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ABSTRACT Continuous terahertz detection imaging technology is widely used in polymer detection.
However, it is very difficult to quantitatively analyze defects due to the characteristics of focusing lenses.
On the one hand, a lens with a short focal length means the achievement of a better spatial resolution and a
poor depth resolution. On the other hand, a lens with a long focal length results in a better depth resolution
and a worse spatial resolution. In addition, in order to ensure the positioning accuracy, the upper surface of a
sample is often used as the focal plane for detection, which causes the energy outside the range of the focal
depth to drastically decrease and seriously affect the imaging quality. In this paper, a method is proposed
for debonding detection and quantitative analysis in layered structures. Firstly, by using multi-directional
structural elements for measuring the difference between the debonding region and local surroundings,
we extract defective edges and suppress clutters by establishing a multi-directional morphological filter.
Then, the improved Otsu method is used for threshold segmentation and the population mean entropy is used
to calculate the optimal threshold. Finally, the superiority of the proposed method is confirmed on synthetic
datasets with low SNR images, and it is successfully applied to terahertz image processing. Moreover, the
results of the proposed algorithm show that the debonding region detection error of the terahertz image is
controlled within 10.17%-11.27%. It provides a new method and idea for quantitative analysis of terahertz
detection in layered structures.

INDEX TERMS Terahertz FMCW, non-destructive testing, mathematical morphology, edge detection.

I. INTRODUCTION
Because of having high hardness, high temperature resis-
tance and corrosion resistance, ceramic matrix composites
(CMC) are often used as an important part of thermal
protection structures (TPS), especially in the aerospace field
[1], [2], [3]. The production process of TPS involves the
bonding of CMC, insulation felt and protected structure in
turn through adhesives. The final TPS is made in the order
of CMC/glue layer 1/insulation felt/glue layer 2/protected
structure from outside to inside [4]. Due to the influences of
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the production process and service environment, the position
of the TPS surface gets easily debonded, which causes great
security risks. So, it is very necessary to use some non-
destructive testing (NDT) methods for detecting bonding
conditions. The thickness of CMC in TPS is generally
25 mm - 40 mm [5]. Its porous and loose properties limit the
use of traditional NDT methods. With the rapid development
of terahertz radiation and detection technology, terahertz
NDT has drawn huge attention in recent years.

In fact, the terahertz band is a very special band, which lies
between infrared light and millimeter waves. The terahertz
wave can irradiate optically opaque dielectric materials
with certain penetration and reflection ability [6], [7], [8],
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[9], [10], [11], [12]. It has good spatial resolution
also. Therefore, it is widely used in safety inspection
[13], [14], wireless communication [15], nondestructive
testing [16], [17], biomedicine field [18], [19], and so
on. More specifically, terahertz NDT provides effective
results in the health monitoring of composite materials and
inspection of layered structures [20], [21],with Time-domain
Spectroscopy (TDS) techniques and Frequency Modulated
Continuous Wave (FMCW) radars.

The FMCW sensing is more suitable for fast imaging
due to its high integration, short measurement time and
strong robustness [22]. The imaging process of FMCW can
be performed through synthetic aperture imaging or real-
aperture imaging. With low energy aggregation and large
beam attenuation in free space, the former is often used in
security inspection [14]. It is not suitable for NDT in cases
where higher scanning accuracy is required. In contrast, the
latter (real-aperture imaging) can obtain more concentrated
energy and the best echo signal by using a set of optical
collimating lenses for focusing the antenna radiation beam
on the region of interest [21]. A shorter focal length means
the achievement of a better focusing performance, more
concentrated energy, a smaller focusing spot diameter, and
more accurate lateral resolution [22], [23], [24], [25]. But
it also has drawbacks. There is no doubt that a lens with a
short focal length has a short focal depth. It is found that
with the influence of the characteristics of optical lens, the
energy outside the range of the focal depth shows a nonlinear
cliff attenuation, which directly leads to a sharp decline in
deep detection. Hence, the spectral peak of the debond layer
signal (DLS) near the bottom layer is not much different from
the adhere layer signal (ALS), even if it may go below ALS.
Although a lens with a long focal length can ensure deeper
inspection, its large diameter spot is not friendly to small-
size defects. Therefore, it is of great significance to perform
quantitative analysis for accurately extracting the debonding
region in FMCW detection by using a lens with a short focal
lens. This is also the main problem solved in this paper.

Some significant research achievements in FMCW signal
processing have been reported in the literature. Dai et al. [5]
proposed a wavelet transform for processing 3D data of
FMCW detection, and reconstructed a 3D structure by
using a wavelet coefficient. Hu et al. [27] proposed a
method for reconstructing the range profile by integrating
the super-resolution capacity of the MUSIC algorithm with
a data fitting method. High-resolution spectral estimation
techniques, such as the model-based signal processing
technique [28], state-space algorithms [29], and matrix pencil
method [30], have also been reported to be effective in
FMCW detection. Although all these methods process a
single echo signal for obtaining a higher depth resolution,
they ignore the changes in the echo signal between two
adjacent sampling positions. The quantitative analysis of
defects is poor. In order to overcome the interference of
ALS on the weak target detection in the debonding region,
we propose a new method, taking TPS as the research

object, for the purpose of debond detection and quantitative
analysis in a layered polymer. Initially, the multi-directional
structural elements are designed by analyzing the peak
distribution of the echo spectrum on the bonding layer for
sensing the edge of the debonding region. Combined with the
morphological method, the difference between the edge of the
debonding region and local surroundings can be measured
from the directional morphological filters. Then, according
to the consistently low reflection level shown by the edge
of defect in a certain direction, an improved Otsu method
is proposed for distinguishing the target from the strong
structure clutters. Finally, the effectiveness of the proposed
method is demonstrated through comparative experiments.
The debonding region can be well extracted by using the
above method, which is meaningful for the FMCW NTD
method.

The remaining part of this paper is organized as follows:
The characteristics and detection problems of the debonding
layer region are discussed in Section II. Section III presents
the details of the proposed detection method combined with
the morphological processing and improved Otsu method.
Subsequently, the effectiveness of the proposed method in
low SNR images and the analysis of detection errors in
FMCW images are presented and discussed in Section IV.
Finally, the conclusions of the present work are drawn in
Section V.

II. PRELIMINARIES
This part mainly introduces the architecture and detection
principle of FMCW radar. By analyzing the TPS detection
signals, the existing problems are put forward.

A. PRINCIPLE OF FMCW RADAR DETECTION
The FMCW detection system used in this study is a
reflective imaging system based on electronic excitation. The
technology for continuous wave generation and frequency
mixing detection has made some progress, focusing mainly
on Si-based fully devices [31] and high frequency precision
radars [32]. Although different frequency doubling links can
excite continuous waves of different frequency bands, all
of them are implemented based on similar architectures.
Figure 1 shows the basic architecture of the terahertz
detection system and the principle of FMCW measurement.
In terms of signal generation, a ramp generator drives a
voltage control oscillator (VCO) combined with a Phase
Locked Loop (PLL) for generating the fast saw tooth low-
frequency sweep signal. The low-frequency sweep signal
is amplified by a frequency multiplier for using as the
transmitted signal (TX) of the terahertz system, part of which
is radiated into the air by the antenna. Finally, the major
part of the energy is concentrated in a focal plane through
a set of focusing lenses. When the focused signal encounters
the layers bonded by different materials, it is returned to the
terahertz source through the same path as the reflected signal
(RX). Other parts of both TX and RX go to the mixer, where

31608 VOLUME 11, 2023



K. Xue et al.: Continuous Terahertz Wave Imaging for Debonding Detection and Visualization Analysis

FIGURE 1. The basic architecture of terahertz detection system and the principle of FMCW measurement.
(a) Structure composition and operating principle. (b) Schematic diagram of a typical layered (two-layer) structure
with TX and RX transmission paths. (c) Sensing scheme for FMCW measurement. (d) Range profiles from FFT
spectral information of IF signals.

they are eventually recorded by ADC as the intermediate
frequency (IF) signal.

The measurement principle and signal analysis model
of a typical layered (two-layer) structure are shown in
Fig.1(b)-1(d). The RX chirp can be regarded as a delayed
signal of the TX chirp, and the frequency of RX increases
linearly with that delay time. The TX chirp can be expressed
as follows:

STX (t) = At exp
[
j2π

(
f0t +

1
2
Kt2

)]
(1)

where At is the amplitude of TX, f0 is the initial frequency,
B is the system bandwidth, K is the chirp rate that can
be represented by B/ts, and ts is the sweep time. When
the FMCW sensing is used for detecting the layered
structures, the RX chirp reflected from different interface
layers corresponds to different delay times, which gradually
increase with increasing distance.

Meanwhile, the amplitude of the RX chirp is affected
by the characteristics of a sample. The RX chirp can be
expressed as follows:

SRX (t) = Ar exp
{
j2π

[
f0 (t − 1t) +

1
2
K (t − 1t)2

]}
(2)

where Ar is the amplitude of RX. For the FMCW radar,
the captured raw data shows the RX chirp as a summation
of the cosine function of different frequencies, where the
frequency components correspond to the beat frequency 1f
of the respective reflection with the time shift 1t . Taking the
first RX chirp as an example, the intermediate frequency (IF)
signal can be expressed as:

SIF (t) =
AtAr
2

exp
[
j2π

(
tK1t + f01t −

1
2
K1t2

)]
(3)

Combining the relationship between distanced d and time
shift 1t , the beat frequency 1f can be obtained by FFT as
expressed as follows:

1f =
2nBd
tsc

(4)

where c is the speed of light, and n is the refractive index of
the material (n = 1 in the air). Then, distance d can easily be
calculated as follows:

d =
cts1f
2nB

(5)

According to the information carried by the IF signal, the
defect visualization can be characterized by intensity, phase,
distance, etc. The sampling point and sampling rate should
also be considered in the actual detection.

B. PROBLEM ANALYSIS
We use a reflective FMCW imaging system with a set
of optical focusing lenses for the detection experiment,
which is a two-dimensional scanning system that operates at
126-182 GHz. The sweep time ts of the system is 1.024 ms,
and the ADC sampling rate is 1 MHz. According to the
diffraction limit formula, the minimum imaging resolution of
the proposed system is about 2.4 mm. The experimental data
were acquired using this device.

Similar to infrared imaging, FMCW detection imaging
is performed by measuring the terahertz waves reflected
by objects, then mixing frequencies and extracting feature
quantity for imaging. The outcome of this imaging is a typical
discrete image, whose grayscale distribution has no linear
relationship with the reflection characteristics of the detected
object. Figure 2 shows the histogram and fitting curve of
the signal strength distribution at a typical bonding interface,
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FIGURE 2. Histogram and fitting curve of signal intensity distribution at a
bonding interface.

FIGURE 3. Signals measured outside the focus range of a 50 mm lens.

FIGURE 4. TPS structure. (a) Order of thickness in each layer is 35 mm/
0.2 mm / 2 mm / 0.2 mm / 3 mm from top to bottom. (b) Sample 1 with
the debonding region in glue layer 1. (c) Sample 2 with the debonding
region in glue layer 2.

where it can be seen easily that the distribution approximately
matches the Gaussian distribution.

According to the theoretical analysis and experimental test,
the terahertz wave attenuates greatly when it propagates in
the air. Although a lens with a short-focal length can capture
better energy at the focal point and maintain a certain focal
depth, it is more noteworthy that the energy outside the
range of the focal depth shows a sharp decline. The signals
measured outside the focus range of the 50mm lens are shown
in Fig. 3. At about 30-35 mm outside the focal plane, only
about 35 percent of the energy remains, and even lower than
that when the attenuation characteristics of the materials are
considered. There is no doubt that the DLSwill be submerged
in ALS, resulting in a low SNR image and an increase in false
targets, which will cause great obstruction to visualization.

The TPS used in this experiment is shown in Fig. 4, whose
debonding glue layer is filled with dry glue of various sizes
and shapes as defects. The specimen with defects in glue
layer 1 is labeled as the sample 1 as shown in Fig. 4(b),
and the specimen with defects in glue layer 2 is labeled

as the sample 2 as shown in Fig. 4(c). Figure 5 shows
the FMCW imaging results and typical signals of different
positions. Due to the influence of the bonding process, the
roughness of the adhesive interface has a great influence on
the echo signal, and the fault-free position also shows energy
fluctuation.

Limited by the system bandwidth, it is not easy to directly
distinguish the interface echo of glue layer 1/insulation felt
and insulation felt/glue layer 2, but the features can still be
extracted from the inflection points of signals. Due to the
presence of air layer in the debonding part, the terahertz
waves are scattered in different directions, which causes the
spectral peak of DLS to rise and fall, making it difficult to
distinguish from ALS. However, at the edge of the debonding
part, its connectivity and the signal mutation of adjacent
positions provide ideas for signal characterization (see Fig. 6)
as follows:

① Due to the closed-loop characteristics and influence of
absolute scattering, the edge of the defect maintains a low
level of energy reflection along a certain direction, which
helps us to enhance the differential features.

② Defective edges show similar characteristics in the
outer normal direction. In other words, the difference of
the gray gradient between the defective edge and the outer
normal direction ALS is similar, which can be used to further
suppress the strong clutter.

In conclusion, these concepts are used in designing the
edge detection filter that can accurately extract contour
information in low SNR imaging data.

III. PROPOSED METHOD
The morphological processing method is one of the com-
monly used algorithms for detecting the edges of images.
In this section, we first introduce the basic principle of mor-
phological filtering. Then, according to the characteristics of
an FMCW image, its multi-directional structural elements
are constructed to perceive its edge details. Combined with
the morphological operation, an adaptive weight fusion filter
is designed for measuring the multi-directional differences
between the defect and local surroundings. Finally, an image
with a clear edge profile can be obtained by using threshold
segmentation processing through the improved Otsu method.

A. CLASSICAL MATHEMATICAL MORPHOLOGY
Mathematical morphology, based on the set theory, is an
effective nonlinear tool in image processing. Its basic concept
is to detect the profile of a defect by constructing various
structural elements, and finally to get the image that retains
more edge details. In mathematical morphology, f (x, y) is
defined as the FMCW image, and B (u, v) as its structural
element. Its two fundamental operators can be given by the
following formula:

f (x, y) 2B (u, v) = min {f (x − u, y− v) − B (u, v)} (6)

f (x, y) ⊕ B (u, v) = max {f (x − u, y− v) + B (u, v)} (7)
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FIGURE 5. Imaging results and characteristics of dimensional range. (a-b) Represent imaging results characterized by the FFT spectral peak of glue layer
1 and glue layer 2 as the characteristic quantities. (c-d) Typical signals of different positions, where A-D represent signals of DLS, and E-F represent
signals of ALS.

FIGURE 6. Schematic of a typical debonding defect.

where (x, y) and (u, v) represent two pixels coordinates;
2 and ⊕ are the corrosion and expansion operators,
respectively. Then, the corrosion needs to obtain a darker
image by using a domain-wide minimum operator method.
In contrast, the expansion operation uses a domain-wide
maximum operator method to obtain a brighter image. On the
basis of the above formulas, two operations can be derived:
the morphological opening ◦ and closing • operators, which
can be defined as follows:

f ◦ B = (f2B) ⊕ B (8)

f • B = (f ⊕ B) 2B (9)

These basic operations optimize the detail and target
population. In a target detection scene, the classical top-hat
and bottom-hat filters are often used to highlight the bright
and dark areas, respectively. However, for the images with
low SNR, the effect of detection is drastically decreased. For
small target detection, Bai and Zhou [33] proposed two new
filters,NWTH andNBTH, which can be expressed in formulas

FIGURE 7. Relationship between structural elements of NWTH and NBTH.

as follows:

NWTH (x, y) = f (x, y) − f ∗ Boi (10)

NBTH (x, y) = f ⊗ Boi (x, y) − f (x, y) (11)

whereBoi represents the two selected elementsBo andBi. The
operations f ∗ Boi and f ⊗ Boi can be defined as:

f ∗ Boi (x, y) = (f ⊕ 1B) 2Bb (x, y) (12)

f ⊗ Boi (x, y) = (f21B) ⊕ Bb (x, y) (13)

where Bb represents an element of size between Bo and Bi,
and 1B = Bo − Bi. Specifically, the relationship between
them is shown in Fig.7, where the point O represents the
center of the structural element. For NWTH, f ∗ Boi adopts
an operation of expansion before corrosion. The expansion
operator removes the negative noise by replacing all the
pixels in the target area with the maximum gray value of
surrounding area 1B; while the corrosion operator replaces
area Bb with the minimum gray value of that surrounding
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FIGURE 8. FMCW imaging results and image blocks of typical areas. (a) FMCW image of sample 1. (b) FMCW image of sample 2.
(c) - (f) Image blocks of typical defective areas of some typical directions. (g) - (j) Background clutters.

FIGURE 9. Block diagram of multi-directional morphological processing algorithm.

area, which can remove a part of the positive noise. Compared
with the traditional top-hat filter, NWTH can extract the
bright area without introducing too many background areas,
resulting in better target detection. The same goes for the case
ofNBTH also. But these filters above are more suitable for the
detection of small-point target with a light center and a dark
periphery.

However, when detecting targets in strong clutters, strong
clutters cause them to loss real targets or greatly increases the
false targets, which are difficult to distinguish. Considering
the directional difference between the edge and background,
multi-directional structural elements are constructed for
measuring the difference between the defect and local region
of the inner and outer normal vectors.

B. MULTI-DIRECTIONAL MORPHOLOGICAL PROCESSING
A structural element plays an extremely important role in
morphological filtering methods, which can be used as a
probe to sense areas of interest. The background clutter can
be removed by sliding structural elements. The selection of
structural elements has a great influence on the processing
of images. How to select appropriate structural elements

according to the requirement is one of the difficult problems
in the field of mathematical morphology. The FMCW
imaging results and image blocks of typical areas are shown
in Fig. 8, where (a) - (b) are the FMCW images of sample 1
and sample 2, (T1) - (T4) are the edges of the debonding
region in different directions, and (B1) - (B4) are the strong
clutter regions. (c) - (f) directly reflect the fluctuation in the
gray values of the defective edges observed from different
directions, which is more obvious in the gradient direction.
(g) - (j) show typical stationary or non-stationary background
clutters. Although these clutter noises are similar to the
defective edge in some directions, more importantly, they are
dense areas with a few pixels having the size smaller than the
Rayleigh limit of the system itself. So, it cannot be judged as
a defect.

Based on the directional difference between the defect
and local background, the morphological processing
method of multi-directional structural elements is proposed.
Figure 9 shows the block diagram of the algorithm.
Firstly, Bi (i = 1, 2) are the structural elements used in
the pre-processing process (see Fig. 9), which can smooth
the initial image. The black cell represents an active
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structural element with the value of 1, and the white
cell represents the inactive area filled with the value of
0. The smoothing filter can be given by the following
formula:

f0 (x, y) =

∑2
i=1 [f ◦ Bi • B3−i (x, y)]

2
(14)

where f̄0(x, y) is the pre-processed image. Then, the direc-
tional structural elements Ci (i = 1, 2, 3, 4) (see Fig.9) are
constructed for extracting features from the multi-directional
edge. The designedmulti-directional morphological filter can
be derived as follows:

f̄ (x, y) =

∑4

i=1
ui {f0 ⊕ Ci(x, y) − f02Ci(x, y)} (15)

where f̄ (x, y) represents the weighted sum of morphological
processing results in different directions, and ui is the
weight. When edge detection algorithms deal with multi-
direction and multi-scale detection problems, weighted
average or manual parameter adjustment is often used in
image fusion. However, due to the variation in the details
of the target edge in different directions, a traditional
weight selection method has low applicability and poor
effect.

In mathematical morphology, the edge of an image can be
determined by using the difference in the gray values obtained
upon processing the image f0i (i = 1, 2, 3, 4) (see Fig. 9) by
a structural element in a certain direction. The larger the
difference, the greater the probability that there are edge
details in the normal vector of that structural element. In this
way, it is possible to use the sum of the gray difference of
f0i (i = 1, 2, 3, 4) as the basis for adaptive weight adjustment.
Figure 10 shows a 3 × 3 image area, where p5 represents the

pixel value of the center point, and the difference in the gray
value can be defined as:

hi = |pi − p5| , i = 1, 2, . . . , 9 (16)

The sum Ti (i = 1, 2, 3, 4) in each direction can be expressed
as follows: 

T1 =

3∑
i=1

(hi + h10−i)

T2 =

2∑
i=0

(
h2i + h10−2i

)
T3 =

2∑
i=0

(h3i+1 + h3i+3)

T4 =

3∑
i=1

(hi+1 + h9−i)

(17)

Finally, the weight can be given by the following formula:

ui =
Ti∑4
i=1 Ti

(18)

The results of the proposed multi-directional edge detection
(MDED) algorithm are shown in Fig. 11. The proposed
algorithm first uses a set of small structural elements to filter
the image, aiming to smooth the edge details and remove
the detail points with sharp changes in light and dark. Then,
considering the expanded direction of the defective profile,
the multi-directional structural elements are constructed for
extracting the details of the image, so that the edge can
be effectively maintained and the strong clutters can be
eliminated.

By using the morphological method, the noise reduction
and edge extraction can be carried out for the imaging
system f (x, y). But the strong clutter background is preserved
at the same time. From the results of the MDED and defect
characteristics ① and ②, it can be seen that the defective
edge still keeps a prominent pixel value and maintains in
a certain direction, while the clutters show a low level and
disorder. Therefore, the improved Otsu method is proposed
for filtering the textured background while preserving
the edge.FIGURE 10. A 3 × 3 image area.

FIGURE 11. Results of the proposed multi-directional image processing (Sample 1).

VOLUME 11, 2023 31613



K. Xue et al.: Continuous Terahertz Wave Imaging for Debonding Detection and Visualization Analysis

C. IMPROVED OTSU METHOD
The Otsu method is a threshold segmentation algorithm that
selects the maximum between-cluster variance of the target
and local surroundings as the threshold selection criterion.
Combining the characteristics of the targets and clutters, the
optimal threshold is calculated by estimating the population
mean.

Firstly, the gray level of image f̄ (x, y) is set as L, and the
gray value n of a pixel is set within n ∈ (0,L). p′(x, y) and
p′′(x, y) represents the mean gray difference of a pixel in four
and eight directions, respectively, which can be respectively
given by the following formulas:

p′(x, y) =
1
4

∑4

i=1
h2i (19)

p′′(x, y) =
1
8

∑8

i=1
hi (20)

where, p′(x, y) and p′′(x, y) are defined as two new binary
groups, whose occurrence time is represented by Xp′p′′ . Then,
its two-dimensional joint probability density can be indicated
as:

Yp′,p′′ =
Xp′,p′′

size → f̄ (x, y)
(21)

where size → f̄ (x, y) is the total number of pixels in the
image f̄ (x, y). The probability of defective edges and clutters
can be expressed as follows:

ωdefect =

∑a0

p′=1

∑a1

p′′=1
Yp′,p′′ (22)

ωnoise =

∑L

p′=a0+1

∑L

p′′=a1+1
Yp′,p′′ (23)

where (a0, a1) is the threshold range. It can be concluded
that the corresponding mean vector can be expressed
as follows:

µdefect =

[
µp′

ωdefect
,

µp′′

ωdefect

]T
=

[∑a0
p′=1

∑a1
p′′=1 p

′Yp′,p′′

ωdefect
,

∑a0
p′=1

∑a1
p′′=1 p

′′Yp′,p′′

ωdefect

]T
(24)

µnoise

=

∑L
p′=a0+1

∑L
p′′=a1+1 p

′Yp′,p′′

ωnoise
,

∑L
p′=a0+1

∑L
p′′=a1+1 p

′′Yp′,p′′

ωnoise

T
(25)

The population mean vector can be expressed
as follows:

µL = [µLdefect , µLnoise ]T

=

[∑L

p′=1

∑L

p′′=1
p′Yp′,p′′ ,

∑L

p′=1

∑L

p′′=1
p′′Yp′,p′′

]T
(26)

The above equation can be transformed through an inter-
class scatter matrix, and then the final optimized inter-class

FIGURE 12. Final result (sample 1).

variance can be expressed as follows:

K =

(
µLdefect ωdefect − µp′

)2
+

(
µLnoise ωdefect − µp′′

)2
ωdefect ωnoise

(27)

When K reaches the maximum value, the image seg-
mentation effect becomes the best, with (a0, a1) as the
range of the corresponding threshold. In this paper, a0 is
selected as the optimal threshold. The final image is shown
in Fig. 12, where the outline of the debonding region can
be seen clearly, which provides an idea and method for
the quantitative analysis of layered structure with debonding
defect.

IV. EXPERIMENTS
In this section, we present the comparative experiments
and detection error analysis of TPS. The superiority
of the proposed method for the edge detection in low
SNR images is verified by both subjective and objective
evaluation.

A. EXPERIMENT SETTINGS
1) CONTRAST EXPERIMENT DETAILS
Since it is very difficult to obtain a large number of
FMCW images and corresponding noise-free FMCW images
in the real world, the synthesized images are used for
evaluating the proposed MDED algorithm. The synthesized
images from the BSD500 dataset are used to evaluate
the proposed algorithm. The synthesized images include
both clean images and corresponding images with different
Gaussian noise values. The selection basis of the Gaussian
noise is shown in Fig. 2. We compare the proposed
MDED algorithm with three traditional methods, namely
Sobel [34], Prewitt [35], and Roberts [36], and four learning
methods, namely DexiNed [37], HED [38], PiDiNet [39],
and RINDNet [40]. The experiments were performed on
a computer with 4.01GHz i7-6700K CPU and 32 GB
RAM, and the training process was performed on an Nvidia
1080Ti GPU.

2) TERAHERTZ DATA PREPROCESSING AND IMAGING
The complete setup of our scanning equipment includes
the terahertz wave sensor, three linear actuators, a data
acquisition system and a touch screen monitor. The radar
sensor is placed on the X-axis rail above the scanning
plate. For the acquired raw time-domain data, we need
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FIGURE 13. Comparison of visual effects of various methods on synthetic images. (a1-a3) O riginal image. (b1-b3) Images with 0.1%, 0.5%, and 1%
Gaussian noise. (c1-c3) Results by Sobel. (d1-d3) Results by Prewitt. (e1-e3) Results by Roberts. (f1-f3) Results by DexiNed. (g1-g3) Results by HED.
(h1-h3) Results by PiDiNet. (i1-i3) Results by RINDNet. (j1-j3) Results by Proposed MDED. (k-m) Bar charts of the corresponding SSIM.

to add a hamming window to achieve a better FFT
effect. The measurement error in the range profile can be
reduced by zero filling and nonlinear frequency modulation
correction.

3) QUALITY MEASURES
In order to evaluate the performances of different methods
for edge detection in noisy images, we apply a frequent
measure, namely the structural similar index (SSIM). On the
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other hand, since any real noise-free FMCW image cannot
be obtained, the difference between the measured debond-
ing region and the real region is used to illustrate the
effectiveness.

B. EFFECTIVENESS OF SYNTHETIC DATASETS
Figure 13 shows the edge detection results for typical noisy
images by different algorithms. The test images are buildings,
people, and animals. The added noise is the Gaussian noise,
the mean of which is 0, and the variance values are 0.1%,
0.5%, and 1%. It is easy to see that for images with
high SNR levels, the traditional methods and deep learning
methods can extract nearly the complete contour information
(see Fig. 13 (a1 - h1, k)). However, as the SNR level
decreases, a lot of edge details are lost. The superiority of
the proposed MDED algorithm gradually manifests itself
(see Fig.13 (a2 - h2, l)). When the noise is 1%, the

traditional methods cannot detect the complete edge, and
the performances of the deep learning methods become
poor. Although the HED and PiDiNet methods are able
to detect large-size contours, details, such as reflections in
the water, duck’s eyes and so on, are lost. Similarly, the
RINDNet method loses a small amount of tail and wing
details (see Fig. 13 (a3 - h3, m)). Compared with other
methods, the results of the proposed MDED method become
more complete by removing the most noise and reserving the
details of the target simultaneously. Especially, for a low SNR
image, the effect is more obvious.

In order to reflect the ability of edge detection more
directly in low SNR images, SSIM of images with different
SNR levels is shown in Fig. 14. When the added noise level
exceeds approximately 0.7%, the advantage of the proposed
algorithm gradually increases.

C. EFFECTIVENESS OF FMCW IMAGES
An FMCW image is an extremely low SNR image. Most
methods always preserve strong clutters or shadow areas
while extracting the edges, so it is impossible to conduct
quantitative analysis. In contrast, in this paper, the com-
bined method of MDED and improved Otsu can perform
quantitative analysis. The final detection results are shown in
Fig. 15. And defects are labeled I-VIII from left to right. The
detection error is defined as the difference between the real
value and themeasured value in the debonding region. Table 1
shows the calculated results of FMCW images for Sample 1
and Sample 2. The mean level of detection error is about

FIGURE 14. SSIM processed by different methods for a typical image with
different SNR levels.

FIGURE 15. Results processed by the proposed method on FMCW images. (a) Sample 1. (b) Sample 2.

TABLE 1. Detection results of FMCW images for sample 1 and sample 2.
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10.17%-11.27%. The proposed method provides new ideas
and methods for quantitative analysis of FMCW detection.

V. CONCLUSION
In order to improve the detection ability of debonds in layered
structures, a new method is proposed, which can ensure
quantitative analysis as accurate as possible without losing
the positioning accuracy. TPS detection was used to validate
this method. By using multi-directional structural elements
for measuring differences between the target and local sur-
roundings, the multi-directional mathematical morphological
filter is constructed, which can greatly highlight defective
edges and suppress clutters. In addition, the improved Otsu
method can extract the defective edge well and obtain
superior detection results. Finally, through comparative
experiments and quantitative analysis, it is demonstrated that
the proposed method can efficiently extract edges of low
SNR images, and control the detection error of the debonding
region within 10.17%-11.27%. We also found that the error
can be controlled through scanning accuracy, material and
size of lens, etc. In the future, we will consider more factors
for reducing the detection errors. The proposedmethod is also
suitable for extracting the edges of other low-quality images.
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