
ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY SECTION

Received 29 January 2023, accepted 22 February 2023, date of publication 3 March 2023, date of current version 8 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3252361

Multi-View Computed Tomography Network
for Osteoporosis Classification
DONG HWAN HWANG1, SO HYEON BAK2 TAE-JUN HA3, YOON KIM1,4,
WOO JIN KIM 5, AND HYUN-SOO CHOI 1,6
1Ziovision Inc., Chuncheon 24341, South Korea
2Department of Radiology, University of Ulsan College of Medicine, Seoul 44610, South Korea
3Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul 05505, South Korea
4Department of Computer Science and Engineering, Kangwon National University, Chuncheon 24341, South Korea
5Department of Internal Medicine, Kangwon National University, Chuncheon 24341, South Korea
6Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea

Corresponding author: Hyun-Soo Choi (choi.hyunsoo@seoultech.ac.kr)

This work was supported by the Promotion of Innovative Businesses for Regulation-Free Special Zones funded by the Ministry of Small
and Medium-sized Enterprises (SMEs) and Startups (MSS, South Korea) (P0020626).

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Institutional Review Board of Kangwon National University Hospital under Approval No. KNUH-A-2021-03-020-002.

ABSTRACT Osteoporosis is a skeletal disease that is difficult to identify in advance of symptoms.
Existing skeletal disease screening methods, such as dual-energy X-ray absorptiometry, are only used for
specific purpose due to cost and safety reasons once symptoms develop. Early detection of osteopenia and
osteoporosis using other modalities for relatively frequent examinations is helpful in terms of early treatment
and cost. Recently, many studies have proposed deep learning-based osteoporosis diagnosis methods for
various modalities and achieved outstanding results. However, these studies have limitations in clinical
use because they require tedious processes, such as manually cropping a region of interest or diagnosing
osteoporosis rather than osteopenia. In this study, we present a classification task for diagnosing osteopenia
and osteoporosis using computed tomography (CT). Additionally, we propose a multi-view CT network
(MVCTNet) that automatically classifies osteopenia and osteoporosis using two images from the original CT
image. Unlike previous methods that use a single CT image as input, theMVCTNet captures various features
from the images generated by our multi-view settings. The MVCTNet comprises two feature extractors and
three task layers. Two feature extractors use the images as separate inputs and learn different features through
dissimilarity loss. The target layers learn the target task through the features of the two feature extractors and
then aggregate them. For the experiments, we use a dataset containing 2,883 patients’ CT images labeled
as normal, osteopenia, and osteoporosis. Additionally, we observe that the proposed method improves the
performance of all experiments based on the quantitative and qualitative evaluations.

INDEX TERMS Computed tomography, osteopenia, osteoporosis, deep learning, diagnosis.

I. INTRODUCTION
Osteoporosis is a skeletal disease that increases the risk
of fractures because of a decrease in calcium mass and
weakening of bone strength [5]. Osteoporosis is a major
cause of fractures and is difficult to recognize in advance of
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symptoms. For these reasons, over half of fracture patients
have never received a timely osteoporotic diagnosis [6], [7].
As the population ages, many experts expect the number
of osteoporotic patients to rise, increasing economic costs,
injuries, and death rates [8]. Early detection and treatment
of osteoporosis are adequate to prepare for these risks,
and prevention through early diagnosis and treatment is
essential [9].
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FIGURE 1. An example of sagittal CT scan dataset. (a) Normal, (b) Osteopenia and (c) Osteoporosis. The display window is [−450, 1000] HU.

TABLE 1. List of osteoporosis diagnosis studies.

Dual-energy X-ray absorptiometry (DXA) is widely used
to diagnose osteoporosis risk. However, DXA is not fre-
quently performed until symptoms (e.g., fracture) appear
and can cause unnecessary exposure to the other organs
located around the test site. For these reasons, it is necessary
to utilize other common modalities for early diagnosis.
For example, computed tomography (CT) is frequently
performed and has relatively less risky. Additionally, CT can
be used to assess osteoporosis risks by experts. Fig. 1
shows the CT images of normal, osteopenia, and osteoporosis
patients. The regions marked by red rectangles in the
images show the differences between the three cases. The
normal case has a uniform texture, whereas osteopenia and
osteoporosis show texture differences with a decrease in the
Hounsfield unit (HU). Because of these characteristics in
CT, it is possible to analyze the presence of osteoporosis
and osteopenia. This can provide an opportunity for early
treatment and reduce the social and economic burden of
osteoporotic fractures. Therefore, we intend to use CT
images to diagnose osteoporosis. We conduct an osteoporotic
classification task on a sagittal CT image which is relatively
easy to obtain. For the task, we acquired our dataset from
patients who underwent contrast-enhanced abdomen CT
scans and DXA tests. Further, we provide details of the
dataset in Section III-E.

With recent developments in deep learning, some stud-
ies [2], [3], [10], [11] have attempted to diagnose osteoporosis
and achieved meaningful success. However, they still face
significant challenges because of limited data and manual

processes, which involve tedious work by radiology experts.
Yasaka et al. [2] required the CT images to be cropped around
the vertebrae. Yamamoto et al. [11] manually cropped the hip
joint areas on the X-ray images. Moreover, they only used
a CT image clipped within a certain HU range. HU has a
more extensive pixel range than a photo image, and medical
experts use a specific HU range to identify osteoporosis.
However, deep neural networks may degrade the diagnostic
performance of osteoporosis because of insufficient or
unnecessary information.

In photo-domain computer vision, many studies [12], [13],
[14], [15] have proposed powerful methods that leverage
different views of the same instance in various fields, such
as self-supervised and semi-supervised learning. Motivated
by these, we propose a simple but powerful method called a
multi-view CT network (MVCTNet), which uses two views
generated by the CT domain knowledge (different HU clip
settings in the same CT image). The MVCTNet consists of
two feature extractors that extract different features from
two perspectives and three target layers that learn the
classification tasks. Further, the main task layer, one of
the three task layers, aggregates features from the feature
extractors. To classify the risk of osteoporosis, we define a
task loss using multi-class and ordinal classification. We also
use a dissimilarity loss that leverages the feature extractors’
outputs and enables them to capture different characteristics
from each view.

For the experiments, we conduct quantitative and qual-
itative evaluations of our MVCTNet using the dataset.
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FIGURE 2. Overview of the proposed Multi-View CT Ensemble Network (MVCTNet). MVCTNet consists of feature extractors Ga, Gb and three
task layers Fa, Fb, F . The task loss focuses on the target task and the dissimilarity loss minimizes the similarity of representations between the
two feature extractors.

The experimental results show that our proposed method
improves the automatic osteoporosis classification using
intact CT images without manual work. In addition, we pro-
vide ablation studies and confirm the effectiveness of the
modules in improving the classification performance of the
model.

As a summary, our major contributions in this work, which
extends from our previous work [16], are stated below:

• We present an osteoporosis classification task based on
a sagittal CT image of the abdomen that can aid in early
treatment and cost reduction.

• We propose a simple but powerful framework called
MVCTNet that leverages different views from CT
images and does not require manual processing.

• We demonstrate the effectiveness of the MVCTNet
in the osteoporosis classification task by comparing it
with strong baseline models, which achieved remarkable
progress in image recognition.

II. RELATED WORK
A. DEEP LEARNING-BASED OSTEOPOROSIS DIAGNOSIS
Recently, computer vision applications for medical imaging
have been studied and shown significant developments.
Among these studies, several studies [1], [2], [3], [4]
have conducted osteoporosis diagnosis in modalities other
than the DXA test, such as bone mineral density (BMD),
X-ray, and CT, other than the DXA test because it
provides a helpful solution for many medical professional
clinicians.

Table 1 presents the investigations of previous auto-
matic osteoporosis diagnosis studies and our MVCTNet.
Nam et al. [1] attempted to predict osteoporosis or

non-osteoporosis using a logistic classifier with preoperative
lumbar CT ROIs drawn encapsulating only cancellous bone.
Yasaka et al. [2] estimated the BMD values on axial
CT images of cropped regions around the vertebrae using
a four-layer CNN model. Rastegar et al. [3] segmented
BMD images and extracted texture features from ROIs,
including the lumbar (L1-L4). For classification, they used
ensemble machine learning methods such as random forest
and K-nearest neighbor. These methods assess the osteo-
porosis diagnoses using regression or binary classification.
Zhang et al. [4] classified normal, osteopenia, and osteoporo-
sis using a five-layer CNN model on cropped X-ray images,
including spine bone regions.

All the methods mentioned above have achieved signif-
icant advances. However, they have disadvantages in that
a person must extract the ROIs manually or require an
additional ROI extraction algorithm. If the ROI extrac-
tion performance is not sufficiently precise, a subsequent
diagnosis cannot be performed. The MVCTNet is an
automatic diagnostic classification model that uses CT
images through our multi-view settings without any man-
ual procedures, except slice selection, which we discuss
in Section V.

B. VIEW-BASED METHODS
In computer vision, many works [12], [13], [14], [15],
[17], [18], [19], [20] have proposed view-based methods
for solving advanced problems, such as self-supervised,
semi-supervised learning, and medical imaging. Some stud-
ies [12], [13] introduced a contrastive learning framework for
self-supervised representation learning by utilizing the simi-
larities of different views of the same instance. Sohn et al. [15]
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transformed an unlabeled image into weakly and strongly
transformed images to train deep neural networks using
the weakly transformed images’ pseudo-labels for semi-
supervised learning.

Inspired by advances in computer vision, medical image
analysis studies [17], [18], [19], [20] proposed medical
domain-specific methods that adjust to their medical domain
attributes. References [17] and [18] attempted to integrate
contrastive learning and volumetric medical domain-specific
knowledge for volumetricmedical segmentation. Li et al. [19]
proposed a self-learning scheme that leverages multi-style
and multi-view to reduce the vendor-style domain gap for
mammography detection. Yang et al. [20] designed a hybrid
representation learning which use domain-specific knowl-
edge in histopathological images. These methods are based
on the idea of [12], [13] that different views from the same
instance should train neural networks to have comparable
features. Our MVCTNet method uses not only domain-
specific knowledge, but also a different approach to leverage
views. MVCTNet consists of two feature extractors that
learn different features from views using a dissimilarity loss.
Unlike contrastive loss, which maximizes the similarity of
views from the same instance for representation learning, our
dissimilarity loss minimizes it for supervision. MVCTNet’s
three task layers leverage different features to adjust for
osteoporosis classification.

III. PROPOSED METHODOLOGY
A. MULTI-VIEW SETTINGS IN CT
In the medical field, professional clinicians diagnose diseases
using CT by monitoring a specific HU range. This allows
them to focus more on areas such as organs or bones they
want to see. However, this may provide neural networks
with insufficient information, which can degrade their perfor-
mance. To address this issue, we provide more information
to the neural network using two specific HU ranges. Given
the labeled CT scan {ct, y}, we clamp the CT scans HU
within specific ranges according to the different settings.
Therefore, we can obtain two CT images with different
texture information from each CT setting. Subsequently,
we use the images as input for theMVCTNet, which might be
seen as the different views for the same instance. In this work,
we utilize two different CT settings to obtain two images
{xa, y} and {xb, y} from the CT scan {ct, y} using the following
equation,

xn(h,w) =


HUmin

n if HU(h,w) < HUmin
n

HUmax
n if HU(h,w) > HUmax

n

HU(h,w),

(1)

xn(h,w) =
xn(h,w) − HUmin

n

HUmax
n − HUmin

n
, (2)

where HU(h,w) denotes (h,w) the HU value of location
(h,w), and HUmin

n and HUmax
n denote the minimum and

maximum HU values to clamp the HU scan according to
n ∈ {a, b}. We empirically fix HUmax

a and HUmax
b to 1050.

We set HUmin
a to −128 and HUmin

b to −450 for our
MVCTNet.We also compare ourmethodwith amethod using
the original CT scan, clamped by the entire range of the HU,
in Section 4.

B. MULTI-VIEW CT NETWORK
Fig. 2 shows our MVCTNet architecture, which consists of
two feature extractors (Ga and Gb) and three task layers
(Fa,Fb, and F). The feature extractors Ga and Gb learn
different features of CT through xa and xb. The task layers
learn the osteoporosis classification task by using high-level
representations and their combinations.

We train the feature extractors of MVCTNet both in
performing the osteoporosis classification task and capture
the characteristics of different views. For this, we extract
representations ga = Ga(xa) and gb = Gb(xb), which are
the outputs of the global average pooling (GAP) layer of the
features extractors, which are the inputs of the task layers
and our dissimilarity loss. We employ ResNet-18 [21] and
EfficientNet-b0 [22] pre-trained on ImageNet dataset as the
feature extractors (Ga,Gb) and the two task layers (Fa,Fb) in
our experiments.

For the task layers, which consist of one MLP layer,
we train two of them (Fa, Fb) using ga and gb, respectively,
to fit in the osteoporosis classification task. We also train
the other one of them (F) through an output of aggregation
between ga and gb to leverage their differences. To aggregate
the representations, we add them using the hyper-parameter
α, which could be a fixed or learnable parameter. The
aggregation operation is defined as follows:

gab = αga + (1 − α)gb. (3)

The main task layer F predicts the class probabilities using
the combined features gab obtained as the input, which can
be obtained by using (3). Because we design Fa and Fb to
train the feature extractors according to the task, the task
layers are used only for training. Then, we discard them
in the inference phase using only the main task layer F
for prediction. To choose the value of α, we conduct an
experiment on α as the fixed value and learnable parameter,
as described in Section IV-C.

C. LOSS FUNCTION
Our goal is to simultaneously capture different character-
istics in multiple CT views while performing osteoporosis
classification. For this purpose, we use task loss and
dissimilarity loss, the former optimizes our model to perform
the task, and the latter minimizes the similarity between two
representations (ga, gb) from MVCTNet’s feature extractors.
We calculate the task loss using the sum of the loss function
of the task layers. Because there is a sequential relationship
between normality, osteopenia, and osteoporosis, we employ
ordinal regression, not only multi-class classification for the
osteoporosis classification task. The task loss function is

22300 VOLUME 11, 2023



D. H. Hwang et al.: Multi-View Computed Tomography Network for Osteoporosis Classification

Algorithm 1MVCTNet Training Procedure
Input : Feature extractors Ga and Gb, task layers Fa,

Fb and F , total epochs E , mini batch B,
CT images x, and trade-off hyper-parameter
λ.

for i = 1 to E do
for j = 1 to B do

obtain xa and xb using (1) and (2);
ga = Ga(xa);
gb = Gb(xb);
obtain gab using (3);
ŷa = Fa(ga);
ŷb = Fb(gb);
ŷ = F(gab);
define Ltask(ŷa, ŷb, ŷ;Ga,Gb,Fa,Fb,F)
using (4);
define Ldis(ga, gb;Ga,Gb) using (6);
L = Ltask(ŷa, ŷb, ŷ;Ga,Gb,Fa,Fb,F) +

λLdis(ga, gb;Ga,Gb);
optimize L;

end
end
Output: Feature extractor Ga and Gb, task layer F .

formulated as follows:

Ltask=Lcls(Fa(ga), y) + Lcls(Fb(gb), y) + Lcls(F(gab), y),

(4)

where Lcls(·, ·) denotes the standard cross-entropy loss (CE)
or ordinal regression loss (OR) [23]. We use the ordinal
regression loss which has usually been studied in age
estimation [23], [24], [25]. Following [23], we use ordinal
regression loss as cross-entropy of K − 1 binary classifiers:

Lor = −

K−1∑
k=1

yk log ŷk + (1 − yk ) log(1 − ŷk ), (5)

where ŷ denotes the sigmoid function output of the task layers
and K is the number of classes. We also experiment with
both the standard multi-class and the ordinal regression for
the classification task in Section IV-B.
By optimizing the task loss, feature extractors can train

osteoporosis diagnostic tasks. Through the task loss, the
representations from the two feature extractors can converge
to similar properties. As a result, the MVCTNet can not
utilize the different characteristics from two perspectives.
To address this issue, we use dissimilarity loss, which
minimizes the cosine similarity between the representations
ga and gb,

Ldis =
gTa gb

∥ga∥ ∥gb∥
. (6)

By optimizing the dissimilarity loss, we can constraint the
feature extractors from having similar characteristics from

TABLE 2. Patient baseline characteristics.

different perspectives. In summary, by integrating task loss
and dissimilarity losses, the overall loss in our framework can
be formulated as follows:

L = Ltask + λLdis, (7)

where λ > 0 denotes the trade-off hyper-parameter.
Algorithm 1 summarizes the overall training procedure of

our MVCTNet. Note that while all models, including feature
extractors and task layers, are updated using the task loss, the
dissimilarity loss only optimizes feature extractors.

D. IMPLEMENTATION DETAILS
We implement all networks and experimental settings in
PyTorch framework. The entire network is trained on a single
NVIDIA RTX 3090 GPU, and all network parameters are
optimized by Adam optimization algorithm in an end-to-end
manner. All inputs of the models are uniformly resized to
448 × 224, and a random horizontal flip is applied with
a probability of 0.5 for training. The feature extractors are
trained using a learning rate of 1e − 4, which is ten times
lower than that of the task layers that consist of a single
MLP layer. We split the training dataset into training (80%)
and validation (20%) datasets, and all hyper-parameters were
tuned in the validation phase. The entire network is trained
for 60 epochs with a batch size of 32, and the trade-
off hyper-parameter λ is set to 0.1. For the parameter α,
is used as a fixed value or learnable parameter. When used
as a learnable parameter, it is initialized to 0.5 and then
updated. We initialize the feature extractor’s weights with
pre-trained weights on ImageNet dataset for all experiments
and randomly initialize the task layers.

E. DATASET COLLECTION AND ANNOTATION
We enrolled patients who underwent a contrast-enhanced
abdominal CT and dual-energy X-ray absorptiometry (DXA)
test between January 2015 and October 21, 2015. A total
of 2,883 images were collected from 2,883 de-identified
patients, 592 males and 2,291 females aged ≥ 20 years,
and randomly divided into 2,283 images for training and
600 images for testing. We also divided the training datasets
into training and validation datasets in a ratio of 8:2.
Images were labeled considering the three stages as normal
(T-score ≥ −1.0), osteopenia (−2.5 < T-score < −1.0), and
osteoporosis (T-score ≤ −2.5) according to the World Health
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Organization criteria. Particularly, the patients in their 20s
belonged to the normal group, but did not undergo DXA
testing; thus, they underwent additional verification by the
radiology professor.

During the collection process, the patients with visible
surgical or bone cement and those without CT multi-planar
reformation forming the sagittal axis were excluded. For
slice selection, radiology experts label each patient’s sagittal
slice image, including all vertebrae, according to its osteo-
porosis risk. Then we use all the slices determined by the
experts.

This studywas conducted and approved in accordance with
the relevant guidelines and regulations of Kangwon National
University Hospital IRB (Approval No. KNUH-A-2021-03-
020-002). Patient consent was not required because the data
were de-identified.

IV. EXPERIMENTS
A. EVALUATION METRICS
In this study, we employ five metrics for quantitative
evaluation, including the area under the receiver operating
characteristic curve (AUC), sensitivity, specificity, F1-score,
and mean absolute error (MAE). The first four metrics
are used to evaluate the classification performances. The
definitions of the sensitivity, specificity, and F1-score are
formulated as follows:

Sensitivity =
TP

TP + FN
, (8)

Specificity =
TN

TN + FP
, (9)

F1 =
2 × recall × precision
recall + precision

=
2 × TP

2 × TP + FP + FN
,

(10)

where TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative respectively.

We also employ MAE metric to evaluate the ordinal
regression performance and MAE is formulated as follows:

MAE =
1
N

N∑
i=1

|ŷi − yi|, (11)

where N denotes the total number of samples, and ŷi
and yi denote the predictions and labels of the samples,
respectively.

B. COMPARISONS WITH BASELINE METHODS
To evaluate our proposed method, we employ two strong
baseline methods: ResNet-18 [21] and EfficientNet-b0 [22],
both of which have high performance in image recognition
and medical applications. In addition, we compare them
with the performances of the MVCTNet, using two baseline
methods as the feature extractors, on our dataset. We also
investigate the baseline methods and MVCTNet with CE and
OR loss functions. Note that we use only xb,Gb and Fb as the
baseline methods in this experiment. Empirically, we found

that xb setting shows better results, andwe investigate original
CT and xa settings in Section. IV-C. Because comparisons
of AUC evaluation in the ordinal regression task are compli-
cated, we estimate it using the average AUC of osteopenia
and osteoporosis. As shown in Table 3, we observe that
methods with OR loss show better performance than methods
with CE loss, regardless of baseline and metrics. From these
observations, we can confirm that ordinal regression is more
suitable for osteoporosis diagnosis. We also observe that
the MVCTNet outperforms all other baseline methods in all
metrics and all task losses. The MVCTNet achieves the best
performance on five evaluation metrics with sensitivity of
81.33%, specificity of 90.67%, F1-score of 81.24%, AUC
of 0.9640, and MAE of 0.1900 in the ordinal regression
task. In particular, in the multi-class classification task,
the MVCTNet with ResNet-18 exhibit the most improved
performance, achieving a sensitivity improvement of 4.66%.
From these results, we can confirm that our proposed method
is effective for the osteoporosis classification.

C. ABLATION STUDIES
For a more detailed analysis of the proposed method,
we conduct ablation studies on an ordinal regression task.

1) ANALYSIS OF VIEWS
To evaluate the effectiveness of our multi-view settings,
we conduct experiments with various view settings, such as
original CT, xa, and xb as the input of the baseline methods
and the MVCTNet. As shown in Fig. 4, we first observe
that the baseline methods with original CT (ct) have lower
performance than other baseline methods with xa or xb.
We probably infer that using the whole range of HU may
provide neural networks with unnecessary information, such
as the HU value, which does not require finding the spine
in CT. We also observe that the baseline with xb outperforms
the baseline with xa. It might be reasonable when considering
that xb is more similar than xa to the bone setting, which
professional clinicians use for diagnosis.

To compare different views and the same views in the
MVCTNet, we use xa (or xb) as inputs of MVCTNet’s two
feature extractors. We can observe that the different perspec-
tive method outperforms the same perspective methods in all
metrics on the ordinal regression task. From this observation,
we can confirm that the performance does not increase simply
as the number of parameters increases, but it uses different
views.

2) EFFECTIVENESS OF THE MVCTNet COMPONENTS
We conduct an ablation study to investigate the effectiveness
of components of our MVCTNet using the ResNet-18 as
feature extractors. Fig. 3 shows the performance of the
vanilla ResNet-18 with xb, MVCTNet without dissimilarity
loss, which uses only the task loss, and MVCTNet with
dissimilarity loss on sagittal CT scan osteoporotic ordinal
regression tasks. We can observe that the MVCTNet without
the dissimilarity loss outperforms the ResNet-18 with a
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TABLE 3. Performance comparison of baseline methods and their MVCTNet combinations on a sagittal CT scan osteoporotic classification dataset.
If MVCTNet is checked, baseline methods are used as the feature extractors of MVCTNet. If MVCTNet is unchecked, pure baseline networks are used.
MVCTNet consistently improves performance when combined with baseline methods, regardless of categorical (CE) and ordinal (OR) loss.

TABLE 4. Ablations on Multi-view setting. Note that input ct indicates the original CT scan. MVCTNet uses ResNet-18 as its features extractors. All
experiments are conducted on the ordinal regression task.

FIGURE 3. Ablations on components of MVCTNet, which uses ResNet-18 as its feature extractors. All experiments are conducted on the ordinal
regression task.

performance of 79.73% in F1-score, which improves the
baseline by 3.87%. When combined with dissimilarity loss,
theMVCTNet exhibit better performance in all metrics. From
these observations, we can confirm that all components of
MVCTNet are effective in improving performance.

3) ANALYSIS OF α

Table 5 compares the performance of the cases where α

is fixed to a specific value and when it is a learnable
parameter in operation for the aggregation of the features
through the two feature extractors, which do not require a
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FIGURE 4. Visualization results with Grad-CAM. We compare Grad-CAM results between ResNet-18 and MVCTNet in osteopenia and osteoporosis
according to multi-class classification(CE) and ordinal regression (OR). For OR, we visualize the osteopenia class (OR Output 1) on the first node of the
classifier. And we operate the sum of gradients of the first and second nodes (OR Output Sum) of the classifier for visualization of osteoporosis.

TABLE 5. Ablations on α. MVCTNet uses ResNet-18 as its features
extractors. All experiments are conducted on the ordinal regression task.

hyper-parameter search to find its optimal value. The method
with α = 0.7 outperforms other fixed α methods, with
the highest F1-score of 81.32%, which is 0.08% better than
the learnable parameter. Furthermore, the result of learnable
α shows similar or better performance when compared to
α = 0.7. In particular, it achieves the highest performance in
AUC, which is approximately 0.27% better than the that of
method with α = 0.7. From these results, it is the best choice
to set α as 0.7 or a learnable parameter. In all experiments,
including comparisons with baseline methods and other
ablation studies, we used α as the learnable parameter.

D. VISUALIZATION WITH GRAD-CAM
Fig. 4 shows the spatial importance visualization of networks
for osteopenia and osteoporosis samples in the test dataset
using Grad-CAM [26]. We investigate the ResNet-18 with
xb and MVCTNet with ResNet-18 feature extractors using
CE and OR. Particularly, we visualize the Grad-CAM results
of the MVCTNet’s networks including Ga,Fa (MVCTNet
a) and Gb,Fb (MVCTNet b) obtained by our multi-view
setting. The Grad-CAM results of the ResNet-18, MVCTNet
a, and MVCTNet b are obtained by the operation of the
corresponding class gradients for the multi-class task. For the
ordinal regression, we visualize the results of the osteopenia
class via the same operation in the multi-class. Particularly,
in the case of the osteoporosis class, we add the gradients of
all nodes in the classifier (OR Output Sum) of each model.

From the visualization results, we can observe that the
Grad-CAM masks of our MVCTNet, except MVCTNet
b in osteopenia and CE, cover a more extensive target
region, including the spine, which is important for an
osteoporosis diagnosis than ResNet-18. Furthermore, the
MVCTNet a and MVCTNet b results have complementary
visualization masks. From these observations, we confirm
that the two feature extractors complement each other’s
viewpoints, as intended.
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V. DISCUSSION AND CONCLUSION
In this work, we have presented an osteoporosis diag-
nosis task in sagittal CT scans and proposed a sim-
ple but powerful architecture, MVCTNet, for this task.
We collected a large dataset for the task, involving 2,883
patients who underwent contrast-enhanced abdominal CT.
Additionally, we performed the task using the MVCTNet
without manual processes, which were previously used for
automatic osteoporosis diagnosis, as presented in Table 1.
Quantitative and qualitative experiments demonstrated that
the MVCTNet consistently outperformed other baseline
methods in multi-class classification and ordinal regression
tasks. In addition, from the ablation studies, we confirmed
that the components of the MVCTNet are effective for
the osteoporosis diagnosis. Our MVCTNet has advantages;
however, an actual medical scenario may involve additional
challenges, such as the selection of a CT slice. In future
work, we will offer an extensive version of our model to
overcome these challenges such as a 3D medical image
model.
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