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ABSTRACT Outlier detection (OD) is a key problem, for which numerous solutions have been proposed.
To deal with the difficulties associated with outlier detection across various domains and data characteristics,
ensembles of outlier detectors have recently been employed to improve the performance of individual outlier
detectors. In this paper, we follow an ensemble outlier detection approach in which good outlier detectors
are selected through an enhanced clustering-based dynamic selection (CBDS) method. In this method,
a bisecting K-means clustering algorithm is employed to partition the input data into clusters where every
cluster defines a local region of competence. Among the initial pool of detectors, the outputs of the detectors
with the most competent local performance were combined through four possible schemes to produce the
final OD results. Experimental evaluation and comparison of our method were carried out against four
variants of locally selective combination in parallel (LSCP) outlier ensembles. The CBDS-based schemes
compare well with the LSCP-based ones on 16 public benchmark datasets and incur considerably lower
computational costs. The CBDS method consistently achieved superior average scores of the area under the
curve (AUC) of the receiver operating characteristic (ROC), and particularly outperformed the LSCPmethod
on nine of the 16 datasets in terms of the AUC score. In addition, while the CBDS and LSCP methods have
similar computational costs on small datasets, the CBDSmethod achieves significant time savings compared
with the LSCP method on large datasets.

INDEX TERMS Bisecting K-means, dynamic detector selection, outlier detection, outlier ensemble.

I. INTRODUCTION
Outliers (or anomalies) are defined as data samples that are
significantly different from other observations in their cat-
egory or group. Usually, outliers exhibit extreme deviation
in value and/or in nature compared to surrounding objects.
The occurrence of outlier data samples is very rare, where
such outliers typically represent less than 5% of the overall
data samples [1]. Detecting such outliers is critical in many
applications for several reasons. Firstly, these outliers may
adversely affect the results of further statistical analysis,
and hence the outliers should be removed to boost the data
quality [2]. Secondly, the outliers themselves may represent
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novel observations of special significance (e.g., rare dis-
eases, abnormal behavior, or genetic mutations). Thus, outlier
detection methods have been extensively investigated in a
wide range of applications such as data mining [3], network
intrusion detection [4], credit-card fraud detection, [5], prod-
uct tampering detection [6], and industrial fault diagnosis
[7]. Also, outlier detection methods have been explored for
healthcare applications such as early disease prediction [8],
brain tumor detection [9], identification of cancerous masses
in mammograms [10], and detection of rare genetic expres-
sions [11].

Outlier patterns can be generally categorized into global
or local outliers. On the one hand, the global outliers show
extreme deviations from all of the available normal data
patterns. Indeed, a global outlier occurs somewhere in the
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feature space well outside the normal data range [12]. On the
other hand, a local outlier can be within the normal global
data range, but, still, the pattern of such an outlier can be quite
contextually different from its local neighbors.

Unlike binary classification tasks, outlier detection is typ-
ically an unsupervised task since it is applied to unlabeled
data where ground truth is not available. Therefore, it is quite
difficult to assess the accuracy of the detection methods.
Moreover, these methods can become unreliable with high
false-positive and false-negative rates [13]. To alleviate these
limitations of the outlier detection methods, ensemble outlier
detection (EOD)methods have been recently introduced [13].
In an EOD method, several outlier detectors are aggregated
together to enhance the overall outlier detection performance.
The outputs of the individual EOD detectors can be fused
through different schemes in order to produce a unified outlier
score [15]. A key desirable property of an outlier detector
ensemble is to have strong diversity among the base detectors.
Such diversity can be achieved by introducing different base
models, using different training subsets, or different data
subspaces. Recent EOD methods considered these factors in
order to achieve satisfactory bias-variance trade-off [13].

Moreover, methods for combining detector outputs within
an ensemble can account for all detectors or just select a
subset of detectors. A recent design approach for outlier
detection ensembles is to exploit a large number of potential
detectors, identify and discard weak ones, and dynamically
select the most competent detectors for producing the final
ensemble output based on an evaluation of specific local
regions. This dynamic selection of detectors was originally
developed for dynamic classifier selection (DCS) in super-
vised learning [16], [17]. For the DCS mechanism, the local
performance of each base classifier is evaluated at a local
region of the feature space where a query sample is located,
and the best top classifiers are selected and employed in
making the final classification decision for that data sample.
This DCS mechanism has been recently extended to the con-
struction of outlier detection ensembles. To compensate for
the absence of ground-truth data for outlier detector training,
novel approaches for simulating ground-truth labels have
been introduced [18], [19].

Remarkably, Zhao et al. [20] proposed an enhancedmethod
for combining base outlier detectors within an unsupervised
outlier ensemble. Following the DCS approach, the authors
introduced the method of locally selective combination in
parallel (LSCP) outlier ensembles. Specifically, a local region
is defined around a test data sample based on the consen-
sus of the nearest neighbors of this instance in randomly
selected feature subspaces. The base detectors with the best
performance in this local region are selected and their out-
puts are fused to generate the final output of the LSCP
ensemble. However, the LSCP method is one of the feature
subspace techniques which may generate repeated data sam-
ples. This problem causes ensemble performance degradation
in addition to high running times [13]. Also, although the
k-nearest-neighbor (kNN) scheme contributed prominently

to enhancing the dynamic selection of the outlier detectors
in the LSCP method, the kNN scheme generally leads to
high computational complexity and degraded performance in
high-dimensional feature spaces. These drawbacks demon-
strate the need for exploring more robust computationally
efficient techniques for dynamic detector selection and fusion
within outlier detector ensembles.

Our work is motivated by the still-unmet need for real-
time high-performance outlier detection methods, especially
with large data sets and extremely low occurrences of out-
lier samples. In this paper, we propose a clustering-based
dynamic selection (CBDS) outlier detector ensemblemethod.
In this method, the bisecting K-means clustering algorithm is
applied to partition the input data into clusters (subsets). Each
cluster delineates a local region of competence. An initial
pool of detectors is trained over all these different clusters,
and the outputs of the most competent detectors are com-
bined through four possible schemes to produce the final
outlier detection results. Employing the bisecting K-means
clustering algorithm results in reduced computational com-
plexity of the subsequent outlier detection operations. Also,
training base detectors over different data clusters reduces
the variance. While a test sample is compared against k
nearest neighbors in the LSCP method, a test sample in the
CBDSmethod is compared against a much smaller number of
cluster centroids. This results in a much lower computational
cost compared to the LSCP method. As well, the bisecting
K-means clustering approach produces clusters of similar
sizes and this enhances the cluster balance.

In a nutshell, our paper proposes a new method for outlier
detection using ensembles of outlier detectors. In compari-
son to the state-of-the-art LSCP method [20], our method is
distinguished by the use of a modern variant of K-means clus-
tering (namely, the bisecting K-means clustering method).
In fact, our method compares a test sample with samples
within the closest cluster, while the LSCP method compares
a test sample with similar ones through a kNN scheme.
Thus, our method offers more robustness and shows better
performance (compared to the LSCPmethod) on a wide array
of datasets with a significant reduction in computational cost.

Our paper has specifically the following four contributions:

• A clustering-based dynamic selection (CBDS) outlier
detector ensemble method is introduced with a novel
clustering mechanism based on the bisecting K-means
clustering algorithm.

• Two approaches have been proposed for promoting
detector ensemble diversity at the model level (through
employing base models with a wide range of hyper-
parameter settings), and the data-sample level (through
trying different subsets of training samples)

• The influence of high levels of data imbalance on the
outlier detection performance has been experimentally
investigated.

• The outlier detection performance for low false-alarm
ranges has been analyzed and assessed.
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The rest of this paper is organized as follows. Related work
is further explored in Section II. The details of the pro-
posed method are introduced in Section III. The experimental
setup (including the datasets, tools, and performance metrics
used) is described in Section IV. The experimental results
are extensively described in Section V. Detailed discussions
of different aspects of the obtained results are provided in
Section VI. Finally, conclusions, practical implications, and
future research directions are pointed out in Section VII.

II. RELATED WORK
A. CONVENTIONAL OUTLIER DETECTION METHODS
Over the past few decades, many outlier detection meth-
ods have been introduced including distance-based, density-
based, clustering-based and probabilistic methods [21]. First
of all, the distance-based methods identify outliers by cal-
culating pairwise distances for the available data samples.
A sample whose average distance from the majority of the
other data samples exceeds a certain pre-specified threshold
is labeled as an outlier [22], [23]. Angiulli et al. [24] followed
this approach to identify outliers in a high-dimensional space.
Tran et al. [25] developed an algorithm, named core point
outlier detection (CPOD), to speed up the identification of
inliers and reduce neighbor search spaces for outlier candi-
dates using a multi-indexed distance method with the core
point data structure technique.

Density-based methods detect local outliers. The notion
behind the method is that objects in high-density regions
are inliers while those in low-density regions are considered
outliers [26]. Tripathi et al. [27] employed the estimated high
and low densities through a nearest-neighborhood-function
method for credit-card fraud detection. The degree of outlier-
ness of an object is specified by the local outlier factor (LOF)
of the object [28]. Xu et al. [29] proposed a LOF model with
tuned hyperparameters for outlier detection.

In the clustering-basedmethods, an object either belongs to
a large cluster or is just an outlier. Outlier objects are then col-
lected in a small-size outlier cluster [30]. Loureiro et al. [31]
used hierarchical clustering in a data cleaning application
in order to select a small subset of suspicious data sam-
ples and isolate these samples in small outlier clusters. Al-
Zoubi et al. [32] identified small clusters and considered
them outlier clusters using an objective function based on the
fuzzy C-means algorithm (FCM). Bhowate and Gadicha [33]
applied the bisecting K-means algorithm to cluster data into
K clusters, and prune any cluster sample whose distance from
the cluster centroid is less than a pre-specified cluster radius.
The unpruned samples are labeled as suspected outliers.

Furthermore, in probabilistic outlier detection methods,
the underlying data distribution is inferred, and the outlier-
ness probability is estimated for each data sample. The most
commonly used model for univariate data is the normal dis-
tribution. The objects are considered outliers if they lay in
extreme regions with probability densities below a particular
threshold [34], [14]. However, the methods based on univari-

ate probabilistic models are of limited applicability as most
of the real-world outlier detection problems involve multi-
dimensional data. Moreover, prior knowledge is needed for
building reliable probabilistic models. Barghash et al. [35]
followed a probabilistic approach for detecting outliers in
gene expression datasets. Peter et al. [36] used simple sta-
tistical methods for detecting spatial data outliers using the
Google Earth Engine. Cho et al. [37] developed the OutlierD
software package for outlier detection based on linear, non-
linear and non-parametric quantile regression techniques.

B. ENSEMBLE OUTLIER DETECTION METHODS
In general, none of the conventional outlier detection meth-
ods remarkably outperforms the others. This can be mainly
ascribed to the variabilities in the data distribution, data
dimensionality, and data association patterns. In fact, an out-
lier detection method might perform well in a particular
problem with a specific type of data, while poor performance
is observed with the same detector for different problems
and data types. This observation agrees with the no-free-
lunch theorem that asserts the fact that no optimal outlier
detector can be obtained for all problems and data types [38].
This limitation of individual outlier detection methods has
been recently alleviated by the EOD methods [13]. As men-
tioned above, an EOD method employs several outlier detec-
tors, of the same type or different types. These detectors
are constructed with different hyperparameters, and com-
bined together to enhance the overall outlier detection per-
formance. The diversity within the outlier detector ensem-
bles makes them applicable for different data types and
characteristics.

Numerous methods have been proposed for fusing the
outputs of individual detectors within an ensemble. These
methods can be generally categorized into sequential ensem-
ble combination methods, independent ensemble combina-
tion methods, and hybrid ensemble combination methods
[14]. In a sequential ensemble combination method, e.g.,
a boosting-based method, the output scores of the base detec-
tors are interdependent and the final output score is based
on the score of the last base detector [39], [40]. For a par-
allel ensemble combination method, the score of each detec-
tor is independently obtained, and then the collected scores
are employed to produce the final output score [41]. For
a hybrid ensemble combination, both sequential and inde-
pendent ensemble combinations are compatibly used [42].
A summary of state-of-the-art methods for each category is
given in Table 9.
As mentioned earlier, a key design aspect of an outlier

detection ensemble is to generate a large pool of potential
detectors, identify and retain the most competent ones for
computing the final output, and discard the other detectors.
Generally, ensembles can be classified into three types in
terms of the detector selection approach: generic and global
(GG) ensembles in which all detectors are combined to pro-
duce the final output, static and global (SG) ensembles in
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TABLE 1. Data characteristics of 16 ODDS datasets used for evaluating
the performance of ensemble outlier detectors.

which detectors are selected during the training phase [17]
and, most recently, dynamic local (DL) selection ensem-
bles [16]. For the DL selection ensembles, data locality is
considered, and detectors are selected after evaluation for
predicting outliers in the test phase [43]. A dynamic selec-
tion approach is essentially followed by Zhu et al. [44] for
data mining in noisy data streams. Also, Zhao et al. [20]
employed dynamic selection in the LSCP method. Further-
more, Bii et al. [45] introduced an adaptive boosting method
for outlier detection (ADAHO). In this method, the perfor-
mance of each base detector is enhanced through an adaptive
boosting scheme based on the local domain of competence.
Then, the nearest-neighbor detectors of the highest corre-
lation with the test instance are selected, and the detector
outputs are combined through conventional fusion methods.

III. PROPOSED APRROACH
A. METHOD DESIGN
In the proposed CBDS outlier detection method, an ensem-
ble of diversified and independent base detectors is initially
generated. The training dataset is then partitioned into clus-
ters to define local regions of competence. Then, for each
training sample, a ground-truth label is constructed based
on the aggregation of scores returned by the base detectors.
The performance of the base detectors is evaluated in each
cluster. For a given test data sample, competent detectors
are dynamically selected and the scores of these detectors
are combined to produce the final output score for the test
sample. The proposed method is shown in Figure 1, and the
algorithmic steps are summarized in Algorithm 1. The details
of the proposed method are as follows.

1) SCORING OF TRAINING SAMPLES DATA OUTLIERS WITH
BASE DETECTORS
In order to obtain enhanced outlier detection performance,
a large pool of detectors with different characteristics
could be employed to form a detector ensemble. This
design approach was extensively considered. For example,
van Stein et al. [46] searched for local outliers within feature
subspaces. Also, Zhao and Hryniewicki [47] investigated the
effects of data locality on outlier detection, and used hetero-
geneous combinations of outlier ensembles. Following this
design approach, we propose an outlier detector ensemble
that contains a pool of LOF detectors initialized with differ-
ent parameter settings. Specifically, let R denote the dataset
within which outliers are searched for, where the dataset
contains N d-dimensional points and d denotes the number
of features. Split R into a training set Xtrain with n points and
a test set Xtest with m points (i.e., N = n+m). The ensemble
generation is carried out as follows

Step 1: Generate a pool of base detectors HL , where L is
the number of detectors.

Step 2: Initialize all base detectors with different parameter
settings.

Step 3: Train all base detectors and use the detectors to
predict vectors of outliers scores in Xtrain.

Step 4: Normalize each predicted score vector by scaling
in the interval [0,1].

Step 5: Form an outlier score matrix Q(Xtrain) as follows:

Q(Xtrain) = [H1(Xtrain),H2(Xtrain), . . . ,HL(Xtrain)]ϵ Rn×L

(1)

2) CONSTRUCTION OF LOCAL REGIONS OF COMPETENCE
Constructing the local regions of competence runs in parallel
to the ensemble detector generation stage. In the LSCP and
ADAHO methods, a region of competence is defined in the
neighborhood of a test sample using the K-nearest neighbor
(kNN) training samples [13], [47] whereas LSCP uses a fea-
ture bagging technique to sample subsets of data. In our work,
we follow a different approach where the training patterns
are clustered using the bisecting K-means algorithm [48] in
order to define a local region of competence for each cluster
center (not for each test pattern). The bisecting K-means
algorithm initially divides the available training patterns into
two clusters in order to minimize the sum of squared errors
(SSE) between cluster centers and their associated patterns.
This process is iteratively repeated to split each cluster into
two based on the SSE criteria [49] until a prespecified cluster
countK is reached. This SSE-based bisection process ensures
that the resulting centroids are the best representatives of their
respective clusters. In our work, the number of clusters K
is defined for each dataset based on the elbow method [50].
Specifically, the bisecting K-means algorithm is carried out
as follows:

24434 VOLUME 11, 2023



R. R. Z. Koko et al.: Dynamic Construction of Outlier Detector Ensembles With Bisecting K-Means Clustering

FIGURE 1. A flowchart of the proposed CBDS method where the blocks with dashed borders correspond to different stages.

Step 1: Initialize the clusters of the training data Xtrain into
two clusters and compute their centroids as

uj =
1
n

∑
x∈C j

x. (2)

Step 2: Based on the SSE criteria, divide a given cluster into
two clusters if the SSE after division is smaller than that
before division. Otherwise, leave the cluster undivided.

Step 3: Repeat Step 2 for each cluster until K clusters are
formed.

Step 4: For each cluster center ui, denote the set of asso-
ciated training patterns by C j, where j ϵ {1, 2, ..,K } . The
collection of all clustersCtrain = {C1,C2, .., CK} partition the
original training data Xtrain. LetU = [u1, u2, .., uK ] represent
the set of the K centroids.

Step 5: Apply the pool of the base detectors to the clusters
to produce a matrix Q(Ctrain) which lists the scores of the L
detectors for each cluster as follows

Q (Ctrain) =

[
H1

(
C1
train

)
, . . . ,HL

(
CK
train

)]
ϵ RK×L . (3)

3) DYNAMIC DETECTOR SELECTION
In the previous stage, scores were computed for all detec-
tors in a given cluster. However, not all of the detectors
are at the same level of competency in detecting the out-
liers. Incompetent detectors may negatively affect the overall
ensemble-based detection performance. Thus, in this stage,

we quantitatively evaluate the competency of the detectors
associated with each cluster in order to rank the detectors
by competency and select only the most competent ones.
Hence, each cluster shall have its specific set of competent
detectors which could be used to predict outliers in test data
and produce a combined outlier score for each test sample.
However, in unsupervised machine learning techniques (like
the one in hand), there are no ground-truth labels that can
be used for evaluating the accuracy of each detector [51].
Consequently, for the purposes of dynamic detector selection,
we have to firstly simulate such labels from the training
data. Thus, for each cluster, the most competent detectors are
identified and retained. The steps of this dynamic detector
selection process are as follows:

a: GROUND-TRUTH SIMULATION
Ground-truth outlier score simulation was proposed by
Rayana andAkoglu [18]. Specifically, the outlier scorematrix
Q(Xtrain) for the training data Xtrain is used to generate a set
Ttrain of corresponding simulated ground-truth outlier scores
for the training samples. The ground-truth scores can be
obtained using twomethods for aggregating the outlier scores
of base detectors:

Averaging (Avg): For a given training sample, the simu-
lated ground-truth score is calculated as the arithmetic aver-
age of the scores obtained using the base detectors. For the
whole training set, the vector of the simulated ground-truth
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scores is given by

Ttrain−avg =
1
L

L∑
l=1

Hl(Xtrain) ϵ Rn×1 (4)

where Hl denotes the l th base detector, l ϵ {1, 2, . . . ,L} .

Maximization (Max): For a given training sample, the
simulated ground-truth score is calculated as the maximum
of the scores obtained using the base detectors. For the whole
training set, the vector of the simulated ground-truth scores
is thus given by finding the maximum scores across all base
detectors

Ttrain−max = Max {H1 (Xtrain) , . . . ,HL (Xtrain)} ϵ Rn×1.

(5)

In general, we denote the ground-truth generation operator by
ψ

Ttrain = ψ (Q (Xtrain)) ϵ Rn×1 (6)

where the operatorψ denotes either the average or maximiza-
tion operators as shown in Eqs. (4), (5), respectively.

b: DETECTOR SELECTION
After ground-truth generation, the competent detectors are
identified and selected as follows.

Step 1: For each cluster C j, j ϵ {1, 2, ..,K }, let TC j denote
the set of the ground-truth outlier scores of the training sam-
ples associated with C j,

TC j =

{
Ttrain(x i) | xiϵC

j
train

}
ϵ Rnj×1, (7)

where
∑

j nj = n.
Step 2: For each cluster C j, compute the Pearson correla-

tion between the set of the ground-truth scores TC j and scores
obtained by each of the L detectors:

ρ
(
TC j,Hl

(
C j
train

))
(8)

where j ϵ {1, 2, ..,K } and l ϵ {1, 2, . . . ,L} .

For a given cluster, the most competent base detectors are
the ones with the highest correlation values. Indeed, detec-
tor competency is evaluated using the Pearson correlation
similarity measure (instead of a direct accuracy measure)
because of the lack of reliable ways to establish binary labels
in unsupervised learning [47].

Step 3: For each cluster C j, the top Lc detectors with
the highest correlation values are retained as the competent
detectors of this cluster, where Lc < L. We denote this set of
competent detectors of C j by H j∗

= {Hl |l is the index of
one of the top Lc detectors for C j}. Note that selecting one
detector for one cluster can be highly error-prone even if it is
the most competent one [47] [15].

4) TEST DATA CLUSTER ASSIGNMENT AND OUTLIER SCORE
FUSION
Given a test sample Xt which belongs to Xtest , we carry out
the following steps:

Step 1: Calculate the distance of the test sample Xt to each
centroid uj using the Euclidean distance function d such that

d
(
xj, ui

)
=

√
(xj, ui)

2
. (9)

Step 2: Assign the test sample Xt to the closest cluster COPT

in terms of the computed Euclidean distances:

OPT = argmin
jϵ{1,2,...,K }

d(Xt , uj). (10)

Note that the time complexity for assigning each test sample
to its best cluster is O(Km) where K is the number clusters,
and m is the number of test samples.

Step 3: The Lc competent detectors associated with the
closest cluster COPT are used to score the test pattern Xt ,
obtaining an outlier score vector

Q (Xt) = [Hj (Xt)]HjϵH j∗ϵRLc×1. (11)

Step 4: The outlier scores calculated using Eq. (11) are fused
using one of different possible score-based fusion methods to
obtain the final outlier score of the test sample Xt . We prefer
these methods to rank-based fusion methods, as the former
provide clear quantitative measures of the degree of outlier-
ness [15]. In our work, we explore some of the following
score-based fusion methods:

• Averaging (Avg): Average the scores of the competent
base detectors as the final outlier score of a test sample.

• Maximization (Max): Return the maximum outlier
score across the competent detectors for a test sample.

• Maximum of Average (MOA): The competent detec-
tors are divided into subgroups of nearly equal sizes. For
each detector subgroup, the maximum score is found.
Then, the final score is computed as the average of the
subgroup scores.

• Average of Maximum (AOM): The competent detec-
tors are divided into subgroups of nearly equal sizes.
For each detector subgroup, the average score is found.
Then, the final score is computed as the maximum of the
subgroup scores.

Using the above-mentioned fusion methods, we explore four
variants of the proposed CBDS method: CBDS-Avg, CBDS-
Max, CBDS-MOA, and CBDS-AOM. The steps of the pro-
posed CBDS algorithm are summarized in Algorithm 1.

IV. EXPERIMENTAL SETUP
A. DATASETS
The proposed approach was evaluated using 16 real-world
multidimensional datasets of the annotated Outlier Detection
Datasets (ODDS) [52]. The used datasets come from different
fields, and have large variations in the number of samples, the
number of features (or dimensionality), and the number (or
percentage) of outliers. A summary of these data characteris-
tics is shown in Table 1 for each of the 16 datasets. Further
performance evaluation was also conducted on 3 highly-
imbalanced datasets with minority class percentages below
0.2%. These datasets are Train [53], Creditcard [54], and
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Algorithm 1 Outlier Detection With CBDS
Input: Pool of H detectors; Training data Xtrain; Test data Xtest
Output: Outlier scores of the test data Xtest

1- train all detectors in H on the training data Xtrain
2- get the outlier scores for all training patterns using the

detectors in H to form the outlier score matrix Q(Xtrain)
3- get the simulated ground-truth scores Ttrain
4- partition Xtrain into K clusters Ctrain
5-for each cluster C j in Ctrain do
6- compose the set of cluster-specific ground-truth

scores T iC from Ttrain
7- apply the pool of detectors H to C j

10- get the outlier score matrix Q(HL (C j)) for C j

# identify the competent detectors for C j

11- for score Hl (C j) in Q(HL (C j)) do
12- compute the similarity of (TCj, Hl (C j))
13- return the most competent detectors H j∗ for C j

14- end for
15- end for
16- for each test pattern Xt in Xtest do
17- compute the distance between Xt and each centroid

uj using Eq. (10)
18- assign Xt to the nearest cluster Copt

19- apply all the competent detectors H j∗ associated with Copt

to get multiple detector-specific outlier scores for Xt
20- end for
21- if Avg then # Select a score fusion method
22- return MOA(Hj∗(Xt ))
23- Else
24- return AOM(Hj∗(Xt ))

25- end if

TABLE 2. Data characteristics of highly-imbalanced datasets used for
evaluating the performance of outlier detectors.

Fraud_data [55] with corresponding minority-class percent-
ages of 0.052%, 0.172%, and 0.108%, respectively. The char-
acteristics of these three datasets are summarized in Table 2.

B. EVALUATION METRICS
In this study, the outlier detection performance was evaluated
using the receiver operating characteristic curve (ROC) and
the area under the ROC curve (AUC). Further evaluation
metrics (for specific setups) are the F1-score, precision, and
recall. Moreover, we compared the computational complexi-
ties of the proposed CBDS and LSCP methods.

C. EXPERIMENTAL SETTINGS
Experiments were employed to evaluate the outlier detection
performance outcomes of the proposed CBDS method, and
compare these outcomes against those of the LSCP method.
Comparisons are made in the training stage (where the simu-
lated ground-truth is generated using the Avg andMax aggre-
gation operators), and in the testing stage (where outliers

are predicted in the test samples using the MOA and AOM
aggregation operators). The results for both the training and
testing stages are reported for the 16 ODDS datasets and the
3 highly-imbalanced datasets, as listed in Table 3 and Table 7,
respectively. A pool of 20 LOF detectors was employed in the
training stage, where each detector is assigned a distinct mini-
mum number of points to form a dense region (MinPts). This
MinPts parameter is picked from the set {5, 20, 30, 40,. . . ,
190, 200} in proportion to the dataset size. The implemen-
tation of the proposed algorithm and comparisons with other
methods were carried out in Python. In particular, the Python
Outlier Detection toolkit (PyOD) [56] and the scikit-learn
toolkit [57] were used to run experiments on a laptop with
an Intel® CoreTM CPU with two 2.67-GHz processors and
8-GB RAM.

V. RESULTS
A. QUANTITATIVE OUTLIER DETECTION RESULTS
Table 3 shows the AUC scores of the CBDS and LSCP meth-
ods for the Avg,Max,MOA, and AOM aggregation operators.
For each of the 16 ODDS datasets, we show the highest
AUC score in bold. In general, as shown by the last row of
Table 3, the average AUC scores of the CBDS schemes are
consistently higher than the corresponding LSCP ones, where
the average scores are taken over the 16 ODDS datasets.

As can be observed, both the CBDS-Avg and LSCP-
Avg methods demonstrate relatively weak performance. The
potential explanation for this is that the averaging outcomes
can be adversely affected by contributions from relatively
incompetent detectors. For the LSCP-Avg variant, no ade-
quate bias-variance balance can be maintained, and this leads
to deteriorated detection performance. Indeed, although the
Avg fusion method theoretically leads to reduced variance
and higher local competency, selecting a relatively small
number of detectors may practically result in weaker variance
reduction and higher bias because of the heuristic ground-
truth simulation method. The CBDS-Max method returned
the highest AUC scores on high-dimensional data (e.g. Iono-
sphere), and relatively low-dimensional data (e.g. Satellite),
while the LSCP-Max scheme achieved the highest AUC
on the low-dimensional Breastw dataset although schemes
with the Max operator are generally more robust on high-
dimensional data. For the AOM operator, the CBDS-AOM
scheme outperformed the LSCP-AOM one on 5 datasets
(Cardio, Glass, Satimage-2, Optdigits, and Vertebral). This
result shows that the CBDS-AOM scheme balances bias
and variance reduction through the second-stage fusion, and
outperforms all other variants. We also notice that the high-
est CBDS-AOM scores are achieved on high-dimensional
datasets (Cardio, Satimage-2, Optdigits) as well as relatively
low-dimensional datasets (Glass and Vertebral), whereas the
LSCP-AOM method had the highest AUC scores on four
datasets (Arrhythmia, Musk, Thyroid, and Vowels), among
which only the Thyroid one is a low-dimensional dataset. This
demonstrates that the CBDS-AOMmethod has steady outlier
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TABLE 3. The AUC scores of the CBDS and LSCP ensemble outlier detectors with four variants of the aggregation operators. For each dataset, the scores
are obtained as the averages of ten runs, and the highest score is set in bold.

TABLE 4. The p-values of the Nemenyi test for comparing the mean AUC
values of the 4 CBDS variants (the statistically significant values are
shown in bold).

TABLE 5. The p-values of the Nemenyi test for comparing the mean AUC
values of the 4 LSCP variants (the statistically significant values are
shown in bold).

detection performance regardless of the data dimensionality
while the LSCP methods may exhibit unstable performance
on low-dimensional datasets. This can be ascribed to the fact
that the LSCP methods use feature bagging to create subsets
of high-dimensional data samples, and this leads to data
sample repetition [51]. Also, the employed LOF detectors
show degraded performance robustness with repeated data
samples, especially low-dimensional ones. On the other hand,
the CBDS methods alleviate these problems through creat-

ing highly-separated data clusters. Furthermore, while the
CBDS and LSCP scores are relatively close for some datasets
(Arrhythmia, Vertebral, Vowels, WBC), the differences are
quite noticeable for some other datasets (Optdigits, Glass).
It is also noticeable that the proposed CBDS-AOM scheme
achieved the highest AUCof 0.4372 on the highly challenging
Vertebral dataset. For the MOA aggregation operator, the
CBDS-MOA achieved the highest AUC scores on the Mnist
and Shuttle datasets, while the LSCP-MOA scheme achieved
the highest scores on the Pima andWBC datasets. In general,
the CBDS variants outperform the LSCP ones on 9 (out of 16)
datasets. Indeed, all LSCP variants demonstrate remarkably
poor performance, compared to the CBDS variants, on the
Optdigits and Shuttle datasets with average AUC differences
of 0.3109 and 0.0978, respectively. The CBDS variants show
higher variation in AUC values compared to LSCP.

B. STATISTICAL SIGNIFICANCE TESTING
The Friedman test shows that there is a statistically significant
difference among the mean AUC values of the four CBDS
variants (χ2

= 17.79; p = 4.85 × 10−5 < 0.05) We
also performed the Nemenyi test for pairwise comparisons
for testing the four variants of the CBDS. As shown in
Table 4, the Nemenyi test revealed statistically significant
differences between the average AUC value of CBDS_Avg
(AUC=0.7436) and the corresponding values for each of
CBDS_MOA (AUC = 0.7687; p = 0.02), CBDS_AOM
(AUC = 0.7707; p = 0.001), and CBDS_MAX (AUC =

0.7791; p = 0.01). We notice that the average AUC value
for the CBDS_Avg variant is less than the AUC values for

24438 VOLUME 11, 2023



R. R. Z. Koko et al.: Dynamic Construction of Outlier Detector Ensembles With Bisecting K-Means Clustering

TABLE 6. The p-values of the Nemenyi test for comparing the mean AUC values of the 8 CBDS and LSCP variants (the statistically significant values are
shown in bold).

FIGURE 2. Precision-recall curves for the CBDS and LSCP variants:
(a) CBDS with the Thyroid dataset, (b) CBDS with the Vertebral dataset,
(c) LSCP with the Thyroid dataset, and (d) LSCP with the Vertebral dataset.

all other variants with statistically significant margins. The
Friedman test revealed that there is no statistically signifi-
cantly difference among the mean AUC values of the four
LSCP variants (χ2

= 6.396; p=0.09).
Furthermore, the post-hoc Nemenyi test couldn’t identify

any pairs of the 4 variants with statistically significant differ-
ences (See Table 5). Moreover, we used the Friedman test to
investigate whether a statistically significant difference exists
among the 8 variants of the CBDS and LSCP methods. The
test indicates that there is a statistically significant difference
in terms of the mean AUC values (χ2

= 20, p = 5.4 ×

10−3 < 0.05χ2
= 20, p = 5.4× 10−3 < 0.05). We also per-

formed the Nemenyi test for pairwise comparisons among the
8 variants. Table 6 shows the resulting p-values for all variant
pairs. From Table 6, significant statistical differences are
present for two pairs of methods. First, the difference between
the average AUC values of CBDS_AOM (AUC=0.7707)
and CBDS_Avg (AUC=0.7436) is statistically significant
with a p-value of 0.01. Also, the difference between the

average AUC values of CBDS_AOM (AUC=0.7707) and
CBDS_Avg (AUC=0.7306) is statistically significant with
a p-value of 0.01. This latter result statistically confirms the
superiority of the CBDS approach over the LSCP one.

C. PRECISION-RECALL CURVES
The precision-recall (PR) curves were constructed for the
Thyroid dataset (which exhibits the best performance) and the
Vertebral dataset (which exhibits the worst performance). For
the CBDS results on the Thyroid dataset (Figure 2(a)) and
the Vertebral dataset (Figure 2(b)), the CBDS-Max variant
outperforms the other CBDS variants. Similar curves based
on the LSCP variants are shown in Figure 2(c), (d) for
the Thyroid and Vertebral datasets, respectively. On the one
hand, the PR curves for the LSCP variants on the Thyroid
dataset (Figure 2(c)) look slightly better than those associated
with the CBDS variants (Figure 2(a)). On the other hand,
the degradation of the PR curves for the Vertebral dataset
using the CBDS variants (Figure 2(b)) is visibly less severe
than the corresponding degradation for the LSCP variants
(Figure 2(d)).

D. ROC ANALYSIS UNDER LOW FALSE-ALARM
PROBABILITY
In the case of outlier detection, false alarms imply labeling
normal samples as outliers. This type of error ultimately
affects the quality of the detection results and, therefore, the
operating point of an outlier detector should generally be
in the low false-alarm range [58]. For example, Figure 3(a)
shows the ROC curves of the CBDS variants for the Thy-
roid dataset (for which the highest AUC values were scored
by the CBDS variants). Figure 3(b) shows the same curves
restricted to a range of low probability of false alarms (PFA)
of [0, 0.1]. The ROC curve growth patterns for the proposed
CBDSmethod show consistency among the full and restricted
ranges. Also, Figure 3(c), (d) show the ROC curves of the
LSCP variants on the Thyroid dataset for the whole and
restricted low PFA ranges. Obviously, the ROC curves of the
LSCP and CBDS methods are mostly similar in the whole
false-positive range (with quite similar AUC values as those
given in Table 3 for the Thyroid dataset). However, for the low
PFA range, the CBDS-associated ROC curves (Figure 3(b))
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TABLE 7. The AUC scores of the CBDS and LSCP ensemble outlier detectors with four variants of the aggregation operators. For each of the imbalanced
datasets, the highest AUC score is shown in bold.

TABLE 8. Outlier detection metrics of the CBDS and LSCP methods for three simulated datasets of gene expression data.

TABLE 9. Comparison between state-of-the-art outlier detection methods.

are obviously closer to the top-left corner (and thus have
higher local AUC values) compared to the LSCP-associated
ROC curves (Figure 3(d)).

E. DETECTION PERFORMANCE ANALYSIS WITH T-SNE
VISUALIZATION
Figures 4, 5, and 6 visualize the performance of the CBDS
and LSCP methods on the Glass, Cardio, and Breastw
datasets, respectively. The t-distributed stochastic neighbor
embedding (t-SNE) method [59] is employed to reduce the
dimensionality of each of these datasets. The ground-truth
normal and outlying points are denoted using yellow dots and
orange squares, respectively. The points correctly predicted
as outliers using the CBDS and LSCP methods are denoted
by the blue cross and green delta shapes, respectively. For
the Glass and Cardio datasets, the CBDS method identified
most of the outlying points correctly, while the LSCP method

exhibited relatively lower performance. The Breastw dataset,
shown in Figure 6, illustrates that the LSCP approach has
better performance than the CBDS one.

F. VISUAL PERFORMANCE ANALYSIS ON THE CLUSTER
AND BASE DETECTOR LEVELS
We further examined the performance of the proposed CBDS
method for selected samples of the formed clusters and base
detectors. Figure 7 illustrates the performance of the base
detectors in two different clusters of the Breastw dataset
before the first fusion step in the training stage. Only the
results of three base detectors (named D1, D2, and D3)
are shown for simplicity. The three detectors have MinPts
parameter values of 10, 20, and 30, respectively. On the
one hand, the left-side cluster (Figure 7(a)) shows superior
performance for the 3 detectors. Actually, detector D2 shows
the best outlier detection performance, compared to the two
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FIGURE 3. ROC plots for the CBDS and LSCP variants: (a) The ROC plots
for the CBDS variants over the whole false-alarm range. (b) The ROC plots
for the CBDS variants over the zone of low-probability false alarms [0,
0.1]. (c) The ROC plots for the LSCP variants over the whole false-alarm
range. (d) The ROC plots for the LSCP variants over the zone of
low-probability false alarms [0, 0.1].

FIGURE 4. T-SNE visualization of the Glass dataset. The normal and
outlying points are shown by yellow dots and orange squares,
respectively. Points identified as outliers by the LSCP and CBDS methods
are labelled by blue cross and green delta shapes, respectively.

other detectors, D1 and D3. On the other hand, the right-side
cluster (Figure 7(b)), which is mostly dominated by outlier
samples, shows highly degraded performance for the same
detectors (with the same MinPts parameter values). Most of
the outlier samples are clearly missed by the three detectors
in this cluster. This obviously strengthens the conclusion that
the detector competency can vary widely across clusters and
datasets.

Figure 8 shows the outliers detected using the CBDS_
AOM variant in each of the 4 clusters in the test stage for
the Cardio dataset. For clarity of visualization, we show
only the true outliers and the correctly detected ones for
each cluster. Clearly, most of the ground-truth outliers were
correctly detected in each formed cluster of this dataset.

FIGURE 5. T-SNE visualization of the Cardio dataset. The normal and
outlying points are shown by yellow dots and orange squares,
respectively. Points identified as outliers by the LSCP and CBDS methods
are labelled by blue cross and green delta shapes, respectively.

FIGURE 6. T_SNE visualization of Breastw dataset. The normal and
outlying points are shown by yellow dots and orange squares,
respectively. Points identified as outliers by the LSCP and CBDS methods
are labelled by blue cross and green delta shapes, respectively.

G. DETECTION PERFORMANCE ON HIGHLY-IMBALANCED
DATA
Approaches for testing outlier detection performance under
data imbalance conditions typically have one of two different
perspectives. On the one hand, some approaches treat the
minority class of the imbalanced data as the outlier data [60].
On the other hand, other approaches assume that outliers can
be present in any class of the imbalanced data (including
the majority and minority classes). We performed outlier
detection experiments with the two perspectives.

For the first perspective (where the minority-class samples
are treated as the only outliers), we conducted experi-
ments with low and extremely-low minority-class percent-
ages (compared to the total dataset size). As shown in
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FIGURE 7. Performance of the base detectors within two different
clusters of the Breastw dataset, where D1, D2, and D3 represent three
LOF detectors with MinPts values of 10, 20, 30, respectively. (a) Superior
performance of the three detectors on one cluster, (b) Degraded
performance of the same detectors in the other cluster.

FIGURE 8. T-SNE visualization of the performance of the CBDS_ AOM
variant for 4 clusters of the Cardio dataset in the test stage. The normal
and outlying points are shown by yellow dots and orange squares,
respectively. The outlier points detected by CBDS are labeled by blue
crosses.

Section V.1, we conducted outlier detection experiments on
16 datasets with low minority-class percentages (ranging
from 1.22% to 36%). We discussed the results of these exper-
iments in detail in Section V.1, and demonstrated the supe-
riority of our method over the LSCP variants. Furthermore,
we conducted experiments with extremely lowminority-class
percentages.

Specifically, we conducted experiments on three datasets
with minority class percentages below 0.2. Again, we carried
out experiments on these three datasets under the assump-
tion that the outliers are exactly the minority-class samples.
Table 7 shows the results for these experiments. Obviously,
while both the CBDS and LSCPmethods incurred low scores,
the performance of the CBDS method is slightly better (pos-
sibly due to the smaller cluster sizes in the CBDS method).

Moreover, the competent LOF detectors of the CBDSmethod
search for outliers independently in data clusters whereas the
LSCP method suffers from the presence of vast majorities of
surrounding inlier neighbors that can easily confuse the LSCP
outlier detector.

For the second perspective (where outliers can be present
in any class of the imbalanced data), we simulated three
scenarios of class imbalance in gene expression data of cancer
patients and healthy control subjects. Our simulation scheme
follows the approach of Barghash and Arslan [35]. For the
first scenario, the simulated data resembles a typical can-
cer dataset of 1000 data samples including 900 samples of
healthy subjects (Class 0) and 100 samples of cancer patients
(Class 1). The class-specific distributions for Class 0 and
Class 1 were assumed to be the normal distributions N(0,22)
and N(5,22), respectively. The number of outliers was set to
50. The outliers were assumed to be present in both classes
with 46 outliers (following the normal distribution N(10,22))
from Class 0 and 4 outliers (following the normal distribution
N(12,22)) from Class 1. The class imbalance ratio in this
simulated dataset is 10%:90%. For the other two scenarios,
we simulated similar datasets but with two different class
ratios of 35%:65% and 50%:50%, respectively. The outlier
count and distribution remain the same as those in the first
scenario.

Table 8 shows the outlier detection results for the above-
mentioned three simulated datasets. As expected, the results
show that the performance scores of both the CBDS and
LSCP methods degrade strongly with the increase in class
imbalance. However, the CBDS-associated degradation is
generally less severe than that of the LSCP method. In partic-
ular, the precision and recall degradation rates for the LSCP
method are evidently worse than those of our CBDS method
(although the LSCP method shows comparatively slower
degradation of the AUC score).

VI. DISCUSSION
A. COMPUTATIONAL COMPLEXITY ANALYSIS AND
PROCESSING TIMES
We show here detailed and overall analyses of the computa-
tional complexities of the CBDS and LSCPmethods. In these
analyses, L denotes the number of detectors, n denotes the
number of training samples, m denotes the number of test
samples, d denotes the data dimensionality, K denotes the
number of CBDS clusters, and S denotes the number of
selected top competent detectors. Tabulated summaries of
these analyses are included in the Supplementary Materials.
For the CBDS method, detector generation and initialization
is linear in the number of detectors L. Each of the LOF
detectors is trained with a complexity of O(n2). Then, for
each training sample and detector, the detector output is
normalized, giving a complexity of O(Ln). The cost of the
training data clustering is proportional to the product of the
numbers of training samples n, clusters K , and dimensions d .
Each cluster is scored by each detector, giving a complexity
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of O(KL). Thus, a ground-truth label is generated for each
training sample based on the outputs of the L detectors, and
this gives a complexity of O(Ln). Each training sample is
then associated with one cluster (O(Kn)). For each cluster,
the Pearson correlation is thus computed between the set of
the ground-truth scores and scores obtained by each of the
L detectors. This gives a complexity of O(KLn). The best
detectors associated with each cluster are picked by sorting
all detectors based on the computed correlation values (O(KL
log L)). For the m test samples, the distance of each sample
to each cluster is found (O(Kdm)), the closest cluster is iden-
tified (O(Km)), and then the top competent detectors of that
cluster are used to assign an outlier score to the test sample
(O(Sm)). For the LSCP method, the computational complex-
ities of the base detector initialization, training, and sampling
are similar to the corresponding CBDS ones. The ground-
truth labels are generated for the training samples based on
the outputs of the L detectors, with a complexity of O(Ln).
Outlier scoring for the training data is linear in the number
of samples (O(n)). Then, using a k-d tree, the construction
of the local regions requires distance calculations (O(md))
in addition to summation and sorting (O(m log m)). The test
sample labeling and scoring is linear in the number of samples
(O(m)). Finally, Pearson correlation is computed for all test
samples and detectors (O(Lm)), the detectors are sorted (O(L
log L)), and the top S detectors are selected (O(S)). See the
Supplementary Materials for the overall complexities of the
CBDS and LSCP methods.

Based on the above calculations, the overall CBDS time
complexity includes quadratic and linear functions in n and
a linear function in m, while the LSCP time complexity
involves a quadratic function in n, as well as logarithmic and
linear functions in m. This analysis shows that the overall
CBDS running time should be generally lower than the LSCP
time.

Figure 9 compares the overall execution times of the CBDS
and LSCP variants for the 16 datasets. The y-axis represents
the execution time in seconds, while the x-axis represents the
ODDS datasets (ordered by the dataset size from the smallest
to the largest). For the small-size datasets (Glass, Vertebral,
WBC, Ionosphere, Breastw, Pima), the CBDS execution times
are slightly less than their LSCP counterparts. For large-size
datasets, the CBDS execution times are far less than the LSCP
ones. For example, for the Shuttle dataset, the CBDS schemes
had an average execution time of 295.4 seconds whereas the
LSCP schemes had a much larger average execution time
of 4309.56 seconds. This huge difference in execution time
represents a key advantage of the CBDS approach, which still
gives good outlier detection performance.

B. COMPARISON WITH RELATED METHODS
We show in Table 9 a comparison of our work against sev-
eral related methods. For each method, the table shows the
employed ensemble fusion technique, the detector selection
mechanism, the number of explored datasets, the highest
result achieved (on any dataset), and the employed perfor-

FIGURE 9. Execution times in seconds for the four variants of CBDS, LSCP
and the average over 16 datasets. The datasets are labeled on the x-axis
from the smallest to the largest dataset.

mance metric. As the listed studies use different performance
metrics and report results on different datasets, no quanti-
tative direct comparison can be easily made. However, our
work and that of Zhao et al. [20] had the most comprehensive
evaluation with 20 datasets. Our proposed method clearly
shows competitive performance and it compares well with
the results obtained by the BORE [61], XGBOD [43], and
the LSCP [20] methods.

C. CLUSTERING ALGORITHM SELECTION
As explained above, the CBDS outlier detection method
employs a clustering scheme to reduce the computational cost
and enhance the outlier detection performance. In this paper,
we used particularly the bisecting K-means algorithm as it
generally leads to better performance compared to the con-
ventional K-means clustering algorithmwhich shows cluster-
ing inconsistencies when outliers are present [62]. However,
the bisecting K-means algorithm can lead to the creation of
a larger number of small clusters. Alternately, more robust
clustering algorithms could be considered, and this shall be
addressed in future work.

D. FUSION METHOD SELECTION
In our work, we only explored (for simplicity) Averaging,
Maximization, AOM, and MOA fusion schemes. No clear
superiority can be claimed for one of these schemes over
the other. Although the Max fusion method has unstable
performance on small datasets, this method effectively cap-
tures outliers in high-dimensional spaces. Averaging-based
fusion reduces the variance of the model prediction, reduces
the detection error, and hence boosts the overall model
performance. On the other hand, the Max fusion function
enhances the detector accuracy by reducing the model bias.
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Aggregating the Avg and Max operators in one fusion func-
tion (as in the case of MOA or AOM) combines the benefits
of the two operators and expectedly improves the overall
ensemble performance [51]. Recently, advanced combination
methods for binary classification (detection) have been intro-
duced [63]. Most of these methods agree that the choice of
the fusion method depends on the ensemble structure and
input data [64]. In particular, the alpha integration technique
was proposed by Amari [65] to account for this depen-
dency. Essentially, the integration characteristics are deter-
mined by a parameter α, while a weight vector w is used
to assign a degree of importance to each measure. These
parameters have been generally fixed. Later on, Soriano
et al. [66] proposed a new alpha-integration method based on
a minimum-probability-of-error criterion to learn optimal α
and w parameter settings for detection (or binary classifica-
tion) problems. Safon et al. [67] extended this work to late
fusion of multiclass classification outcomes where optimal
model parameters were obtained using a least-mean-square
error formulation. We investigate in future work the effects
of such advanced fusion methodologies on outlier detection
performance.

E. BIAS-VARIANCE ANALYSIS
One of the fundamental aspects in the design of outlier
ensembles is to control and reduce the detector prediction
errors. The overall error consists essentially of bias and vari-
ance errors. On the one hand, a high variance results from
the detector sensitivity to slight fluctuations in the training
data, and this error is associated with overfitting. On the other
hand, a high bias indicates the detector failure to learn key
features, and this leads to poor data fitting and unreliable
predictions.

The prediction errors in outlier ensembles can be miti-
gated by either reducing bias or reducing variance (but not
both due to the tradeoff between the two types of error).
In our CBDS method, we reduced the prediction error by
combining diversified base detectors, where the diversity is
induced by both initializing detectors with different param-
eter settings and training detectors on different data subsets
generated by the employed clustering algorithm. To promote
variance reduction, the scores of the base detectors can be
combined by averaging as in the case of the CBDS_Avg
variant.

Moreover, Rayana et al. [19] suggested that the removal
of inaccurate detectors improves the overall accuracy,
and therefore leads to bias error reduction. Following
this suggestion, the CBDS method identifies and selects
low-bias detectors based on local regions of compe-
tence. For example, this selection mechanism is real-
ized by the CBDS_MOA and CBDS_AOM variants in
the late combination phase, where high-bias detectors are
excluded.

Nevertheless, the effect of fusion by maximization in bias-
variance reduction is unpredictable, and this fusion scheme
may improve bias but increase variance [13]. The CBDS

algorithm still achieves variance reduction by averaging over
the maximization function as in the case of the CBDS_AOM
variant

F. LIMITATIONS
The proposed technique has indeed some limitations. First of
all, we explored simple fusion approaches for ground-truth
simulation (averaging or maximization) and fusion of final
outputs (AOM or MOA). As shown by the statistical sig-
nificance results of the Nemenyi test, these fusion functions
mostly lead to statistically similar results. More powerful
fusion techniques should be considered such as actively prun-
ing base detectors [18] (for generating ground truth labels),
and alpha integrating with learned optimized parameters [66]
(for late classification fusion). Secondly, data locality induced
by the bisectingK-meansmethodmerely groups data samples
in subsets. Outlier detection performance can be possibly
boosted if the input data is projected into feature subspaces.
This might be carried out through advanced clustering tech-
niques such as subspace K-means clustering [68] or spectral
clustering [69].

VII. CONCLUSION AND FUTURE WORK
A. GENERAL CONCLUSION
In this study, we propose a clustering-based dynamic selec-
tion (CBDS) ensemble outlier detection method. In this
method, an ensemble is composed of a collection of inde-
pendent outlier detectors. The proposed CDBS improves the
outlier detection performance through dynamically selecting
the best-performing detectors in order to produce the final
outlier scores. Another key advantage of the proposedmethod
is reducing the time complexity of defining the local regions
of competence into linear time (O (km)) compared to the log-
linear time complexity (O(n log n)) of the LSCP. In fact,
the selection of the competent detectors is determined during
the training stage which results in a large speedup for the
CBDS algorithm. The CBDS approach can be extended to
other datasets and also the algorithmic parameters can be
experimentally fine-tuned to enhance the outlier detection
performance.

B. PRACTICAL IMPLICATIONS
Our work has the following practical implications. First of
all, our approach showed remarkable performance improve-
ments on datasets collected in different application scenar-
ios. This shall increase the feasibility and applicability of
outlier detection systems in a large number of real-world
settings. Secondly, the substantial reduction in the compu-
tational cost improves the chances of reaching real-time
detection performance in time-critical applications. Thirdly,
the graceful degradation in the performance of our method
under increasing levels of class imbalance alleviates the
need for collecting well-balanced datasets for outlier detector
training.
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C. FUTURE DIRECTIONS
Several future research directions are worthy of investigation:

1) ALLEVIATING CLASS-IMBALANCE EFFECTS
In future work, we shall consider strategies for alleviating
the effects of class imbalance [70] on the performance of our
CBDS method.

2) REFINED LOCAL REGIONS OF COMPETENCE
Also, more robust clustering algorithms [69] shall be con-
sidered to overcome the limitations of both the traditional
and bisecting K-means algorithms, and obtain refined local
regions of competence.

3) BASE DETECTOR SELECTION
In this work, we created an ensemble of LOF-type detec-
tors with different parameter settings. Alternately, isolation
forests (IF) [71] can be used in combination with the LOF
detectors.
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