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ABSTRACT Encounters between humans and wildlife often lead to injuries, especially in remote wilderness
regions, and highways. Therefore, animal detection is a vital safety and wildlife conservation component that
canmitigate the negative impacts of these encounters. Deep learning techniques have achieved the best results
compared to other object detection techniques; however, they require many computations and parameters.
A lightweight animal species detection model based on YOLOv2 was proposed. It was designed as a proof
of concept of and as a first step to build a real-time mitigation system with embedded devices. Multi-level
features merging is employed by adding a new pass-through layer to improve the feature extraction ability
and accuracy of YOLOv2. Moreover, the two repeated 3 × 3 convolutional layers in the seventh block
of the YOLOv2 architecture are removed to reduce computational complexity, and thus increase detection
speed without reducing accuracy. Animal species detection methods based on regular Convolutional Neural
Networks (CNNs) have been widely applied; however, these methods are difficult to adapt to geometric
variations of animals in images. Thus, a modified YOLOv2 with the addition of deformable convolutional
layers (DCLs) was proposed to resolve this issue. Our experimental results show that the proposed model
outperforms the original YOLOv2 by 5.0% in accuracy and 12.0% in speed. Furthermore, our analysis shows
that the modified YOLOv2model is more suitable for deployment than YOLOv3 andYOLOv4 on embedded
devices.

INDEX TERMS Convolutional neural networks, deformable convolutional layers, YOLO, embedded
devices, animal detection.

I. INTRODUCTION
Wildlife-human and wildlife-vehicle encounters can cause
serious problems for both humans and animals. These inter-
actions have a wide range of effects, ranging from finan-
cial to physical to social. Wildlife-vehicle collision (WVC)
and Wildlife-human conflict (WHC) have increased in North
America over the last few decades [1], [2]. North Ameri-
can countries have large wildlife areas and many highways;
hence, the probabilities ofWVC are higher than in other areas
in the world. Some of the reasons that led to WHC are: (1)
the expansion of agriculture; (2) the expansion of urban areas
towards wildlife habitats; (3) climate change, for example,
the increase in heat waves and wildfires that pushes wildlife
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towards urban areas for survival [3]; (4) the COVID-19 pan-
demic, with the number of sightings of wildlife in urban areas
increases and wildlife becomes urban dwellers, as human
activities decrease due to lockdowns [4], [5].

The objective of this research was to alleviate the negative
impacts of these conflicts on humans and wildlife by inno-
vating and installing WVC and WHC mitigation systems on
highways and trails, and in urban areas. The WVC and WHC
mitigation consist of two subsystems: (i) an animal detection
subsystem running on an embedded device [6] to detect mov-
ing animals using computer vision techniques on images from
motion triggered camera [7], and (ii) a warning subsystem
to warn drivers, hikers, and residents by activating visual or
sound alerts once an animal is detected. Here, we focused on
the animal detection subsystem with the additional goal of
identifying the species.
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There are two major challenges in building an animal
species detection system on embedded devices as a first step
of the WVC and WHC mitigation systems: (i) enhancing
detection accuracy while avoiding false alarms in unfa-
vorable environments (snow, shade, bad illumination, etc.),
and (ii) improving animal species detection speed so that
a detection system can be deployed in near real time. The
design of the animal species detection model architecture
plays a vital role in improving detection accuracy. Any
changes in the detection model’s structure may lead to a
different detection performance. Moreover, the trade-offs
between detection accuracy and speed are crucial, espe-
cially when the animal species detection model is deployed
on embedded device typically with low computation
power.

A novel animal species detection system based on
YOLOv2 [8] architecture was proposed to improve detec-
tion accuracy and speed on embedded devices by three
modifications: (i) merge low-level and high-level features
to distinguish the subtle features between animal species,
(ii) remove two convolutional layers from the high block of
YOLOv2 architecture to reduce computational complexity
because there is only a small number of species classes, and
(iii) add three deformable convolutional layers (DCLs) [9] to
the last block of the YOLOv2 backbone network to enhance
the extracted features under various geometric deformation
of the animals. The proposed model was used to identify
and localize six animal species. These animals were selected
because their encounters with vehicles or humans usually
result in severe injuries. As a proof of concept and as a first
step to build an accurate real-timeWVC andWHCmitigation
systems, our proposed model was designed to be embedded
devices.

The contributions of this work are summarized as:

• Accurate: New effective ideas were proposed by adding
DCLs and adopting the strategy of multi-level fea-
tures merging into the YOLO structure, to enhance the
extracted features and improve the detection accuracy.

• Fast: The repeated 3 × 3 convolutional layers from
the high layer of YOLO, which causes heavy complex
computation and memory requirements were removed,
enabling our proposed model to detect animal species
in near real time on embedded device while maintaining
high detection accuracy.

The rest of the paper is organized as follows. Section II
summarizes the related work. Section III describes the
dataset. Section IV presents the study’s methodology. Sec-
tion V presents the proposed animal species detector model.
Section VI presents the model implementation and its eval-
uation. Section VII compares and discusses the results of
animal species detection using YOLOv2, modified YOLOv2,
YOLOv3, and YOLOv4, in terms of accuracy and detection
speed as deployed on embedded platforms. Finally, Sec-
tion VIII concludes the study and discusses potential exten-
sions for future work.

II. RELATED WORK
A. OBJECT DETECTION
In classic object detection, windows of different sizes are
moved over the image to obtain the region proposals, and
the features of each proposal are then extracted using fea-
ture descriptors such as Haar [10], Histogram of Oriented
Gradients (HOG) [11], and Scale Invariant Feature Trans-
form (SIFT) [12]. Subsequently, these features are fed into a
classifier, such as Support Vector Machine (SVM) [13]. It is
difficult to achieve high accuracy in classic object detection
when there are diverse images in the dataset, such as those
in ImageNet [14] and COCO [15]. Therefore, Deep Neural
Networks (DNNs) have been used after much improvement
in artificial neural networks for the extraction of significant
features to achieve high accuracy [16], [17].

DNN object detection algorithms based on region pro-
posals were introduced in the Pascal Visual Object Classes
(VOC) challenge [18]. Girshick et al. [19] merged region
proposals usingCNNs and their proposedRegion-basedCNN
(R-CNN) detector. As a result of the success of the region
proposal method, Fast R-CNN [20] was proposed to reduce
the computational complexity of the R-CNN. Ren et al. [21]
combined the Region Proposal Network (RPN) and Fast R-
CNN into one network ‘‘Faster R-CNN’’ to achieve further
speed-up and higher object detection accuracy. Mask R-
CNN [22] was an extension of Faster R-CNN that computes
object masks in parallel with the bounding box. The two-
stage detectors (R-CNN based detectors) are slow because:
(i) they have a complex pipeline, and (ii) each stage must be
trained separately. In 2016, Redmon and Farhadi [23] solved
this issue by dealing with object detection as a regression
problem directly from the image to bounding box coordinates
and class probabilities. They proposed You Only Look Once
(YOLO) in an image as a one-stage detector to identify
and localize objects. YOLO is three times or more faster
than a two-stage detector, but less accurate than the Mask
R-CNN because of the static nature of anchor boxes [24].
Later, Redmon et al. [8] proposed a new version (YOLOv2)
model using a new network called DarkNet-19 to improve the
accuracy and speed of object detection. However, YOLOv2
has a problem in detecting small objects, as discussed later
in Section VII. In 2018, YOLOv3 was the last version of
the YOLO model proposed by Redmon and Farhadi [25].
Darknet-53 was used as a backbone network to extract fea-
tures in YOLOv3, instead of DarkNet-19 [26] as in YOLOv2,
to improve the detection accuracy of small objects. This
makes YOLOv3 slower than YOLOv2 because the com-
putational complexity and the number of model parame-
ters increase. Moreover, YOLOv3’s ability to detect small
objects is still limited because it does not utilize low-level
features. All these restrictions limited the use of YOLOv3 in
industrial applications [27], [28]. YOLOv4 was proposed by
Bochkovskiy et al. [29] to improve accuracy and detection
speed. More work, such as [30], has been published on how
tomodify the architecture of YOLOv4 to be deployed on real-
time applications with high performance.
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YOLO object detection models have complex architec-
tures. They require a large number of parameters or weights
to make predictions, which are learned from the training
dataset. Therefore, these models require a powerful plat-
form, such as a Graphic Processing Unit (GPU) [31] and
a large memory, to be efficient and effective in real-time
applications. However, most real-time applications utilizing
embeddedGPU or Central ProcessingUnit (CPU) devices are
constrained by limited storage space and low computational
power. To overcome this, many studies proposed lightweight
YOLO object detection models that are more suitable for
less powerful platforms. These include Fast YOLO [32],
YOLOv3-Tiny [33], and YOLOv4-Tiny [34]. These models
have simpler architectures with fewer parameters than regular
YOLO object detectionmodels. Although the detection speed
of these lightweight models has improved with limited hard-
ware platforms, the detection accuracy has decreased [35],
[36]. Therefore, accurate and near real time object detection
on embedded devices remains a challenge.

B. ANIMAL SPECIES DETECTION
Recent studies have attempted to identify animal species in
camera-trap images [37], [38], [39]. However, only a few
studies have focused on animal species detection to identify
and localize them, [40], [41]. Some of them are specialized to
detect a single animal species, such as cattle [41], zebras [40],
and pigs [42].

Parham and Stewart [40] used YOLO to detect zebras from
a dataset of 2,500 images and create bounding boxes of Plains
Zebras with an accuracy of 55.6% and Grevy’s Zebras with
an accuracy of 56.6%. Zhang et al. [43] created a dataset
of 23 different species in both daytime color and nighttime
grayscale formats using 800 camera traps. They compared
Fast R-CNN and Faster R-CNN with their proposed method,
the spatiotemporal object proposal and patch verification
framework, which achieved an average F-measure of 82.1%
in animal species detection. Beibei et al. [41] evaluated the
Mask R-CNN model for the detection and counting of cattle
(single class) from quadcopter imagery. The authors achieved
an accuracy of 94%. Gupta et al. [44] used the Mask R-CNN
model with a pre-trained network, ResNet-101, to detect two
animal species (cows and dogs). They achieved an average
precision of 79.47% and 81.09%, for detecting cows and
dogs, respectively. Schneider et al. [24] compared the accu-
racy of Faster R-CNN and YOLOv2 models in detecting ani-
mal species within camera-trap images. Their results showed
that Faster R-CNN outperformed YOLOv2 by 33.4%.

C. ANIMAL DETECTION SYSTEMS
Current research on animal detection systems can be divided
into two directions: using traditional machine learning (ML)
algorithms, which rely on feature extraction descriptors to
detect animals [45], and using deep learning (DL) algorithms,
which rely on Convolutional Neural Networks (CNNs) [46].

Parikh et al. [47] proposed an animal detection systemwith
audio and visual alarm signals to help reduce WVC using
a template matching algorithm [48]. The authors stated that
their system produces many false predictions under various
lighting conditions, particularly at night. Mammeri et al. [49]
proposed a moose detection system, which uses a roadside
camera, to warn drivers. A two-stage strategy was used: first,
the Local Binary Pattern Adaptive boost (LBP-Adaboost)
algorithm [50] was applied to generate regions of interest
(RoIs), and second, each generated RoI was processed by
an adapted version of the HOG-SVM detector. Their system
achieved an accuracy of more than 83% for moose detection
with an inference time of 52.8 ms. Sharma and Shah [51]
used the HOG descriptor and boosted cascade classifier in
an animal detection system on highways to alert drivers.
They focused only on cows and dogs. The accuracy of their
proposed system was almost 82.5%, with an average detec-
tion time of 100 ms. Matuska et al. [52] presented an ani-
mal classification system to monitor animal migration. Their
system can identify five animal species: brown bear, deer,
fox, wolf, and wild boar with an accuracy of 94%, using a
combination of Speeded-Up Robust Features (SURF), SIFT,
and FlannBased (FB) as feature descriptors, and SVM as a
classifier. Antonio et al. [53] presented an animal detection
system to detect the presence of animals on roads and to
warn drivers. Synthetic animal images were used to train two
supervised ML algorithms: K-Nearest Neighbors (KNN) and
Random Forest (RF) [54]. The KNNmodel outperformed RF
in identifying animals and was implemented and tested on a
Raspberry Pi 3 B+ [55].
In several applications, DL algorithms outperform tradi-

tional ML algorithms, particularly in domains with large
and diverse training datasets [56], [57]. Saxena et al. [58]
assembled a dataset of 31,774 images for various animals and
proposed an animal vehicle collision avoidance system. They
evaluated the performance of these two-stage object detectors
for animals: single shot detector (SSD) [59] and Faster R-
CNN. The Faster R-CNN model achieved a mean average
precision (mAP) of 82.11% with a detection speed of 90 ms,
whereas the SSD model achieved a mAP of 80.5% with a
detection speed of 10 ms.

Adami et al. [60] developed a smart agriculture application
to protect crops from animals by repelling them through
generated ultrasounds. They deployed and evaluated the per-
formance of YOLOv3 and YOLOv3-tiny (a light version
of YOLOv3) on different edge computing devices to detect
deer and wild boar. The authors achieved an 82.5% mAP by
YOLOv3 and a 62.4%mAP by YOLOv3-tiny. Sato et al. [61]
presented an animal detection system to prevent accidents
involving animals on highways. They used YOLOv4 and
YOLOv4-tiny (a light version of YOLOv4) and compared
their performance in detecting horses and donkeys. These
models were trained on 2,000 downloaded images from
Google and tested on 147 images. The accuracy was 84.87%
with a detection time of 0.035 ms and 79.87% with a detec-
tion time of 0.025 ms, using YOLOv4 and YOLOv4-tiny,
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TABLE 1. Percentage of the animal species in our dataset.

respectively. A desktop computer with GPUGTX1050Ti was
used to evaluate the model’s speed. Similar to our work, the
authors deployed their proposed animal detection system on
an embedded device, as a proof of the capability of the system
and as an initial step to build highway detection systems.

All the above-mentioned approaches have limitations.
Some of them use two-stage detectors which are not suitable
for real-time applications, as they are slow. Others can only
detect one or two animal species. Moreover, all these models’
detection accuracy and speed need improvement.

III. OUR DATASET
The dataset used in this study was provided by the British
Columbia Ministry of Transportation and Infrastructure
(BCMoTI). This dataset has 138,482 unlabeled images from
various locations and angles of six Canadian animal species:
bear, cougar, deer, elk, moose, and mountain goat, and 20,114
images without animals. These images have resolutions rang-
ing from 512 × 384 to 2,048 × 1,536 pixels, which were
captured using the Reconyx camera trap [62]. Fig.1 shows
example images of the animal species in the dataset. Due to
the hazy and snowy night images of cougars, as shown in
Fig. 1 (f), a video of cougar was downloaded from YouTube,
transferred to a sequence of images, and used for training
to improve the identification performance. Table 1 shows
the percentage of each animal species and images with no
animals in the dataset.

IV. METHODOLOGY
The dataset with Canadian animal species is the focus of
this paper. The challenge is to find a fast, accurate, and
lightweight animal detector that can operate in real-time
and be implemented on portable embedded platforms with
limited resources. In our work, a Raspberry Pi 4 Model B
(RP4B) [55] was chosen as the embedded platform for the
following reasons: (1) low price, (2) low power consumption,
(3) wide availability from many international suppliers, (4)
compatibility with many operating systems and open-source
software, (5) big community of users, and (6) strong technical
support.

In this section, the YOLOv2 model which forms the
basis of our animal species detector is presented. Then,
the Deformable Convolutional Neural Network (D-CNN) is
introduced.

FIGURE 1. Example of images from our dataset. (a) Bear, (b) deer,
(c) moose, (d) elk, (e) mountain goat, and (f) cougar.

A. THE YOLO DETECTION ALGORITHM
The main steps of YOLO are shown in Fig. 2. The input
image in Fig. 2 (a) is split into S × S grid cells, as shown
in Fig. 2 (b), where S is an integer. As shown in Fig. 2 (c),
each cell predicts: (i) a fixed number of bounding boxes with
different aspect ratios and scales (orange boxes) to cover a
wide range of object shapes and sizes, each bounding box
has four coordinates and one confidence score which mea-
sures the probability of an object in the bounding box, and
(ii) object class probabilities. These predictions are used to
identify and localize the objects in the image after discarding
all the bounding boxes with low confidence scores as shown
in Fig. 2 (d), using the Non-Maximum Suppression (NMS)
algorithm [23].

YOLOv2 architecture was selected in this work to be mod-
ified mainly due to: (i) the detection capability of YOLOv2
has been proven when there is a variety of classes with big
differences [8], and (ii) the limited computational resources,
YOLOv2 is still one of the most used detectors in many
applications in industry [63], [64], [65]. Therefore, a mod-
ified YOLOv2 model is proposed in this work. The supe-
riority of adding a pass-through layer, adding three DCLs,
and removing two high convolutional layers in the YOLOv2
architecture is proven through comparative analysis between
YOLOv2, modified YOLOv2, YOLOv3, and YOLOv4 mod-
els, as shown in Section VII.

A CNN architecture consists of: (i) a deep, fully convolu-
tional network to generate feature maps for the input image,
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FIGURE 2. The framework of YOLO. (a) Input image of two animals (Mountain Goat: MG). (b) Divide up input image with S × S grid cells.
(c) Each cell predicts bounding boxes and confidence probabilities: P(object). If there is an object in the grid cell then P(object) =1,
otherwise P(object) =0. Also, each cell predicts class conditional probability: P(class: MG/object)). (d) Output image with the detected
animal species (MG).

FIGURE 3. Illustration of the sampling locations in the 3 × 3 regular and
deformable sampling matrices. (a) A regular sampling matrix (blue
points). (b) A deformable sampling matrix (orange points) with learned
augmented offsets (green arrows) to redistribute the sampling locations
according to the object’s scale and shape.

and (ii) a shallow network for a specific task to generate
results from the feature maps. DarkNet-19 was used as a
backbone network for YOLOv2 for feature extraction [8].
It consists of 19 successive convolutional layers with kernel
sizes of 3 × 3, 1 × 1 and five 2 × 2 max pooling layers with
stride = 2 for feature extraction on top of the classification
layer.

For the original YOLOv2, the last block of DarkNet-19
has been replaced by two blocks with three 3 × 3 convolu-
tional layers and one 1 × 1 convolutional layer for detec-
tion. In addition, YOLOv2 has a pass-through layer named
Reorganisation layer (Reorg. layer), which is used to reduce
the size of mid-level features to match the size of high-level
features by using a down-sampling factor equal to 2. Thereby,
these two feature maps can be combined to improve network
performance.

B. D-CNN
In this work, a D-CNN was integrated into the YOLOv2
model to enhance its accuracy in detecting animal species to
deal with the drawback of CNN, as discussed in subsection
V-C. A CNN has: (i) a convolution layer which samples the
input feature map at fixed locations due to the fixed square
kernel; and therefore, the receptive field does not cover the
entire pixel of the object properly; (ii) a pooling layer which
decreases spatial resolution with a fixed ratio; and (iii) a

RoI pooling layer which produces fixed size feature maps.
As a result, CNN has a fixed geometric structure that cannot
deal with any geometric variations in the object scale, pose,
viewpoint, and part deformation [9], [66].

To overcome the drawbacks of CNN by using D-CNN,
the regular fixed sampling matrix (convolution kernel) in
Fig. 3 (a) was replaced with the deformable, movable sam-
pling matrix, as shown in Fig. 3 (b), where each point in
the regular sampling matrix was moved by a learnable offset,
depending on the shape of the object. A deformable matrix
structure can be obtained by a convolution algorithm that
calculates the offset of the sampling position to learn the
geometrical properties of the objects to be detected [9].

As shown in Fig. 4, a D-CNN consists of: (i) a regular
convolution layer with a regular 3 × 3 sampling matrix as in
Fig. 4 (a), to generate a feature map for the whole input image
in Fig. 4 (b), and (ii) an additional convolution layer with a
3 × 3 regular sampling matrix as in Fig. 4 (c) for the learned
augmented offsets in Fig. 4 (d) to be learned from the feature
map. These offsets can be trained easily by using back prop-
agation from end-to-end to generate a deformable 3 × 3 sam-
plingmatrix as in Fig. 4 (e). Fig. 4 (f) shows the output feature
map after applying the regular samplingmatrix. The positions
of the sampling points in the sampling matrix (orange circles)
are in a fixed 3 × 3 square shape. Fig. 4 (g) shows the output
feature map after applying the deformable sampling matrix.
The positions of the sampling points are changed from the
original 3 × 3 square shape to another shape according to the
object scale and shape, to generate a more accurate bounding
box. By comparing the two outputs in Fig. 4 (f) and Fig. 4 (g),
we found that the deformable convolutional layer increases
the detection accuracy of the network at the cost of a small
amount of computation and parameters for the offset learning,
as shown in subsection V-C.

The advantages of D-CNN comparedwith the regular CNN
can be summarized as:

• D-CNN can be integrated into any CNN architectures,
giving them the ability to deform its sampling matrix to
fit the structure of the object.
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FIGURE 4. Illustration of the difference between applying 3 × 3 regular and deformable sampling matrices on input feature map.
(a) Regular sampling matrix (orange circles) of regular convolution layer. (b) Feature map of the whole image after convolution layer.
(c) Regular sampling matrix. (d) Learned augmented offsets (blue arrows) from the preceding feature map via an additional convolutional
layer to redistribute the sampling locations of the regular sampling matrix to focus on the object. (e) Deformable sampling matrix after
adding offsets to the regular sampling matrix. (f) Output feature map after applying regular convolution. (g) Output feature map after
applying deformable convolution.

• The offsets in D-CNN are dynamic model outputs which
vary according to the object locations in the image.

• D-CNN is capable of learning receptive fields adap-
tively.

• D-CNN learns sampling locations instead of filter
weights to generate more accurate bounding box.

• D-CNN provides improvements in object detection
accuracy [66].

V. PROPOSED ANIMAL SPECIES DETECTOR MODEL
The YOLOv2 model has shown impressive results in many
generic object detection applications which have different
degrees of variation in object classes, such as humans, ani-
mals, traffic signs, and vehicles [67]. This motivated us
to propose a lightweight animal species detector based on
YOLOv2 to detect animal species as shown in Fig. 5. How-
ever, there are a lot of challenges in this work to improve
detection accuracy and speed.

A. MULTI-LEVEL FEATURES MERGING
The differences between the six animal species are related to
edges, intensity, contour, texture, color, etc., which exist in
low-level features. To improve animal species identification
and localization accuracy of the original YOLOv2, the low-
level features are merged with high-level features by adding a

new pass-through layer (Reorg. layer) with a down-sampling
factor of 4; as shown by the black dashed line in Fig. 5.

As shown in Table 2, after the low- and high-level features
merging, the capability of YOLOv2 to recognize the small
differences between animal species increased by 1.8%. The
biggest improvement was achieved with the deer images as
most of these images were captured during daylight as shown
in Fig. 1 (b), and the smallest improvement was with the
moose images, as most of them were captured at night as in
Fig. 1 (c).

B. CONVOLUTIONAL LAYERS REMOVAL
The architecture of YOLOv2 was designed for generic object
detection applications. Generic objects imply that the number
of classes is large. Thereby, there were five repeated 3 ×

3 convolutional layers with 1024 filters in the seventh block
of the YOLOv2 architecture. However, only six species of
animals need to be detected in this study. Fig. 6 shows the loss
curve (sum of errors for each iteration) of detecting animal
species in the validation dataset with and without two 3 ×

3 convolutional layers in YOLOv2. The two models, with
and without two convolutional layers, were trained with the
same number of epochs, and both reached the same accuracy.
Thus, removing the two 3 × 3 convolutional layers from the
seventh block of YOLOv2 does not reduce the accuracy of
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FIGURE 5. Architecture of the proposed YOLOv2 animal species detector. The detector has a new pass-through layer with a down-sampling factor of
4 to merge low- with high-level features (the black dashed line). The sixth block of detector (blue dashed block) has five convolution layers with
three added DCLs.

TABLE 2. A comparison between YOLOv2 and modified YOLOv2 with
multi-level features merging to detect six animal species in terms of
Average Precision (AP) and mAP (details in VI.B.) on the BCMoTI dataset.

detecting the six selected animal species, however it speeds
up the detection process. It can be concluded that, YOLOv2
without the two 3 × 3 convolutional layers, has sufficient
features to distinguish between the six animal species.

C. ADDING DCLs
For object classification, regular CNNs extract features from
images by using a fixed kernel. If any changes occur in
the shape, size, and posture of objects in the image due
to the object’s motion, or the location of the cameras, the
neural network may have difficulties in cannot classifying
these objects correctly. Therefore, in this study, the idea of
adding DCLs to the YOLOv2 model was proposed to learn
the geometric transformation of animals. It can produce an
adaptive deformable kernel and offsets according to the scale
and shape of the animal, by augmenting the spatial sam-
pling locations in the convolution layers. This is used as our
solution instead of augmenting the dataset in advance, which
increases the cost of data pre-processing, and the augmented
data would never cover all the images in real applications [9].
As shown by the blue dashed box, in Fig. 5, three DCLs are

FIGURE 6. The loss curve of the validation dataset with (blue line) and
without (orange line) two 3 × 3 convolutional layers in the seventh block
of YOLOv2 architecture.

used to learn the offsets, which are added to the regular 3 ×

3 grid sampling locations in the sixth block. The detection
capability and accuracy were enhanced as reported in Table 3.

Table 3 shows the average precision (AP) [68], mAP, and
inference-time, which are elaborated inVI.B. The deformable
YOLOv2 reaches higher accuracy in detecting the six animal
species as compared to the regular YOLOv2, as expected.
In the BCMoTI dataset, the deformable YOLOv2 provides
a better result for the six animal species with a mAP of
85.5% in about 0.027 second per image on a Core i7 system,
which equates to 37 images in one second. On RP4B, the
inference-time of deformable YOLOv2 is 0.15 second per
image, whereas for YOLOv2, it is 0.13 second per image.
This means that the addition of DCLs slows down the detec-
tion speed on RP4B by 15.3%.

To summarize the above discussion, the proposed
YOLOv2 animal species detector, as shown in Fig. 5, differs
from the original YOLOv2 by: (i) adding a pass-through layer
with a down-sampling factor equal to 4 (black dashed line),
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TABLE 3. Evaluation of animal species detection by using regular and
deformable YOLOv2 in AP, mAP, and Inference-time on the BCMoTI
dataset.

FIGURE 7. A mock-up using RP4B and a web camera to illustrate the
capability of the proposed animal detection model.

which increases the mAP of detecting six animal species by
1.8%,(ii) removing two repeated 3 × 3 convolution layers
from the seventh block of YOLOv2, but maintains the accu-
racy of detecting the six animal species, (iii) adding three
DCLs to the sixth block (blue dashed box) to deal with
the geometric transformation of animals in images, which
increases the animal species detection mAP by 3.0%.

VI. IMPLEMENTATION AND EVALUATION METRICS
A. IMPLEMENTATION
1) RoI LABELLING
Image annotation was done using a MATLAB 2022a applica-
tion called Image Labeler [69]. The input of this application
is a set of images, which are then annotated by rectangular
bounding boxes with class labels over the objects. These
annotated images are exported and converted fromMATLAB
format (matlab file) to YOLO format (image and correspond-
ing text file), to be compatible for training in Python.

FIGURE 8. Precision-recall curve of detecting deer using the original
YOLOv2 model.

2) TRAINING
The dataset was divided into 70% training, 15% valida-
tion, and 15% testing. The validation dataset is impor-
tant for adjusting and finding the significant values of
the hyper-parameters through trial-and-error [70]. These
hyper-parameters have a vital effect on the performance of
the YOLOv2, modified YOLOv2, YOLOv3, and YOLOv4
models. In this work, all four models used the same
hyper-parameters. The AdaptiveMoment Estimation (Adam)
optimizer [71] was used with an empirically determined
momentum of 0.9 and a weight decay of 0.0005, to accelerate
the convergence and improve the detector performance. The
models were also trained and fine-tuned by using a learning
rate of 0.001.

The training was performed after resizing the input images
to 416 × 416 pixels by a pre-trained ImageNet DarkNet
network [26] to extract the objects’ features from the input
images. All the models were initialized with the ImageNet
weights [72] and trained with the same number of epochs.

3) EXPERIMENTAL SETUP
The training and testing of YOLO and the modified YOLOv2
models were performed using Python 3.7 under the PyCharm
development environment (DL framework) [73], and imple-
mented on a systemwith Core i7-10750HProcessor, NVIDIA
GeForce RTX 2070, 32 GB RAM memory, and Win-
dows 10 Professional x64 operating system. For the effective
use of the system’s GPU to accelerate the training process,
CUDA 10 [74] was installed. For deployment, an RP4B with
1.5GHz 64-bit quad-core CPU, 128 GB, and 8 GB RAM
memory [75] was used, as shown in Fig. 7.

B. EVALUATION METRICS
The accuracy and speed of the animal species detection using
YOLOv2, modified YOLOv2, YOLOv3, and YOLOv4 were
measured on the testing-set which contains 6,183 images
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FIGURE 9. Animal species detection results of two models: (a) Original image of a far bear, (b) no detected animal (FN) using YOLOv2, (c)
detected far bear using modified YOLOv2, (d) original image of two bears, (e) detected only one bear (big) using YOLOv2, (f) detected two
bears (big and small) using modified YOLOv2, (g) original image of four deers, (h) detected only three deers using YOLOv2, and (i)
detected four deers using modified YOLOv2.

of six animal species on the core i7 system (high-power
machine) and on the RP4B (low-power machine).

The Precision-Recall Curve (PRC) [68] is a detection curve
calculated from precision and recall based on four evaluation
components: true positive (TP), false positive (FP), false neg-
ative (FN), and true negative (TN), as shown in equations (1)
and (2). TP presents the truly detected objects as the overlap
being over or equal to 0.5 [76], between ground truth and the
detected bounding box in all region proposals. FP presents
the falsely detected objects as the overlap being less than 0.5,
between ground truth and the detected bounding box in all
region proposals. FN is the sum of non-proposed regions as
the ground truth does not have a match. TN represents the
truly non-detected objects in the image.

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

The most popular metric in literature to evaluate the accu-
racy of object detectors, is the mAP [68]. As shown in Fig. 8,
AP is defined as the area under the PRC for each class where
it computes the average of precision over recall in the interval
from 0 to 1. This value is then divided by the number of
classes to obtain the mAP.

Inference-time (seconds per image) is used to measure the
speed of Python to detect animal specie.

VII. RESULTS AND DISCUSSION
This section shows the accuracy and speed comparisons
between YOLOv2, YOLOv3, YOLOv4 and the modified
YOLOv2 models on the BCMoTI test dataset.

As shown in Table 4, the modified YOLOv2 model
was evaluated and compared with the other models. Two
machines with different computation power were used to
measure the inference-time. For the high-power machine
(core i7 system), the modified YOLOv2 model has a higher
accuracy (mAP) than the regular YOLOv2 by 5.0% and faster
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TABLE 4. Evaluation of animal species detection by using YOLOv2, modified YOLOv2, YOLOv3, and YOLOv4 models in AP, mAP, and Inference-time on the
BCMoTI dataset.

detection speed by 3 ms. The accuracy of YOLOv3 is 4.5%
higher than the regular YOLOv2 model; however, accuracy
of the modified YOLOv2 model is higher than YOLOv3 by
0.4%. In addition, YOLOv2, even after modifications, is still
faster than YOLOv3. However, YOLOv4 model is more
accurate than the modified YOLOv2 model by 2.5% and
faster by 2 ms. The YOLOv4 model has complex architecture
and many parameters. Therefore, YOLOv4 requires a pow-
erful platform, which restricts its deployment on embedded
devices for portable real-time applications. On the other hand,
for the low-power machine (RP4B), the modified YOLOv2
model (lightweight model) is faster than YOLOv4 by 50 ms.
Although, accuracy of the modified model is lower than
YOLOv4, this difference in accuracy can almost be ignored
when compared with the improvement in the detection speed,
which makes modified YOLOv2 suitable for deployment on
embedded devices.

In Fig. 9, the YOLOv2 and modified YOLOv2 models
were applied to some images for comparison. This is to
evaluate whether the modified YOLOv2 model can solve
the limitations of the original YOLOv2. The left-column
images Fig. 9 (a), (d), and (g) are the original images, the
middle-column images Fig. 9 (b), (e), and (h) show the detec-
tion results with the original YOLOv2 model, and the
right-column images Fig. 9 (c), (f), and (i) show the detection
results with the modified YOLOv2 model. From Fig. 9 (b)
and (e), it is noted that YOLOv2 struggles to detect small ani-
mals while the modified YOLOv2 can detect them, as shown
in Fig. 9 (c) and (f). Also, it can be seen that YOLOv2 has
difficulty with occluded animals, as shown in Fig. 9 (h), but
is resolved by adding three DCLs to YOLOv2, as shown in
Fig. 9 (i).

The results in Fig. 9 show that the proposed ‘‘modified
YOLOv2’’ model is more reliable than YOLOv2 in detecting
small and occluded animals. Moreover, it reduces the false
negative when there is an animal in the image which are not
detected by YOLOv2. These enhancements can be attributed

to the multi-level features merge in our modified YOLOv2
model.

VIII. CONCLUSION
Amodified YOLOv2 model is proposed that can be deployed
on embedded devices to detect animal species with high
performance as an initial step for WVC and WHC mitiga-
tion systems to reduce the negative impact of these encoun-
ters. Our model was trained and tested on the BCMoTI
dataset with three modifications to the original YOLOv2.
First, to enhance the feature extraction ability, multi-level
features merging was performed by adding low-level res-
olution features, which improved YOLOv2’s capability to
identify animal species with small differences by 1.8%. Sec-
ond, to reduce complexity and speed up the detection pro-
cess without sacrificing the accuracy, the two repeated 3 ×

3 convolutional layers with 1024 filters in the seventh block
of the YOLOv2 architecture were removed. Third, to handle
geometric transformations of animals in the images, three
DCLs were added to the sixth block of YOLOv2, resulting
in an increase of 3.0% in the animal species detection mAP.
Our results show that the mAP of the modified YOLOv2
model was increased by 5.0% and 0.4% over YOLOv2 and
YOLOv3, respectively. Moreover, the modified model can
detect small, far, and occluded animals better than the regular
YOLOv2 model. Compared with YOLOv4, the modified
model has faster detection speed which makes it feasible to
be deployed on embedded devices.

To summarize, our proposed model is able to enhance
detection speed without trading off accuracy in our animal
species detection system.

In future work, the proposed modified model will be
applied to a larger number of images with more animal
species. We will also study how to improve accuracy by
enhancing the extracted features in images with poor texture
information and low resolution, similar to the objectives in
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[77] and [78]. In addition, we aim to enhance the detection
speed of animal species detector.
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