. Patel, A. G. Yaglikci, H. Luo, J. S. Kim, F. N. Bostanci,
N. Vijaykumar, O. Ergin, and O. Mutlu, “QUAC-TRNG: High-
throughput true random number generation using quadruple row activa-
tion in commodity DRAM chips,” in Proc. ISCA, Jun. 2021, pp. 944-957.
O. Mutlu, “Intelligent architectures for intelligent computing systems,”
in Proc. DATE, Feb. 2021, pp. 318-323.

V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “RowClone: Fast and energy-efficient in-DRAM bulk
data copy and initialization,” in Proc. 46th Annu. IEEE/ACM Int. Symp.
Microarchitecture, Dec. 2013, pp. 185-197.

K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu,
“Low-cost inter-linked subarrays (LISA): Enabling fast inter-subarray
data movement in DRAM,” in Proc. HPCA, Mar. 2016, pp. 568-580.

V. Seshadri and O. Mutlu, “The processing using memory paradigm:
In-DRAM bulk copy, initialization, bitwise AND and OR,” 2016,
arXiv:1610.09603.

M. Hashemi, O. Mutlu, and Y. N. Patt, “Continuous runahead: Trans-
parent hardware acceleration for memory intensive workloads,” in Proc.
MICRO, Oct. 2016, pp. 1-12.

Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti, “‘Accelerating
sparse matrix-matrix multiplication with 3D-stacked logic-in-memory
hardware,” in Proc. HPEC, Sep. 2013, pp. 1-6.

S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: Analyzing the impact of
3D-stacked memory+-logic devices on MapReduce workloads,” in Proc.
ISPASS, Mar. 2014, pp. 190-200.

B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization in memory
using 3D-stacked DRAM,” in Proc. ISCA, Jun. 2015, pp. 131-143.

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]
[161]
[162]

[163]

J. H. Lee, J. Sim, and H. Kim, “BSSync: Processing near memory for
machine learning workloads with bounded staleness consistency mod-
els,” in Proc. PACT, Oct. 2015, pp. 241-252.

B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization in memory
using 3D-stacked DRAM,” in Proc. 42nd Annu. Int. Symp. Comput.
Archit. (ISCA). New York, NY, USA: Association for Computing Machin-
ery, 2015, pp. 131-143, doi: 10.1145/2749469.2750397.

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“PRIME: A novel processing-in-memory architecture for neural network
computation in ReRAM-based main memory,” in Proc. ISCA, Jun. 2016,
pp. 27-39.

V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Gather-scatter DRAM: In-DRAM
address translation to improve the spatial locality of non-unit strided
accesses,” in Proc. MICRO, Dec. 2015, pp. 267-280.

Z. Liu, 1. Calciu, M. Herlihy, and O. Mutlu, “Concurrent data structures
for near-memory computing,” in Proc. SPAA, Jul. 2017, pp. 235-245.
M. Gao, G. Ayers, and C. Kozyrakis, ‘“Practical near-data process-
ing for in-memory analytics frameworks,” in Proc. PACT, Oct. 2015,
pp. 113-124.

A. Morad, L. Yavits, and R. Ginosar, “GP-SIMD processing-
in-memory,” ACM Trans. Archit. Code Optim., vol. 11, no. 4,
pp. 53:1-53:26, Jan. 2015, doi: 10.1145/2686875.

G. Kim, N. Chatterjee, M. O’Connor, and K. Hsieh, “Toward standard-
ized near-data processing with unrestricted data placement for GPUs,” in
Proc. SC, Nov. 2017, pp. 1-12.

S. L. Xi, A. Augusta, M. Athanassoulis, and S. Idreos, “Beyond the wall:
Near-data processing for databases,” in Proc. 11th Int. Workshop Data
Manage. New Hardw., May 2015, pp. 1-10.

M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz,
“An energy-efficient VLSI architecture for pattern recognition via deep
embedding of computation in SRAM,” in Proc. ICASSP, May 2014,
pp. 8326-8330.

H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim,
“Chameleon: Versatile and practical near-DRAM acceleration architec-
ture for large memory systems,” in Proc. 49th Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO). Piscataway, NJ, USA: IEEE Press,
Oct. 2016, pp. 1-13.

G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and
H. Yang, “GraphH: A processing-in-memory architecture for large-scale
graph processing,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 38, no. 4, pp. 640-653, Apr. 2019.

Y. Huang, L. Zheng, P. Yao, J. Zhao, X. Liao, H. Jin, and J. Xue,
“A heterogeneous PIM hardware-software co-design for energy-efficient
graph processing,” in Proc. IPDPS, May 2020, pp. 684—695.

Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“GraphQ: Scalable PIM-based graph processing,” in Proc. MICRO,
Oct. 2019, pp. 712-725.

M. Alser, Z. Bingol, D. S. Cali, S. Kim, J. Ghose, C. Alkan, and O. Mutlu,
“Accelerating genome analysis: A primer on an ongoing journey,” I[EEE
Micro, vol. 40, no. 5, pp. 65-75, Sep./Oct. 2020.

Hybrid Memory Cube Consortium. Hybrid Memory Cube Spec-
ification Rev. 2.0. Accessed: Dec. 1, 2022. [Online]. Available:
http://www.hybridmemorycube.org/

P. Rosenfeld, “Performance exploration of the hybrid memory cube,”
Ph.D. dissertation, 2014.

G. FE. Oliveira, P. C. Santos, M. A. Z. Alves, and L. Carro, “A generic
processing in memory cycle accurate simulator under hybrid memory
cube architecture,” in Proc. SAMOS, Jul. 2017, pp. 54-61.

Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, ‘““Mapping the Intel
last-level cache,” Cryptol. ePrint Arch., 2015.

A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in Proc. ISCA, Jun. 2013,
pp- 237-248.

A. Saini, “Design of the Intel Pentium processor,” in Proc. ICCD, 1993,
pp. 258-261.

D. Jaggar, “Arm architecture and systems,” IEEE Micro, vol. 17, no. 4,
pp. 9-11, Jul. 1997.

A. S. Waterman, “Design of the RISC-V instruction set architecture,”
Univ. California, Berkeley, Berkeley, CA, USA, 2016.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gemS5 simulator,”
ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1-7, May 2011.

VOLUME 11, 2023

http://dx.doi.org/10.1145/2749469.2750397
http://dx.doi.org/10.1145/2686875

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

IEEE Access

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

J. Lowe-Power et al., “The gem5 simulator: Version 20.0+,” 2020,
arXiv:2007.03152.

NVIDIA Corporation. NVIDIA TITAN V. Accessed: Dec. 1, 2022.
[Online]. Available: https://www.nvidia.com/en-us/titan/titan-v/

R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “CACTI 7: New tools for interconnect exploration in innova-
tive off-chip memories,” ACM Trans. Archit. Code Optim., vol. 14, no. 2,
pp. 1-25, Jun. 2017.

P.-A. Tsai, C. Chen, and D. Sanchez, “Adaptive scheduling for systems
with asymmetric memory hierarchies,” in Proc. MICRO, Oct. 2018,
pp. 641-654.

P-A. Tsai, N. Beckmann, and D. Sanchez, “Jenga: Software-defined
cache hierarchies,” in Proc. ISCA, Jun. 2017, pp. 652-665.

Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-
RTL, power-performance accelerator simulator enabling large design
space exploration of customized architectures,” in Proc. ISCA, Jun. 2014,
pp. 97-108.

S. Salehi and R. F. DeMara, “Energy and area analysis of a floating-
point unit in 15 nm CMOS process technology,” in Proc. SoutheastCon,
Apr. 2015, pp. 1-5.

NVIDIA Corporation. (2017). The NVIDIA Titan V Preview. [Online].
Available: https://www.anandtech.com/show/12170/nvidia-titan-v-
preview-titanomachy

L.-N. Pouchet. PolyBench: The Polyhedral Benchmark Suite.
Accessed: Dec. 1, 2022. [Online]. Available: https://www.cs.colostate.
edu/~pouchet/software/polybench/

J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986.
J. Holewinski, L.-N. Pouchet, and P. Sadayappan, ‘““High-performance
code generation for stencil computations on GPU architectures,” in Proc.
SC, Jun. 2012, pp. 311-320.

K. Datta and K. A. Yelick, Auto-Tuning Stencil Codes for Cache-Based
Multicore Platforms. Berkeley, CA, USA: Univ. of California, Berkeley,
2009.

M. Schonherr, K. Kucher, M. Geier, M. Stiebler, S. Freudiger, and
M. Krafczyk, “Multi-thread implementations of the lattice Boltzmann
method on non-uniform grids for CPUs and GPUs,” Comput. Math.
Appl., vol. 61, no. 12, pp. 3730-3743, Jun. 2011.

G. Allen, T. Goodale, G. Lanfermann, T. Radke, E. Seidel, W. Benger,
H. C. Hege, A. Merzky, J. Masso, and J. Shalf, “Solving Einstein’s equa-
tions on supercomputers,” Computer, vol. 32, no. 12, pp. 52-58, 1999.
H. Ltaief, P. Luszczek, and J. Dongarra, “Profiling high performance
dense linear algebra algorithms on multicore architectures for power
and energy efficiency,” Comput. Sci., Res. Develop., vol. 27, no. 4,
pp. 277-287, Nov. 2012.

D.U.Lee, K. W.Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim,
D. S. Kim, H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J. Kim,
J. Lee, K. W. Park, B. Chung, and S. Hong, “A 1.2 V 8 Gb 8-channel
128 GB/s high-bandwidth memory (HBM) stacked DRAM with effective
microbump I/O test methods using 29 nm process and TSV,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014,
pp. 432-433.

D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simulta-
neous multi-layer access: Improving 3D-stacked memory bandwidth at
low cost,” ACM Trans. Archit. Code Optim., vol. 12, no. 4, pp. 1-29,
Jan. 2016.

L. Szustak, K. Rojek, and P. Gepner, “Using Intel Xeon Phi coprocessor
to accelerate computations in MPDATA algorithm,” in Proc. PPAM,
2013, pp. 582-592.

O. Anjum, G. D. G. Simon, M. Hidayetoglu, and W.-M. Hwu, “An effi-
cient GPU implementation technique for higher-order 3D stencils,” in
Proc. HPCC, Aug. 2019, pp. 552-561.

Q. Sun, Y. Liu, H. Yang, Z. Jiang, X. Liu, M. Dun, Z. Luan, and
D. Qian, “CsTuner: Scalable auto-tuning framework for complex stencil
computation on GPUs,” in Proc. CLUSTER, Sep. 2021, pp. 192-203.
M. Wahib and N. Maruyama, ““Scalable kernel fusion for memory-bound
GPU applications,” in Proc. SC, Nov. 2014, pp. 191-202.

J. de Fine Licht, A. Kuster, T. De Matteis, T. Ben-Nun, D. Hofer, and
T. Hoefler, “StencilFlow: Mapping large stencil programs to distributed
spatial computing systems,” in Proc. CGO, Feb. 2021, pp. 315-326.

A. Sohrabizadeh, C. H. Yu, M. Gao, and J. Cong, “AutoDSE: Enabling
software programmers to design efficient FPGA accelerators,” ACM
Trans. Design Autom. Electron. Syst., vol. 27, no. 4, pp. 1-27, Jul. 2022.
S. Wang and Y. Liang, “A comprehensive framework for synthesizing
stencil algorithms on FPGAs using OpenCL model,” in Proc. DAC,
Jun. 2017, pp. 1-6.

VOLUME 11, 2023

[188]

[189]

[190]

[191]

[192]

[193]

E. Reggiani, E. Del Sozzo, D. Conficconi, G. Natale, C. Moroni, and
M. D. Santambrogio, ‘“Enhancing the scalability of multi-FPGA sten-
cil computations via highly optimized HDL components,” ACM Trans.
Reconfigurable Technol. Syst., vol. 14, no. 3, pp. 1-33, Sep. 2021.

M. Koraei, O. Fatemi, and M. Jahre, “DCMI: A scalable strategy for
accelerating iterative stencil loops on FPGAs,” ACM Trans. Archit. Code
Optim., vol. 16, no. 4, pp. 1-24, Dec. 2019.

X.Tian,Z. Ye, A. Lu, L. Guo, Y. Chi, and Z. Fang, “SASA: A scalable and
automatic stencil acceleration framework for optimized hybrid spatial and
temporal parallelism on HBM-based FPGAs,” 2022, arXiv:2208.10770.
S. Huang, L.-W. Chang, I. El Hajj, S. Garcia De Gonzalo, J. Gémez-Luna,
S. R. Chalamalasetti, M. El-Hadedy, D. Milojicic, O. Mutlu, D. Chen, and
W.-M. Hwu, “Analysis and modeling of collaborative execution strategies
for heterogeneous CPU-FPGA architectures,” in Proc. ICPE, Apr. 2019,
pp- 79-90.

J. Jiang, Z. Wang, X. Liu, J. Gémez-Luna, N. Guan, Q. Deng, W. Zhang,
and O. Mutlu, “Boyi: A systematic framework for automatically deciding
the right execution model of OpenCL applications on FPGAs,” in Proc.
FPGA, Feb. 2020, pp. 299-309.

A. Denzler, R. Bera, N. Hajinazar, G. Singh, G. F. Oliveira,
J. Gémez-Luna, and O. Mutlu, “Casper: Accelerating stencil computa-
tion using near-cache processing,” 2021, arXiv:2112.14216.

ALAIN DENZLER received the B.S. and M.S.
degrees in computer science from ETH Ziirich, in
2017 and 2020, respectively. He currently works as
a Software Engineer with NVIDIA Switzerland.

GERALDO F. OLIVEIRA received the B.S. degree
in computer science from the Federal Univer-
sity of Vicosa, Vicosa, Brazil, in 2015, and
the M.S. degree in computer science from the
Federal University of Rio Grande do Sul, Porto
Alegre, Brazil, in 2017. He is currently pursu-
ing the Ph.D. degree with ETH Ziirich, Ziirich,
Switzerland, under the supervision of Prof. Onur
Mutlu. His current research interests include
system support for processing-in-memory and

processing-using-memory architectures, data-centric accelerators for emerg-
ing applications, approximate computing, and emerging memory systems for
consumer devices. He has several publications on these topics.

NASTARAN HAIJINAZAR received the M.S.
degree in computer hardware engineering from
the Sharif University of Technology, Tehran,
Iran, in 2011, and the Ph.D. degree in computer
science from Simon Fraser University, British
Columbia, Canada, in 2020. She is currently a
Senior Researcher with ETH Ziirich. Her research
interests include several aspects of computer
architecture with a significant focus on designing
efficient high-performance computing systems,

memory architectures, and intelligent memory management techniques.

RAHUL BERA received the master’s degree
in computer science from the Indian Institute
of Technology Kanpur, in 2017. He is cur-
rently pursuing the Ph.D. degree with ETH
Ziirich, Switzerland. He has worked with AMD
and Intel Labs, India. His research interests
include the broad areas of memory hierarchy
design and applied machine learning in computer
architecture.

22153

IEEE Access

A. Dentzler et al.: Casper: Accelerating Stencil Computations Using Near-Cache Processing

GAGANDEEP SINGH received the joint M.Sc.
degree (Hons.) in integrated circuit design
from Technische Universitit Miinchen (TUM),
Germany, and Nanyang Technological Uni-
versity (NTU), Singapore, in 2017, and the
Ph.D. degree from Technische Universiteit Eind-
hoven, The Netherlands, under the supervision of
Prof. Henk Corporaal and Prof. Onur Mutlu,
in 2021. From June 2018 to January 2020, he was
a Predoctoral Researcher with IBM Research
Ziirich, Switzerland. He has worked with Oracle, India, and also performed
research with imec, Belgium. He is currently a Senior Researcher with
ETH Ziirich. He research interests include computer architecture, FPGA
acceleration, processing-in-memory, bioinformatics, and machine learning.

JUAN GOMEZ-LUNA (Member, IEEE) received
the B.S. and M.S. degrees in telecommunication
engineering from the University of Sevilla, Spain,
in 2001, and the Ph.D. degree in computer science
from the University of Cérdoba, Spain, in 2012.
From 2005 to 2017, he was a Faculty Member with
the University of Cérdoba. He is currently a Senior
Researcher and a Lecturer with the SAFARI
Research Group, ETH Ziirich. He is the lead author
of PrIM (https://github.com/CMU-SAFARI/prim-
benchmarks), the first publicly available benchmark suite for a real-world
processing-in-memory architecture, and Chai (https://github.com/chai-
benchmarks/chai), a benchmark suite for heterogeneous systems with
CPU/GPU/FPGA. His research interests include processing-in-memory,
memory systems, heterogeneous computing, and hardware and software
acceleration of medical imaging and bioinformatics.

22154

ONUR MUTLU (Fellow, IEEE) received the B.S.
degree in computer engineering and psychology
from the University of Michigan, Ann Arbor, and
the M.S. and Ph.D. degrees in electrical and com-
puter engineering from The University of Texas
at Austin. He started the Computer Architec-
ture Group, Microsoft Research (2006-2009) and
has held various product and research positions
with Intel Corporation, Advanced Micro Devices,
VMware, and Google. He is currently a Profes-
sor of computer science with ETH Ziirich. He is also a Faculty Member
with Carnegie Mellon University, where he previously held the Strecker
Early Career Professorship. A variety of techniques that he, along with
his group and collaborators, has invented over the years have influenced
the industry and have been employed in commercial microprocessors and
memory/storage systems. His research interests include computer architec-
ture, systems, hardware security, and bioinformatics. He is an ACM Fellow
and an elected member of the Academy of Europe (Academia Europaea).
He received the IEEE High-Performance Computer Architecture Test of
Time Award, the IEEE Computer Society Edward J. McCluskey Tech-
nical Achievement Award, the ACM SIGARCH Maurice Wilkes Award,
the inaugural IEEE Computer Society Young Computer Architect Award,
the inaugural Intel Early Career Faculty Award, the U.S. National Sci-
ence Foundation CAREER Award, the Carnegie Mellon University Ladd
Research Award, the faculty partnership awards from various companies,
and a healthy number of best paper or “top pick” paper recognitions at
various computer systems, architecture, and security venues. His computer
architecture and digital logic design course lectures and materials are freely
available on YouTube (https://www.youtube.com/OnurMutluLectures), and
his research group makes a wide variety of software and hardware artifacts
freely available online (https://safari.ethz.ch/). For more information, please
see his webpage at https://people.inf.ethz.ch/omutlu/.

VOLUME 11, 2023

