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ABSTRACT Image segmentation is an essential part of remote sensing preprocessing. This paper proposes
a deep learning-based multiscale pyramid sieve and analysis module to solve the problems associated
with multiscale object coexistence in the complex semantic environments of multispectral remote sensing
images. The image information distribution features, which change with scales in different convolutional
feature map pyramids, were investigated, and the relationship between informative scales and the variation
function curve was examined. Then, the proposed sieve and analysis module was designed according to
the results. The proposed module is described as follows. (1) First, a feature map pyramid is built via a
convolution calculation. (2) Sieve informative feature layers from the feature map pyramid with variation
analysis. (3) Fuse informative feature layers. (4) The final feature representation is input into subsequent
calculations for image segmentation. Experimental results demonstrate that, compared to the control group,
the precision of the experimental group improved by 3.57%-5.89%, and the intraclass conformity improved
by 2.74%-5.58%. In addition, the intraclass chaos decreased by 1.5%-7.9%. The experimental results
demonstrate that the proposedmultiscale pyramid sieve and analysis module can separate informative feature
layers and improve the hierarchical segmentation accuracy of remote sensing multispectral images.

INDEX TERMS Convolutional networks, deep learning, image segmentation, multiscale pyramid sieve,
remote sensing.

I. INTRODUCTION
Segmentation is the primary task in remote sensing image
processing. Prior to 2000, the segmentation methods used
in remote sensing image processing can be categorized in to
five types [1], i.e., threshold-based segmentationmethods [2],
region-based segmentation methods [3], [4], edge-based seg-
mentation methods [5], texture features-based segmenta-
tion methods, and clustering-based segmentation methods.
In 2006, Hinton [6] proposed deep neural network learn-
ing based on the human brain. Subsequently, the primary
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main segmentation methods moved toward graph theory-
based methods, clustering-based methods, classification-
based methods, and hybrid clustering and classification
methods. With the fast development of deep learning theory,
due to a lack of generalizability, traditional image segmen-
tation methods, which rely on pure mathematical formula
derivation, have been gradually replaced by deep neural net-
work methods, especially for images with complex scenes.
As shown in Table 1, the state-of-the-art deep neural network-
based image segmentation method has differentiated hun-
dreds of model structures [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29].
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TABLE 1. Typical deep learning-based image segmentation methods.

In the image segmentation task, context information has
a significant impact on segmentation accuracy. For convo-
lutional neural network-based segmentation algorithms, the
acquisition of context information depends on the receptive
field, i.e., the settings of the convolution kernel.

Among deep learning-based image segmentation methods,
the AlexNet method [30] comprises five convolutional layers,
three pooling layers, and three fully connected layers, and the
sizes of the AlexNet convolution kernels in the convolutional
layers are 11 × 11, 5 × 5, 3 × 3, 3 × 3, and 3 × 3. The
ZFNet method, which is based on AlexNet, optimized the
convolution kernel size of the first convolution layer to 7 × 7
and the stride, and, as a result, segmentation accuracy was
improved [31]. For the Visual Geometry Group-16 (VGG-16)
method [32], the 2014 ILSVRC (DET) champion, the hid-
den layers comprise thirteen convolutional layers, three fully
connected layers, and five pooling layers. Here, the size of
the convolution kernel in the convolutional layers is 3 × 3.
Compared to AlexNet and ZFNet, this small kernel size and
the multilayer nonlinear layers in the VGG method provide
sufficient network depth to learn more complex patterns with
fewer parameters. In addition, for the GoogLeNet-Inception
v1 method, the kernel size in the first convolutional layer
is 7 × 7. Compared to VGG, GoogLeNet has been shown to

obtain good classification performance while controlling the
number of calculations and parameters [33]. For the ResNet
method [34], which was proposed in 2015, the kernel size in
the first convolutional layer is also 7 × 7, and the kernel size
in the remaining convolutional layers is 3 × 3. Segmentation
algorithm models have constantly attempted to optimize the
receptive field. For example, the dilated convolution tech-
nique [35] expands the receptive field by setting the interval in
the convolution kernel element. In theory, the receptive field
of algorithms, such as ResNet, can be larger than the size of
the input image. However, Zhou [36] proved that the empir-
ical receptive field of a CNN is smaller than the theoretical
value. Thus, more effective and priori global descriptions are
required in future research.

The pyramid scene parsing network (PSPNet) was pro-
posed to solve this problem. PSPNet considers the context
information under the multiscale receptive field (Fig. 1).
PSPNet’s pyramid pooling module has four pooling sizes,
i.e., 1 × 1, 2 × 2, 3 × 3, and 6 × 6. Then, 1 × 1 convolution
layers are used to calculate the weight of each pyramid layer,
and bilinear interpolation is utilized to restore the layers to
the same size. Here, the size of the feature layers is 1/8 of
the original image. Finally, all context information obtained
via pooling is integrated through convolution to generate the
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FIGURE 1. The architecture of PSPNet [11].

final segmentation result [37]. The PSPNet method considers
the multiple scales of the receptive field but cannot filter the
scales. However, the scale of ground objects varies greatly in
informative remote sensing images, and the sieve and analysis
of feature scales are particularly critical.

Thus, this paper proposes a multiscale pyramid sieve and
analysis model based on PSPNet. The image’s full-scale
pyramid structure feature map is first constructed in this
model. Then, the optimal scales set are screened through the
sieve and analysis algorithm in the pyramid pooling module.
Further convolution operations and feature extraction pro-
cesses are then performed. Finally, image segmentation is
performed.

PSPNet-based multiscale image segmentation methods are
commonly used in conventional visual recognition tasks.
However, for remote sensing images, the number of targeted
studies has been increasing [38], [39], [40]. The proposed
multiscale pyramid sieve and analysis strategy significantly
improves the precision of multiscale image segmentation by
3.57%–5.89%. In addition, the proposed method is effective
for remote sensing images, which have more complex seman-
tic environments and larger scale differences.

The remainder of this paper is organized as follows.
In Section II we provide the definitions of optimal scale and
propose the sieve and analysis algorithm for optimal scales.
To confirm the performance of the proposed algorithm, exper-
iments in multispectral remote sensing images are presented
in Section III. Section IV concludes the paper and discusses
future research directions.

II. METHODOLOGY
In this section, we provide definitions for multiscale and
optimal scale, propose the sieve and analysis algorithm for
optimal scale, and give the verification process through
single-scale images and recombination-scale images.

A. DEFINITION OF MULTISCALE AND OPTIMAL SCALE
Image multiscale refers to the spatial series {Vj}j∈Z in scale
space L2(R). The series satisfies the conditions of monotonic-
ity, approximability, scalability, and translation invariance,
and the Riesz base provides a generalized multiscale analysis
theory that departs from the traditional theory. This new
theory builds scales based on other scale functions in the scale
space [41], [42]. (Fig. 2)

FIGURE 2. Different multiscale models. Traditional multiscale models
have advantages in computation rate, decay rate, and the globality of
information perception; however, the interval distance between two
adjacent layers increases exponentially with the establishment of the
multiscale model, which leads to missing information layers. Multiscale
pyramid models are closer to the multiscale perception mechanism in
human vision.

FIGURE 3. Traditional multiscale selection and optimal multiscale
selection. The traditional selection method selects multiscale layers from
a multiscale pyramid model with a fixed step. The optimal selection
method sieves informative layers from a multiscale pyramid model with a
variation function.

In generalized multiscale analysis theory and in scale
space L2(R), {Vj}j∈Z is a spatial series termed as Vj ⊂

L2 (R) , ,Vj⊂Vj+1,j ∈ Z . For each {Vj}j∈Z , there exists ϕj(x),{
ϕj(x − k/2j)

}
kϵZ , i.e., the orthonormal basis of Vj.

The optimal scale is formulated in single-scale image seg-
mentation to detect and localize boundaries accurately. Here,
the targets are segmented into one or more segments with low
fragmentation and high feature homogeneity [43] (Fig. 3).

There are two modes to evaluate the optimal scales, i.e.,
posterior and prior models. The posterior model refers to
images initially segmented under any scale and then brought
into the evaluation system for segmentation results to fil-
ter out the optimal scale. The evaluation system includes
qualitative evaluations, e.g., visual interpretation, and quan-
titative evaluations, e.g., homogeneity and inhomogeneity
detection [44]. The prior model consists of various functions,
local variance, objective functions, and RMAS detection.
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Note that the posterior model is more applicable to traditional
multiscale models and considers opportunity costs. In con-
trast, the prior model is more practical for continuous-scale
convolutional deconstruction modes.

A variation function is employed to detect the spatial
variation characteristics and spatial variation intensity of the
regional variables. The equation is given as follows:

γ (h, α) =
1
V

∫
V

[z (x) − z(x+ h)]2dx (1)

here, γ is the continuous variable variation function, x is the
regional variable, h is the delay distance, and α is the variable
range.

In 1997, Atkinson and Kelly [45] introduced the variation
function into image analysis. This function is used to reflect
the relationship between the image scale and information
distribution. This variation function is expressed as follows:

γ (h, α) =
1

N (h)

∑N (h)

i=1
[z (xi) − z(xi + h)]2 (2)

here, γ is the discrete variable variation function, x is the
regional variable, h is the delay distance, α is the variable
range, and N is the resolution.

B. DEFINITION OF MOMENT
The moment is used to describe the characteristics of a
random variable in mathematical statistics and applied to
show the geometrical characteristics in image analysis. Stable
geometrical characteristics are not affected by light, noise,
and geometric deformation. Therefore, based on generalized
multiscale analysis, we introduce the geometric moments for
the subsequent multiscale analysis.

We set the gray distribution of the image target area D as:

f (x, y) (x, y) ∈ D (3)

The origin moment of order p + q for D:

mpq =

∫∫
D

xpyqf (x, y)dxdy (p, q = 0, 1, 2 · · · ) (4)

The central moment of order p + q for D:

µpq =

∫∫
D

(x − x)p(y− y)qf (x, y)dxdy (p, q = 0, 1, 2 · · · )

(5)

The relationship between Origin moment and Central
moment:

µpq =

p∑
k=0

q∑
l=0

(
p
k

) (
q
l

)
(−1)k−lmp−k,q−lmk10m

l
01m

−(k+l)
00

(6)

The normalized central moments:

ηpq =
µpq

µr
00

(r =
p+q+2

2 , p+ q = 2, 3 · · · ) (7)

TABLE 2. Moment operators.

For the moment of the image, the lower its order, the more
sensitive it is to the extreme value and the lower its computa-
tional complexity: φ01, φ02,φ03.
Hu. M. K proposed the concept of invariant moments., and

constructed seven invariant moments using the second-order
normalized central moments and the third-order normal-
ized central moments: φH1, φH2,φH3, φH4, φH5, φH6, φH7.
Invariant moments have rotation invariance, scaling invari-
ance and translation invariance. But in keeping image
characteristics, φH1, φH2, andφH3 show higher stabil-
ity than φH4, φH5, φH6, and φH7. Especially, φH2, φH3
show well in keeping boundaries in multiscale image
segmentation.

Considering the high requirements for the stability of mul-
tiscale image segmentation, this paper uses three sets of
moments Mc, Me, and Mf as the basic operators of the C.
multiscale optimal scales sieve and analysis model, as shown
in Table 2.

C. MULTISCALE OPTIMAL SCALES SIEVE AND ANALYSIS
MODEL
There are different types of objects in remote sensing images.
Objects with attributes, including scale, shape, pattern, and
color, comprise an object system (As shown in Fig. 4: multi-
scale pyramid 1 - multiscale pyramid N). When guided by a
specific application direction, an optimal scale always exists
for mono-scale object systems.

However, the regularity between object and image scales
is somewhat suppressed for images with a complex object
system. The SingleScale image was developed previ-
ously to analyze the frequency between object and image
scales. The complexity of image object systems is gradu-
ally increased to match the complexity of remote sensing
images. Convolutional operators for feature maps are defined
in Table 2.
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FIGURE 4. Multiscale Optimal scales sieve and analysis model.

FIGURE 5. SingleScale set analysis model.

D. CONVOLUTIONAL MULTISCALE PYRAMID MODEL
ANALYSIS FOR SINGLESCALE IMAGE
As shown in Fig. 5, the following set of SingleScale images
was created:

{SingleScale-1; SingleScale-2; SingleScale-3}
Here, each image in the set contains one object type, and

each object has the same scale, shape, and pattern. However,
the overall scale is a unique variable among the images.
Three continuous-scale convolutional deconstruction models
were constructed for each image using three convolutional
operators, i.e., Mc, Me, and Mf, as shown in the equation at
the bottom of the next page.

Statistical analysis was then performed for the three convo-
lutional feature map frameworks Mc, Me, and Mf, as shown
in the equation at the bottom of the next page.

As shown in Fig. 6, the brightness distribution for 50 scale
levels in the convolutional feature pyramid Mc reveals that

there was only one steep section of change for all three
SingleScale images. The wave was observed to be stable
with scale-level growth. In addition, the steep section was
followed to move toward a high scale level between images
with increased object size. The amplitude also increased, and
slight fluctuations were intensified around the steep section.

As shown in Fig. 7, the brightness distribution for 50 scale
levels in the convolutional feature pyramid Me demonstrates
that the three curves had similar trends (for scale-level
growth) for all three SingleScale images. Here, there was a
single change section, and thewavewas observed to be stable.
The first peak was observed to move toward a high scale level
with the increase in object size between images. In addition,
the amplitude revealed no significant difference, and the
wavelength was increased. The second wave was observed
to move toward a higher scale level, and the amplitude and
wavelength increased.

As shown in Fig. 8, the brightness distribution for 50 scale
levels in the Mf convolutional feature pyramid revealed that
the three curves for all SingleScale images exhibited similar
trends as the Me convolutional feature pyramid. Here, sev-
eral effects occurred with the increased object size among
images. The first peak reached a high scale level, and the
amplitude showed no significant difference. The wavelength
was also observed to increase. We found that the second wave
advanced toward a higher scale level, and the amplitude and
wavelength increased.

Thus, we conclude the following from the analysis of the
statistical information for the SingleScale images in the three
convolutional feature pyramids.

1) The information distribution changes with image con-
volutional feature pyramid scales in a nonuniform variation
mode. A significant difference may exist between adjacent
scale levels for statistical information in the images.

2) The distribution of information has different features
under different convolutional feature pyramids.

3) There is a similar distribution of information under the
same convolutional feature pyramid when the object scale is
a unique variable between images.

4) The object scales can influence the information distri-
bution in the image’s convolutional feature pyramid.

E. CONVOLUTIONAL MULTISCALE PYRAMID MODEL
ANALYSIS FOR RECOMBINATION-SCALE IMAGE
A set of SingleScale images was created, including

{SingleScale-1, SingleScale-2, SingleScale-3}.
Here, each image in the set has a single object type, and

each object has the same scale, shape, and pattern. In addition,
the scale of the objects is a unique variable between images.
A set of RecombinationScale images was created based on
the SingleScale image set, including:

RecombinationScale-1:
{RecombinationScale-1) | SingleScale-2 ∪ SingleScale-3}
RecombinationScale-2:
{RecombinationScale-2) | SingleScale-1 ∪ SingleScale-3}

(Fig. 9)
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FIGURE 6. Distribution of SingleScale set brightness in the Mc model.

FIGURE 7. Distribution of SingleScale set brightness in the Me model.

FIGURE 8. Distribution of SingleScale set brightness in the Mf model.

Two convolutional feature pyramid models were con-
structed for images using operators Me and Mf, includ-
ing: SingleScale-1, SingleScale-2, RecombinationScale-1,
and RecombinationScale-2, as shown in the equation at the
bottom of the next page.

A statistical analysis was performed in two groups for the
Me and Mf convolutional feature pyramid.
Group <1>{

Me : SingleScale_2_Me;RecombinationScale_1_Me
Mf : SingleScale_2_Mf;RecombinationScale_1_Mf

Group <2>{
Me : SingleScale_1_Me;RecombinationScale_2_Me
Mf : SingleScale_1_Mf;RecombinationScale_2_Mf

FIGURE 9. Recombination-scale set analysis model.

Group <1>
The brightness distribution for 50 scale levels in the Me

and Mf convolutional feature pyramids was assessed. The
two curves exhibited a similar trend when in the same
convolutional feature pyramid for the SingleScale-2 and
RecombinationScale-1 images (Fig. 10 and Fig. 11, respec-
tively). The brightness values for the SingleScale image were
higher than those of the RecombinationScale image before
level 20, and the opposite was observed after level 20. In addi-
tion, there was a more significant amount of fluctuation in the
RecombinationScale image curve.
Group <2>

The brightness distribution for 50 scale levels in the Me
and Mf convolutional feature pyramids was assessed, and we
found that the two curves exhibited a similar trend for images
SingleScale-1 and RecombinationScale-2 when in the same
convolutional feature pyramid. The brightness values for the
SingleScale image were higher than the RecombinationScale
image before level 10, and the RecombinationScale image
featured higher brightness values after level 10. We also
observed a more significant fluctuation in the Recombina-
tionScale image curve. (Fig. 12, Fig. 13)
The analysis of the statistical information for the Recombi-

nationScale images in the two convolutional feature pyramids
produced the following conclusions.

1) The information distribution changes with image con-
volutional feature pyramid scales in a nonuniform variation


SingleScale − 1 : SingleScale − 1 − Mc;SingleScale − 1 − Me;SingleScale − 1 − Mf
SingleScale − 2 : SingleScale − 2 − Mc;SingleScale − 2 − Me;SingleScale − 2 − Mf
SingleScale − 3 : SingleScale − 3 − Mc;SingleScale − 3 − Me;SingleScale − 3 − Mf


Mc : SingleScale − 1 − Mc;SingleScale − 2 − Mc;SingleScale − 3 − Mc
Me : SingleScale − 1 − Me;SingleScale − 2 − Me;SingleScale − 3 − Me
Mf : SingleScale − 1 − Mf ;SingleScale − 2 − Mf ;SingleScale − 3 − Mf
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FIGURE 10. Brightness distribution for recombination-scale set 1 in the
Me model.

FIGURE 11. Brightness distribution for recombination-scale set 1 in the
Mf model.

FIGURE 12. Brightness distribution for RecombinationScale set 2 in the
Me model.

FIGURE 13. Brightness distribution for RecombinationScale set 2 in the
Mf model.

mode. In addition, a significant difference may exist between
adjacent scale levels in the statistical information in images.

2) The distribution of information has different features
under different convolutional feature pyramids.

FIGURE 14. Variation function analysis model.

3) There is a similar distribution of information for the
SingleScale and RecombinationScale images while under the
same convolutional feature pyramid.

4) There is a feature level for overlaying multiple mono-
scale object systems. Here, the statistical information is sup-
pressed and promoted before and after the feature level,
respectively. The scale of the superimposed mono-scale
object system influences the position of the feature level.

F. VARIATION FUNCTION ANALYSIS
A set of SingleScale images were created, including (Fig. 14):
{SingleScale-1;SingleScale-2}.
Here, each image in the set has a single object type, and

each object has the same scale, shape, and pattern. The scale
of the objects is a unique variable between the images.

The following set of RecombinationScale images was cre-
ated based on a single-scale image set:

RecombinationScale-1:

{RecombinationScale_1 | SingleScale_1 ∪ SingleScale_2}

Using the Mc operator, a convolutional feature
pyramid model was created for SingleScale-2 and
RecombinationScale-1 images.{

SingleScale_2 : SingleScale_2_Mc{
RecombinationScale1: RecombinationScale_1_Mc

Variation function analysis was then performed for the Mc
convolutional feature pyramid.

{
SingleScal_2 : SingleScale_2_Me;SingleScale_2_Mf{
SingleScal_1 : SingleScale_1_Me;SingleScale_1_Mf{
RecombinationScale_1 : RecombinationScale_1_Me;RecombinationScale_1_Mf
RecombinationScale_2 : RecombinationScale_2_Me;RecombinationScale_2_Mf
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FIGURE 15. Variation function analysis.

FIGURE 16. Remote sensing satellite multispectral image.

A variation function was superimposed on twoMcmodels.
The variation function curve for the SingleScale and Recom-
binationScale images was compared within the convolutional
feature pyramid (Fig. 15). We found that both curves exhib-
ited the same trend except for an extra peakon the latter
curve, which indicates a steep change in brightness value. The
additional wave was revealed on level 20, which is the same
as the feature level of group <1> in the RecombinationScale
image convolutional feature pyramid analysis. According to
the result of the analysis, the informative scales demonstrate
steep changes in the variation curve. Thus, we can fix the
informative levels using the variation curve analysis.

Hence, the optimal multiscale pyramid sieve analysis
mechanism was considered to involve the following steps:
(1) First, a multiscale feature map pyramid is built. (2) Sieve
optimal scales (informative feature layers) from the feature
map pyramid with variation analysis. (3) Fuse optimal scales
(informative feature layers). (4) The final feature representa-
tion is then input into subsequent calculations.

III. APPLICATIONS AND ANALYSIS
A prototype of the proposed pyramid multiscale sieve analy-
sis model was implemented to evaluate its feasibility and per-
formance. Here the proposed model was applied to a remote
sensing image, and an optimal-scale image was included
in the multiscale image segmentation algorithm. We then
evaluated the segmentation results using different evaluation
indices.

A. DATA PREPARATION
The remote sensing image used in the verification was
acquired from the National Defense Technology Industry
Administration of China and the National Space Administra-
tion of China (Fig. 16).

The dataset includes remote sensing satellite multispectral
images with eight bands (covering 850 kilometers× 300 kilo-
meters) and ground truth data (main target including corn,
soybeans, and rice), used explicitly for crop type recognition.
(https://dianshi.bce.baidu.com/)

B. ANALYSIS
Overview of the proposed model: (1) remote sensing image
preprocessing, (2) convolutional calculation of feature map,
(3) multiscale pyramid sieve and analysis pool, (4) upsam-
pling and multiscale convolution, (5) evaluation.

In this experiment, the remote sensing satellite multispec-
tral images included band alpha 1, band alpha 2, band alpha 3,
band alpha 4, band alpha5, band R, band B, and band G.
The size of the experiment image slices was 1024 × 1024
pixels. After the multispectral remote sensing image was pre-
processed, the CNNs extracted featuremaps for each spectral.
The convolution kernel included Ma, Mb, Mc, Md, Me, Mf,
Mg, Mh, Mi, and Mj, which focus on different remote sensing
features. Here, Ma and Mb focused on texture details, and
Mh, Mi, and Mj contained fragmentation information. The
operators Mc, Me, Mf, and Mg were sensitive to boundary
information, which is essential for the segmentation task.

Given the feature maps, as shown in Fig. 18, we utilized the
multiscale pyramid sieve and analysis pool (Fig. 17) to gather
image features. Note that the pyramid pool fuses features
under different pyramid scales.

Take the Mc feature pyramid of band alpha 3 as an exam-
ple, this paper calculated the brightness value of the feature
pyramid from levels 1 to 50, shown in Fig. 19, which revealed
that the curve was steady with no steep changes and had sev-
eral small fluctuations. Note that this result does not clearly
suggest excessive information enrichment at a specific scale.
A variation function was subsequently applied to the statisti-
cal results. As shown in Fig. 20, after the variation calcula-
tion, informative levels were labeled (Level<2>, Level<4>,
Level<11>, Level<23>, Level<34>). In consideration of
the real ground target’s granularity and maintaining a rea-
sonable representation gap, we set a threshold before screen-
ing out unsuitable levels (Level<23> and Level<34> were
coarse, and Level<2> and Level<4> were too close to the
original image under this rule). Note that Level<11> was
labeled at last.

The sieve and analysis process was repeated on all feature
maps of all bands. Then, the upsampling and concatenation
layers were used to form the final feature representation,
which carried local and global context information. Finally,
the representation was input to a convolution layer and filters
to obtain the final prediction.

Thus, we conducted a control group experiment to verify
the effectiveness of the multiscale pyramid sieve and analysis
pool. Here, the experimental procedures and parameters were
unchanged, and we removed the sieve and analysis process
for informative levels. To ensure the strictness of the exper-
iment, the control groups covered levels from Level<3> to
Level<22>, in which all feature maps of all bands used the
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FIGURE 17. Remote sensing image segmentation model.

FIGURE 18. Convolutional feature maps.

FIGURE 19. Distribution of brightness values for band Alpha 3 in Mc.

same level.
C-level<03> C-level<04> C-level<05> C-level<06>
C-level<07> C-level<08> C-level<09> C-level<10>
C-level<12> C-level<13> C-level<14> C-level<15>
C-level<16> C-level<17> C-level<18> C-level<19>
C-level<20> C-level<21> C-level<22>

FIGURE 20. Variation function for band Alpha 3 in Mc.

FIGURE 21. Level<11> feature maps of eight bands in Mc. As mentioned
previously, the distribution of information has different features under
different convolutional feature pyramids. Thus, the sieve and analysis
process should be repeated.

C. RESULTS AND EVALUATION
Multispectral remote sensing image segmentation results
were shown in Fig. 22, which includes 20 sub-images:
Experiment group:
O-level<11>
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FIGURE 22. Multispectral remote sensing image segmentation results.

Control group:

C-level<03> C-level<04> C-level<05> C-level<06>
C-level<07> C-level<08> C-level<09> C-level<10>
C-level<12> C-level<13> C-level<14> C-level<15>
C-level<16> C-level<17> C-level<18> C-level<19>
C-level<20> C-level<21> C-level<22>

Because theMultispectral remote sensing image segmenta-
tion results contain many broken patches, we cannot visually
observe the difference between the experiment group and the
control group. Then we introduced the ground truth data and
evaluation indexes.

In the ground truth data, red represents corn, blue rep-
resents soybeans, and green represents rice. In this study,
we converted the ground truth data into binary images for a
subsequent evaluation (Fig. 23).
In this evaluation, we considered seven different evaluation

indices, including the Dice ratio, the Hausdorff distance, the
Jaccard index, the average perpendicular distance, the confor-
mity coefficient, precision, and recall, which are described as
follows.

1) The Dice ratio, which is derived from a reliability
measure known as the kappa statistic, computes the balance

FIGURE 23. Ground truth data and conversion process.

of the intersection area divided by the mean sum of each
individual area [46], [47]. With this evaluation index, the
optimal group O-level<11>, compared to the control groups,
demonstrated the highest similarity (86%) with the ground
truth data (Table 3).
2) The Hausdorff distance [48], which is a measure of the

maximum discrepancy between two true subsets in space,
demonstrates the inhomogeneity between segmented blocks
in image segmentation. A higher Hausdorff distance value
indicates higher inhomogeneity between segmented blocks.
Here, we found that the optimal groupO-level<11> obtained
the shortest Hausdorff distance value (333.00); thus, it exhib-
ited the lowest intraclass chaos. Note that C-level<10> and
C-level<12> (361.26 and 361.51) demonstrated poor perfor-
mance. Accordingly, compared to the control groups, intr-
aclass chaos was reduced by 1.5%–7.9% in the experiment
group (Table 3).

3) The Jaccard index measures the ratio of the intersection
area of two sets divided by the area of their union [49].
Note that the Jaccard index is similar to the Dice ratio. Here,
we found that, compared to the control groups, the opti-
mal group O-level<11> obtained the highest Jaccard index
value (0.45) and demonstrated the highest similarity with the
ground truth data (Table 3 ).

4) The average perpendicular index measures the average
vertical distance between the experimental result and the
ground truth data. Here, compared to the control groups, the
optimal group O-level<11> exhibited the shortest distance
76.58 (Table 3 ).

5) The conformity coefficient is a global similarity
coefficient that is used to measure the ratio of correctly
segmented pixels to the number of incorrectly segmented
pixels. Here, the results were similar to those for the Dice
ratio and Jaccard index. We found that the optimal group
O-level<11> obtained a high conformity coefficient value
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TABLE 3. Multispectral remote sensing image segmentation evaluation.

(19.26), and the intraclass conformity was improved by
2.74%–5.58%.

6) Precision is the ratio of the number of correct-segmented
pixels to the number of correct-segmented and incorrect-
segmented pixels. As shown in Fig. 24, the precision index
curve shows evaluation results similar to the Dice ratio index
and Jaccard index. The optimal group O-level<11>, com-
pared with control groups, has the highest precision (0.45),
which improved by 3.57%–5.89% (Table 3 ).
7) Recall is the ratio of the number of correctly segmented

pixels to the number of correctly segmented and correctly
unsegmented pixels. Here, the optimal and control groups
obtained similar results (0.97), except C-level<10> (0.94)
(Table 3).
The results shown in Table 3 and Fig. 24 demonstrate that

the proposed multiscale pyramid sieve and analysis module
outperformed other methods, based on the PSPNet frame-
work, with notable advantages in multispectral remote sens-
ing image segmentation.

FIGURE 24. Multispectral remote sensing image segmentation evaluation
histogram in 3–22 scales.

IV. CONCLUSION
In this paper, we have proposed a multiscale pyramid sieve
and analysis module. The proposed module is based on the
observation that the feature map information distribution
changes with convolutional scales in a nonuniform varia-
tion mode and different feature map pyramids have different
distributions. Based on CNN feature maps, the proposed
multiscale pyramid sieve and analysis pool fuses features
under different scales of different feature pyramids through
variation analysis to obtain the final feature representation,
which carries local and global context information. Exper-
imental results obtained on authentic multispectral remote
sensing images verified the effectiveness of the proposed
module. An experimental segmentation evaluation demon-
strated that, compared to the control group, the precision of
the experimental group was improved by 3.57%–5.89%, the
intraclass conformity was improved by 2.74%–5.58%, and
the intraclass chaos was reduced by 1.5%–7.9%. Overall,
the experimental results reveal that the proposed module can
improve both segmentation flexibility and precision. In the
future, we plan to apply the proposed module to segment
different types of remote sensing images and other tasks, e.g.,
feature extraction and target identification.
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A potential limitation of this study was that remote sens-
ing images have the multispectral resolution, multi-time
resolution, and multi-spatial resolution, and constructing a
multiscale pyramidwill increase the amount of data geometri-
cally. In practical applications, massive data operations incur
high computational costs, which will affect the efficiency of
remote sensing data processing. Thus, in the future, we plan
to investigate ways to construct a lightweight pyramid model
and simplify the entire module.
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