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ABSTRACT This paper examines the asymptotic performance of multiplication and the cost of quantum
implementation for the Naive schoolbook, Karatsuba, and Toom-Cook methods in the classical and quantum
cases and provides insights into multiplication roles in the post-quantum cryptography (PQC) era. Further,
considering that the lattice-based PQC algorithm is based on polynomial multiplication algorithms, including
the Toom-Cook 4-way multiplier as its fundamental building block, we propose a higher-degree multiplier,
the Toom-Cook 8-way multiplier, which has the lowest asymptotic performance and implementation cost.
Additionally, the designed multiplication will include additional sub-operations to complete the multiplica-
tion of large integers in order to prevent side-channel attacks. To design our Toom-Cook 8-way in detail,
we employ detailed step computations such as splitting, evaluation, point-wise multiplication, interpolation,
and recomposition, as well as several strategies to reduce space and time requirements. Existing asymptotic
performance and quantum implementation cost multipliers are compared with our 2-way, 4-way, and
8-way Toom-Cook multiplier designs. Our Toom-Cook 8-way quantummultiplier has the lowest asymptotic

performance analysis or qubit count in terms of space efficiency, with n( 158 )
log 15

(2 log 15−log 8) log8 n or asymptotically
O(n1.245). The design has the lowest logical Toffoli counts bound at 112nlog8 15 − 128n and Toffoli depth of

n( 158 )
1− log 15

(2 log 15−log 8) log8 n, asymptotically close toO(n1.0569), which corresponds to a space- and time-efficient
multiplication.

INDEX TERMS Post quantum cryptography, quantum multiplication, Karatsuba, Toom-Cook 8-way,
asymptotic performance.

I. INTRODUCTION
Numerous studies have attempted to explain arithmetic mul-
tiplication in classical or quantum computing environments
from the Naïve Schoolbook onward, continuing through
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multiple multiplication development versions such as Karat-
suba [1], [2], [3], Montgomery [4], and Toom-Cook [5],
[6] [7], [8]. Notably, many other studies have been con-
ducted in a variety of fields or from different perspectives
on multiplication. The research was carried out in order
to achieve low-complexity processing, optimal resource uti-
lization, step improvements in multiplication, or efficient
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performance in modular arithmetic processing. In hardware
classical computing and quantum processing, modular multi-
plication operations are also studied tomeet themost effective
and efficient computation in the prime fieldsGF(p) or binary
fields GF(2m).
Quantum computers, unlike classical computers, use the

fundamentals of quantum mechanics to solve computational
problems. The depth of a quantum circuit corresponds to its
longest path. It represents the number of gates that qubits
must sequentially pass through during an operation. In addi-
tion to the depth of the circuit, the complexity is also mea-
sured by the total number of qubits, generally corresponds to
the circuit width, also known as the space requirement [2].
The researcher has been attempting to solve the critical prob-
lem of reducing the time complexity of the quantum gate
structure and the width of quantum processing. Quantum
circuits consisting of quantum gates, such as the NOT gate,
CNOT gate, and Toffoli gate, are the fundamental building
blocks for implementing various quantum algorithms in a
quantum circuit. The depth and width of a quantum circuit for
the arithmetic algorithm are related to complexity analysis.

The Open Quantum Safe (OQS) project at the National
Institute of Standards and Technology (NIST) facilitates
the development of a variety of quantum-resistant algo-
rithms, such as code-based cryptography, multivariate
quadratic equation-based cryptography, hash-based cryptog-
raphy, isogeny-based cryptography, and lattice-based cryp-
tography, which is particularly important as we begin moving
into the post-quantum cryptography era [9]. The third phase
of the NIST post-quantum cryptography (PQC) standard-
ization process led to the identification of four candidate
algorithms for standardization. NIST will recommend two
principal algorithms for the majority of use cases: Crystals-
Kyber (key establishment) and Crystals-Dilithium (digital
signatures) [9]. In addition, Falcon and SPHINCS+ will be
standardized [9].

Crystal-Kyber, NTRU, and SABER are examples of
lattice-based post-quantum encryption; they rely on poly-
nomial multiplication algorithms like Toom-Cook and the
Number Theoretic Transform (NTT) [10]. Further investi-
gation in their research revealed that multiplication can be
exploited in multiplication-based attacks. Mujdei et al. [10]
demonstrated that side-channel analysis (SCA) can be per-
formed as a practical experiment on real-world side-channel
measurements, allowing the secret key to be extracted from
lattice-based post-quantum key encapsulation mechanisms.
Their investigation shows that the polynomial multiplication
method used can significantly affect the attack’s temporal
complexity [10].

Given how important polynomial multiplication algo-
rithms like Toom-Cook and NTT are to lattice-based post-
quantum cryptography, this paper proposes a higher-degree
Toom-Cook multiplier, i.e., Toom-Cook 8-way multiplier,
which achieves the best asymptotic performance and imple-
mentation cost. We propose a multiplier that has a lower
space-and-time complexity and can be used to perform

efficient quantum cryptanalysis. In addition, the intended
multiplication is anticipated to be defended against the
multiplication-based attack in a lattice-based technique by
producing more iterations to lower the peak in the correla-
tion power analysis (CPA) in SCA. Keeping this in mind,
the basic operations that make up the PQC algorithm in
the post-quantum era may be more secure and meet PQC
security requirements if they are more effective and less easy
to exploit.

The following is a summary of the paper’s contribution:
1) This study provides a comprehensive analysis of exist-

ing multiplication algorithms by presenting quantum
asymptotic performance comparison results and quan-
tum implementation costs for the popular multiplica-
tion algorithms (i.e., Naive schoolbook, Karatsuba, and
Toom-Cook algorithms), in terms of qubit count, Tof-
foli depth, and Toffoli count.

2) We investigate the significance of multiplication in the
PQC era, including its role as part of the PQC algo-
rithm, multiplication exploitation in the CPA-based
approach in SCA, and as a constructor in the cryptanal-
ysis circuit.

3) The proposed Toom-Cook 8-way design multiplier
is expected to make the multiplication process go
through more multiplication sub-operations, which
will later affect the results of power analysis using
the CPA-based method to avoid multiplication-based
attacks. We describe our Toom-Cook 8-way design
with detailed computation steps like splitting, evalua-
tion, recursion, interpolation, and recomposition. Fur-
ther, we assess the Toom-Cook 8-waymultiplier design
and provide multiplication performance in a quantum
environment to determine the complexity of the Toom-
Cook 8-way multiplier.

4) We compare the design multiplier to the Naive school-
book, Karatsuba, and existing Toom-Cook complexity
analyses to determine the lowest asymptotic perfor-
mance multiplication and cost in the quantum case,
including our 2-way, 4-way, and 8-way Toom-Cook
multipliers. Comparing the qubit count, the Toffoli
depth, and the Toffoli count, the Toom-Cook 8-way has
the most asymptotically efficient resource utilization
for multiplication. The Toom-Cook 8-way Quantum
Multiplier has the smallest asymptotic performance

analysis in terms of qubit count n( 158 )
log 15

(2 log 15−log 8) log8 n,
with a value close to O(n1.245). In terms of temporal
complexity, the design has the lowest logical Toffoli
count that bounds to 112nlog8 15 − 128n and Toffoli

depth of n( 158 )
1− log 15

(2 log 15−log 8) log8 n ≈ n1.0569.

II. COMPLEXITY OF VARIOUS MULTIPLICATION
ALGORITHMS
Schoolbookmultiplication is the naive method of multiplying
numbers by first multiplying the multiplicand by each digit
of the operand and then summing the results after performing
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any necessary shifts. The time complexity of a multiplication
arithmetic algorithm is a theoretical measurement for assess-
ing how long it will take to run in practice, and classically,
space complexity is a theoretical measurement related to how
much memory an algorithm needs to run. The schoolbook
multiplication algorithm has an O(n2) level of complexity,
which indicates that it takes approximately n2 operations to
multiply two n−digit numbers. Consequently, the computa-
tion time practically explodes (i.e., at asymptotic O(n2)) for
large values of n.

Karatsuba and Ofman [11], often referred to as Karatsuba,
is an algorithm for multiplying subsquare polynomials. The
Karatsuba method has seen significant advances in speeding
up large number multiplication instead of the schoolbook’s
conventional ways. It has numerous variations that can be
implemented on any hardware or quantum-based compu-
tation. Certain Karatsuba multiplication variations imple-
mented in quantum circuits, such as in [1], [3], and [12],
have been devised to reduce processing complexity. Karat-
suba multiplication can also be considered as the foundation
of Toom-Cook-based multiplication, in which the operand
is derived from some polynomials, an evaluation point is
chosen, then point evaluation is interpolated.

Toom-Cookmultiplier algorithms are efficient methods for
multiplying subquadratic polynomials or long integers [6].
Given two large integers x and y, the Toom-Cook algo-
rithm splits them into k smaller parts of length l. Then, the
sub-multiplications are done using Toom-Cook multiplica-
tion in a recursive way until we can use a different method
for the last step of recursion or we reach the target mul-
tiplier. Subsequently, the Toom-Cook k-way, introduced by
Andrei L. Toom in 1963 [5], [13], generalizes Karatsuba’s
concept by dividing rk−coefficient polynomials into k parts,
performing r−coefficient multiplication, and then combin-
ing the results [10]. Before using the schoolbook for sub-
operations multiplication, it is often necessary to multiply the
sub-polynomials by applying a number of Karatsuba-layers.

Naive and Karatsuba multipliers may be identified as
similar Toom-Cook family algorithms, as mentioned in [6],
because they divide the operand’s value into 1 and 2 parts,
respectively. Toom-Cook multiplier algorithms, in practice,
we use the degree 2 (Karatsuba), 3, and 4 for variant versions,
which are efficient subquadratic polynomial or long integer
multiplication methods [6]. Bodrato and Zanoni generalized
the original Toom-Cook family in [14] by considering unbal-
anced operands —that is, polynomials of varying degrees
known as Toom−(k + 1/2) methods [6].
The complexity of Karatsuba with O(nlog2(3)) is compar-

atively lower than that of the schoolbook algorithm; more
specifically, its power is log2 3 ≡ 1.585 as opposed to
quadratic in the schoolbook case.

In terms of multiplication research for the quantum case,
Figure 1 depicts a quantum implementation of an improved
multiplication Karatsuba with the parameter m = 8, where
m represents the highest degree in the polynomial that is
being multiplied [15]. In addition, Dutta et al., [7]presented

the quantum circuit for Toom-Cook integer multiplication.
In particular, the authors design the circuit for the Toom-
Cook 2.5-way multiplication and approximate the number
of Toffoli gates and qubits by looking at the recursive tree
structure of their method. Other research, conducted by
Larasati et al., [8] referring to the classical implementation
in [14], investigated the Toom-Cook 3-way multiplication
design of the quantum circuit, giving an asymptotically lower
depth than the Toom-Cook 2.5-way circuit. The difficulty in
developing higher-degree Toom-Cook multiplication involv-
ing odd numbers is that there is a resource bottleneck because
it still involves nontrivial-division operations [8].

Other multipliers exist besides the Schoolbook, Karatsuba,
and Toom-Cook; however, to the best of our knowledge,
they have few quantum implementation equivalents. As the
Toom-Cook-based multiplier is a crucial component of our
proposed multiplier design, this paper expands only on the
Naive Schoolbook, Karatsuba, and Toom-Cook multiplier
methods and their asymptotic performance analysis.

III. MULTIPLICATION ROLE IN POST QUANTUM
CRYPTOGRAPHY ERA
The consistent advances in quantum computing have led to
concerns that the widespread use of public-key cryptosystems
could be compromised if large-scale quantum computers
were to be available in the future. In particular, this can lead
to the success of quantum factoring, enabling the obtain-
ing of key parameters of public-key cryptosystems such
as elliptic curve-based cryptography and digital signatures.
As a direct result, there has been an increase in research
into the development of public-key cryptosystems that are
secure against attackers employing classical and quantum
computers. PQC is the name for this area of study, along with
quantum-resistant cryptography [9].

A. TOOM-COOK IN LATTICE-BASED ALGORITHM
Themost obvious application ofmultiplication in the PQC era
is in the development of PQC algorithms. NIST has recently
settled algorithms for standardization after a rigorous assess-
ment in the third stage of the NIST PQC standardization
process. Crystals-Kyber [16] for the public-key establishment
and Crystals-Dilithium [17] are the two fundamental algo-
rithms that NIST recommends for the vast majority of use
cases, including digital signatures. Lattice-based cryptogra-
phy, which is predicted to be the most effective and quantum-
safe, provides the necessary solution in the era of PQC and
appears to be the most rapid implementation as in [18], [19],
[20], and [21]. Dilithium, Falcon, FrodoKEM, Kyber, NTRU,
NTRU Prime, and Saber are seven of the fifteen candidates
in the NIST third round that use lattice-based cryptogra-
phy [9]. Lattice-based cryptosystems typically rely on either
the NTT (O(n log n)) [22] or the Toom-Cook/Karatsuba
(O(n1+ϵ), 0 < ϵ < 1) [5], [11], [13] for fast multiplication
of polynomials with n coefficients [10]. A comparison of
the algorithm runtime behavior and memory consumption of
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FIGURE 1. Karatsuba’s improvement multiplication with the highest degree polynomial is m = 8. On a
64-bit Windows 10 Pro (Intel i7-8700, six-core CPU) with 64 GB of RAM and Python 3.9.7, the quantum
circuit yields from the Qiskit simulation.

FIGURE 2. Runtime analysis of Open Quantum Safe lattice-based cryptographic algorithms (key encapsulation
mechanisms). We redraw the results of the runtime analysis of a secure quantum lattice-based cryptographic
algorithm (key encapsulation mechanism) based on a comparative analysis of the algorithm’s runtime behavior and
memory consumption data in [10].

Open Quantum Safe lattice-based cryptographic algorithms
(key encapsulation mechanisms) is depicted in Figure 2 [10].

Niasar’s research, in [21], led to an architecture that uti-
lizes NTT to speed up polynomial multiplication. This was
proposed as a solution to Kyber’s adequate computing time
on traditional hardware [21]. Lattice-based post-quantum
encryption is dependent on polynomial multiplication algo-
rithms, such as the Toom-Cook 4-way algorithm [10].

B. MULTIPLICATION-BASED ATTACKS
Side-channel analysis (SCA) and fault-injection attacks pose
serious threats to cryptographic implementations [23]. SCA is
mitigated by techniques that conceal or mask key-dependent
information, whereas resistance to fault-injection attacks can

be achieved by adding redundancy for immediate error detec-
tion [24]. Concerning the fact that side-channel attacks are
nowadays serious when implementing cryptographic algo-
rithms, powerful ways for gaining information about the
secret key as well as various countermeasures against such
attacks have been recently developed [25].

Some research investigates attack countermeasures or the
efficacy of the attacks in order to prevent the threat. Regaz-
zoni et al.’s research investigate a device’s resistance to power
attacks in order to protect it from fault injection attacks
when fault detection circuitry is added [26]. They attempt
to put modified devices to the test against attacks based on
power analysis. A study in [23] examines the impact of a
fault-detection (FD) scheme on the robustness of a full AES
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implementation against correlation power analysis (CPA).
For SHA-3 third-round finalists, the [27] study introduced an
efficient and effective error detection scheme.

Physical attacks such as SCA and fault analysis (FA) can
be used to recover the secret key used in a cryptosystem [28].
A side-channel attack is a type of computer security attack
that does not rely on flaws in the design of a computer proto-
col or algorithm, but rather on additional information that can
be gleaned from how the protocol or algorithm is employed.
Utilizing additional data such as timing, power consumption,
electromagnetic leaks, and sounds can facilitate side-channel
attacks. SCA on cryptographic algorithm implementations
has been carried out in recent years, demonstrating how to
obtain the secret key [26].

Several studies demonstrate that arithmetic such as mul-
tiplication is also a concern as an object in SCA. Whelan
and Scott [29], proposed one of the first articles describing
side-channel attacks against large characteristic field pair-
ings [29]. They propose the calculation strategy for the CPA
portion to calculate the correlations between the hypothetical
outputs of the arithmetic operation x x k and the leakage
traces for all possible keys k . The research of [26] demon-
strates that both S−box analysis and multiplication can be
used in a side-channel attack against the AES and Kasumi
ciphers.

C. MULTIPLICATION EXPLOITATION FOR CPA SIDE
CHANNEL ANALYSIS
Side-channel data, such as power consumption, electromag-
netic (EM) radiation, and execution time, can be used to
get at sensitive data [30]. Side-channel attacks are passive
physical assaults in which the attacker obtains side-channel
data produced by the implementation inadvertently [10]. One
of the most effective is correlation power analysis (CPA),
which takes advantage of the relationship between a device’s
power consumption and the data it is processing, such as
power fluctuations caused by multiplication.

Multiplication exploitation in CPA side-channel analysis
attacks is a major concern when implementing cryptographic
algorithms, as in a practical implementation, arithmetic mul-
tiplication is almost used as a sub-operation multiplier, leav-
ing cryptographic algorithms susceptible to physical attack
exploitation [10]. Mujdei et al. compared the complexity
of attacking various multiplication schemes, multiplication
techniques, and parameter selections utilizing CPA, a tech-
nique first introduced by Brier et al. in their 2004 paper [31].
Using side-channel measurements, they demonstrated that
their method decrypts all lattice-based post-quantum key
encapsulation schemes. In addition, they demonstrate that
the time complexity of an attack can be drastically altered
through the use of polynomial multiplication [10]. So, side-
channel analysis techniques based on correlation power
analysis can be used to attack the existing polynomial
multiplication strategies used in lattice-based post-quantum
key encapsulation mechanisms. Figure 3 clearly shows a

multiplication-based attack on the post-quantum algorithm
using Mujdei et al.’s findings about the variance plot of
500 schoolbook multiplication traces with 72 peaks for
inntruhps4096821 [10].

D. EFFICIENT MULTIPLIER FOR QUANTUM
CRYPTANALYSIS
PQC refers to cryptographic methods, typically algorithms
for public key encapsulation, that are believed to be secure
against quantum computer attacks. PQC focuses on updating
math-based algorithms and standards to prepare for the quan-
tum computing era. Currently, we require efficient mathemat-
ics not only to construct PQC algorithms that are resistant to
SCA but also in the form of quantum circuits that can be used
to construct cryptanalysis circuits, which can later be used
to demonstrate the strength of an algorithm. Multiplication
of integers is a fundamental operation on a conventional
computer. In quantum computing, integer multiplication is
a crucial operation that is fundamental to executing Shor’s
algorithm for factoring integers [32].

Utilizing Shor’s algorithm to solve the factoring problem
in RSA or ECC cryptographic systems have been the primary
focus of early quantum computing cryptanalysis research.
In general, the objective is to design a circuit that efficiently
computes the modular exponential function |X⟩ → |ax

mod N ⟩, enabling its solution via a modular multiplication
sequence. Several studies, such as [33], [34], and [35], have
introduced methods for achieving this objective, where they
perform multiplication by a constant using a modular arith-
metic method and a single quantum input. By utilizing the
unique properties of constants to design more idealized cir-
cuits, [36] and [37] developed a more sophisticated solu-
tion. Quantum-based cryptanalysis requires basic arithmetic,
including multiplication, for all of these investigations.

To accelerate cryptanalysis, a space- and time-efficient
basic arithmetic constructor is required. Further research into
quantum computing environments, such as that conducted by
Roche [38], Parent et al. [2], Gidney [39], Banegas et al. [40],
and Putranto et al. [15], focuses on reducing the temporal or
spatial complexity of cryptanalysis implementation. Banegas
et al. research in [40] is an example of research that uses space
and time-efficient quantum multiplication to enhance crypt-
analysis through the development of multiplication research
from [3]. Future predictions regarding the performance of
quantum computers to solve classical public key cryptogra-
phy and PQC algorithms can be greatly influenced by the
efficiency of the underlying basic arithmetic, in this case,
multiplication.

E. SPACE AND TIME-EFFICIENT MULTIPLIER WITH
HIGHER-DEGREE TOOM-COOK-BASED MULTIPLIER
In this paper, we disassemble the design of the classical
Toom-Cook multiplier and redesign it so that it can also be
used as quantum circuits, which can later be implemented in
actual quantum hardware systems. One of the main concerns
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FIGURE 3. Variance plot of 500 traces of schoolbook multiplication in ntruhps4096821, showing 72 peaks. The result
CPA is for the case of ntruhps4096821 with size 1728 NTT, schoolbook threshold degree 3, and eight 3C–3
schoolbook multiplications per group. [10].

is how to design multiplication to utilize the least amount of
space and time. This is due to the fact that multiplication
is a fundamental mathematical operation that is frequently
employed and can be an integral component of complex
mathematics and cryptanalysis.

According to Mujdei et al. [10], lattice-based post-
quantum cryptography is built on polynomial multiplication
algorithms such as Toom-Cook and the NTT. Toom-Cook-
based versions of Saber and NTRU use k = 4 with evaluation
points x1 = 0, x2 = 1, x3 = −1, x4 = 2, x5 = −2,
x6 = 3, and x7 = ∞ [10]. Mujdei’s research not only shows
that Toom-Cook is used in lattice-based PQC algorithms, but
it also shows that the multiplication of Toom-Cook-based
polynomials is straightforward to attack [10].

As the fundamental building blocks of lattice-based
post-quantum encryption, polynomial multiplications
(e.g., Toom-Cook and NTT) further divide the result-
ing sub-polynomial [10]. Saber further splits the resulting
sub-polynomials into two Karatsuba-layers, after which a
16-coefficient schoolbook is performed [10]. The structure
of all NTRU-versions is similar, but with four Karatsuba-
layers (except ntruhps2048509, which has three) and different
schoolbook thresholds [10]. By experiment, Mujdei et al.
analyzed whether the schoolbook sub-operation in process-
ing 3-way and 4-way Toom-Cook in the lattice-based PQC
algorithm resulted in CPA peaks. Taking into account the
peak results derived from the schoolbook multiplication sub-
operation, as depicted in Figure 3 by Mujdei et al., it is
hypothesized that Toom-Cook with a high degree will require
more schoolbook sub-operations to multiply numbers and is
expected to produce more peaks. If a design with high-order
multiplication is implemented, side-channel attacks will have
a greater number of peaks, making them more difficult to
analyze. In the end, the designed multiplier should have more
possible sub-operations so that more peaks can bemadewhile
still using space and time efficiently.

IV. DESIGN OF QUANTUM TOOM-COOK 8-WAY
MULTIPLIER
Having observed that Toom-Cook is used as a polynomial-
based multiplication algorithm on a lattice-based algorithm

in the PQC era, we devised a high-degree Toom-Cook-based
multiplication, which should provide a lower depth than the
other method of multiplication and prevent multiplication-
based exploitation. We take a close look at multiplication
and come up with a new multiplier based on the work of
Zanoni et al. [6], Dutta et al. [7], and Larasati et al. [8], among
others.

Zanoni et al. offer a degree 7 implementation of a balanced
Toom-Cook 8-way for integer multiplication and squaring.
The design research methodology used by Zanoni to create
the Toom-Cook 8-way. In classical computing, balance is
achieved without the use of non-trivial division [6]. By exam-
ining the algorithm’s recursive tree, Dutta et al. provide
a comprehensive explanation of the Toom-Cook 2.5-way
method for obtaining a limit on the number of Toffoli gates
and qubits in quantum computing [7].

Larasati et al. [8] elaborate on the Toom-Cook 3-way by
citing Bodrato [14]. Both researchers continue to use the
division gate, and the objective is to reduce the number of
operations, particularly nontrivial ones. Some of Larasati
et al.’s strategies emphasize the use of division gates, which
have resulted in a maximum of one exact division by three
circuits per iteration [8]. In addition, the cost of the remaining
division was reduced by utilizing the circuit’s unique property
and replacing it with a constant multiplication by recipro-
cal circuit and the corresponding swap operations [8]. The
research of Larasati et al. [8] demonstrates that the k−way
Toom-Cook method, which employs higher-order polyno-
mial interpolation, can have lower asymptotic complexity
than other methods such as Toom−2.5 in terms of both the
number of qubits and the depth of the Toffoli tree. However,
it also requires a greater quantity of Toffoli gates, primarily
due to the manner in which it is divided. Also, research has
demonstrated that despite the fact that higher-order methods
may be more efficient, it can be difficult to find an efficient
way to implement the division operation, which is a crucial
component of the k−way Toom-Cook method.
The designed Toom-Cook 8-way quantum multiplier will

implement the concept of balanced Toom-Cook 8-way clas-
sical computation as described in Zanoni et al.’s strat-
egy to avoid using non-trivial division when building the
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FIGURE 4. The Toom-Cook 8-way Multiplication Recursion Tree Structure,
where T stands for the Toom-Cook 8-way Multiplication, n and N ,
respectively, stand for the bit length for each level and the overall depth
of the tree.

balanced Toom-Cook 8-way in classical computing. To max-
imize space and time efficiency, the multiplier will employ
several strategies, with an emphasis on not using the division
gate. Despite using the division function in the Toom Cook
8-way design, we only use the copy and add functions, which
only require the CNOT gate. Even though the Toom-Cook
8-way has a higher degree, the initial resource requirements
for the number of qubits, the depth of the Toffoli, and the
number of Toffoli will be lower. We do not use a division
gate when designing space and time-efficient multiplication,
and we demonstrate that the use of gates and the depth count
of multiplication circuit resources will be reduced.

A. TOOM-COOK 8-WAY COMPUTATION STEPS
Existing quantum research on the degree of Toom-Cook
methods, which provide faster execution in large number
multiplication than schoolbook and Karatsuba, has multiple
forms, including 2.5-way, 3-way, and 4-way. The k−way
Toom Cook method is a multi-point polynomial multiplica-
tion algorithm that uses interpolation to multiply two large
polynomials efficiently by decomposing them into smaller
polynomials and recursively applying the same technique to
these smaller polynomials until they are small enough to be
multiplied using the standard method. The sub-operations of
multiplication can then be computed recursively using Toom-
Cook multiplication, and so on. The Toom-Cook 8-way mul-
tiplication recursion tree structure is shown in Figure 4. The
Toom-Cook 8-way method divides a large integer number
into 16 smaller multiplications, then operates the calculation
for each part. The calculations take into account the quan-
tum circuit’s resource properties, such as reversibility, which
necessitate uncomputation in order to eliminate garbage out-
puts. In quantum circuit research, it has also been discovered
that quantum computing typically requires more resources
than classical computing. Even in the same study in the
quantum circuit field, there are examples of high resources for
the number of Toffoli on Toom-Cook 3-way, which is greater
than the number of Toffoli on Toom-Cook 2.5-way, as stated
in [8].

FIGURE 5. Overall Quantum Circuit for Toom-Cook 8-way Multiplication.
The function block boxes represent the steps that comprise the
Toom-Cook 8-way quantum circuit. In the Quantum Circuit for Toom-Cook
8-way multiplication, the red triangles at each function block indicate the
input and output of each corresponding operation. A notation symbol
represents the quantum state of the input, and each line represents a
required register in the quantum circuit. Triangles on the left of a block
indicate its input entry point. Triangles represent the output location on
the right side. For simplicity’s sake, the ancillary registers are not
displayed.

Zanoni’s research in classical balanced Toom-Cook 8-way
for long integers multiplication indicates five steps to perform
the Toom-Cook k-way algorithm for a natural number such
as splitting, evaluation, recursion, interpolation, and recom-
position [6]. In order to provide a concise description of the
method, the values to be multiplied, also known as the input
operands, are denoted by x and y. The symbol x denotes
the full-digit input, x0, x1, x−1, x−2, . . . represents the split
input, whereas x(0), x(1), x(−1), x(−2), . . . represents the
outcome of evaluating x for the specified evaluation points.
Following is the procedure for implementing quantum Toom-
Cook 8-way Multiplication:
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1) As demonstrated by Equations 1 and 2, each input,
in this case, x and y, is divided into eight smaller
pieces of length n

8 . The radix j in the equations can be
calculated beforehand using Equation 3.

x = x7s7j + x6s6j + x5s5j

+ x4s4j + x3s3j + x2s2j + x1sj + x0 (1)

y = y7s7j + y6s6j + y5s5j

+ y4s4j + y3s3j + y2s2j + y1sj + y0 (2)

j = max
{⌊

⌈log2 x⌉
8

⌋
,

⌊
⌈log2 y⌉

8

⌋}
(3)

2) We employ x1 = 0, x2 = 1, x3 = −1, x4 = 2,
x5 = −2, x6 = 4, x7 = −4, x8 = 8, x9 = −8,
x10 = 16, x11 = −16, x12 = 32, x13 = −32,
x14 = −64, x15 = ∞ to obtain x(0), x(1), x(−1), x(2),
x(−2), x(4), x(−4), x(8), x(−8), x(16), x(−16), x(32),
x(−32), x(−64), and x(∞) for the evaluating points
x and y, each of the 15 predefined evaluation points.
In this paper, we did not provide the detailed equation
for the result evaluation point x(0), x(1), x(−1), x(2),
x(−2), x(4), x(−4), x(8), x(−8), x(16), x(−16), x(32),
x(−32), x(−64), x(∞); but, it can be recognized from
the evaluation multiplication equation, Equation 4.

3) One round of non-recursive point-wise multiplication
Toom-Cook 8-way multiplication employs 16 multipli-
cations with smaller bit lengths. To multiply each com-
ponent of x(0), x(1), x(−1), x(2), x(−2), x(4), x(−4),
x(8), x(−8), x(16), x(−16), x(32), x(−32), x(−64), and
x(∞), the result is presented in Equation 4, indicated as
the notions F , G, H , I , J , K , L, M , N , O, P, Q, R, S,
and T .

4) Interpolation can be modeled in a matrix as it is the
opposite of a point multiplication result, as shown in
Equation 5. Note that, in this process, we use an inverse
matrix from coefficient sub-multiplication (k0 . . . k14)
in Equation 4; for simplicity, we describe the inverse
matrix as in Equation 5.

F = x0y0
G = (x7 + x6 + x5 + x4 + x3 + x2 + x1 + x0)

(y7 + y6 + y5 + y4 + y3 + y2 + y1 + y0)

H = (−x7 + x6 − x5 + x4 − x3 + x2 − x1 + x0)

(−y7 + y6 − y5 + y4 − y3 + y2 − y1 + y0)

I = (128x7 + 64x6 + 32x5 + 16x4
+ 8x3 + 4x2 + 2x1 + x0)

(128y7 + 64y6 + 32y5 + 16y4
+ 8y3 + 4y2 + 2y1 + y0)

J = (−128x7 + 64x6 − 32x5 + 16x4 − 8x3
+ 4x2 − 2x1 + x0)

(−128y7 + 64y6 − 32y5 + 16y4 − 8y3
+ 4y2 − 2y1 + y0)

K = (16384x7 + 4096x6 + 1024x5 + 256x4

+ 64x3 + 16x2 + 4x1 + x0)

(16384y7 + 4096y6 + 1024y5 + 256y4
+ 64y3 + 16y2 + 4y1 + x0)

L = (−16384x7 + 4096x6 − 1024x5
+ 256x4 − 64x3 + 16x2 − 4x1 + x0)

(−16384y7 + 4096y6 − 1024y5
+ 256y4 − 64y3 + 16y2 − 4y1 + x0)

M = (2097152x7 + 262144x6 + 32768x5
+ 4096x4 + 512x3 + 64x2 + 8x1 + x0)

(2097152y7 + 262144y6 + 32768y5
+ 4096y4 + 512y3 + 64y2 + 8y1 + y0)

N = (−2097152x7 + 262144x6 − 32768x5
+ 4096x4 − 512x3 + 64x2 − 8x1 + x0)

(−2097152y7 + 262144y6 − 32768y5
+ 4096y4 − 512y3 + 64y2 − 8y1 + y0)

O = (268435456x7 + 16777216x6
+ 1048576x5 + 65536x4 + 4096x3
+ 256x2 + 16x1 + x0)(268435456y7
+ 16777216y6 + 1048576y5 + 65536y4
+ 4096y3 + 256y2
+ 16y1 + y0)

P = (−268435456x7 + 16777216x6 − 1048576x5
+ 65536x4 − 4096x3
+ 256x2 − 16x1 + x0)

(−268435456y7 + 16777216y6 − 1048576y5
+ 65536y4 − 4096y3 + 256y2 − 16y1 + y0)

Q = (34359738368x7 + 1073741824x6
+ 33554432x5 + 1048576x4 + 32768x3

+ 1024x2 + 32x1 + x0)(34359738368y7
+ 1073741824y6 + 33554432y5

+ 1048576y4 + 32768y3 + 1024y2
+ 32y1 + y0)

R = (−34359738368x7 + 1073741824x6
− 33554432x5 + 1048576x4 − 32768x3

+ 1024x2 − 32x1 + x0)

(−34359738368y7 + 1073741824y6 − 33554432y5

+ 1048576y4 − 32768y3
+ 1024y2 − 32y1 + y0)

S = (−4398046511104x7 + 6871946736x6
− 1073741824x5 + 16777216x4
− 262144x3 + 4096x2 − 64x1 + x0)

(−4398046511104y7 + 6871946736y6
− 1073741824y5 + 16777216y4
− 262144y3 + 4096y2 − 64y1 + y0)
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T = x7y7
(4)
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(5)

5) The recomposition from the interpolation result is indi-
cated as TT , SS, RR, QQ, PP, OO, NN , MM , LL, KK ,
JJ , II ,HH ,GG, and FF in Equation 6 below. The final
product of Toom-Cook 8-way multiplication is the xy
Equation.

xy = FF214j + GG213j + HH212j + II211j + JJ210j

+ KK29j + LL28j +MM27j + NN26j + OO25j

+ PP24j + QQ23j + RR22j + SS2j + TT (6)

B. TOOM-COOK 8-WAY MULTIPLICATION SCHEDULING
We employ effective scheduling or sequencing, which entails
merging similar processes with value overlapping, in order
to reduce down on the number of operations that need to be
performed. Equation 7−9 shows the best way to do Toom-
Cook 8-waymultiplication based on this idea, which was also
used by [6], [7], and [8], in earlier studies to lower the cost
of Toom-Cook based multiplication. It is worth noting that
common quantum techniques still rely on two-input opera-
tions, unlike their classical counterparts, which can operate
on multiple values simultaneously.

Let:

i1 = G+ H (7)

i2 = I + J (8)

i3 = K + L (9)

With the substitution of Equation 7−9, the formulation of
Toom-Cook eight-way interpolation with the result of inverse
matrices Equation 5, denoted by coefficient k0 . . . k14, can be
expressed as Equation 10 -24:

FF = T (10)

GG = k0F + k1G+ k2H + k3I + k4J + k5K

+ k6L + k7M + k8N + k9O+ k10P

+ k11Q+ k12R+ k13S + k14T (11)

HH = k0F + k1G+ k2H + k3I + k4J + k5K

+ k6L + k7M + k8N + k9O+ k10P

+ k11Q+ k12R+ k13S + k14T (12)

II = k0F + k1G+ k2H + k3I + k4J + k5K

+ k6L + k7M + k8N + k9O+ k10P

+ k11Q+ k12R+ k13S + k14T (13)

JJ = k0F + k1G+ k2H + k3I + k4J + k5K

+ k6L + k7M + k8N + k9O+ k10P

+ k11Q+ k12R+ k13S + k14T (14)

KK = k0F + k1G+ k2H + k3I + k4J + k5K

+ k6L + k7M + k8N + k9O+ k10P

+ k11Q+ k12R+ k13S + k14T (15)

LL = k0F + k1i1 + k2I + k3J + k4K + k5L

+ k6M + k7N + k8O+ k9P+ k10Q

+ k11R+ k12S + k13T (16)

MM = k0F + k1G+ k2H + k3I + k4J + k5K

+ k6L + k7M + k8N + k9O+ k10P

+ k11Q+ k12R+ k13S + k14T (17)

NN = k0F + k1i1 + k2i2 + k3i3 + k4M + k5N

+ k6O+ k7P+ k8Q+ k9R+ k10S + k11T (18)

OO = k0F + k1G+ k2H + k3I + k4J + k5K

+ k6L + k7M + k8N + k9O+ k10P

+ k11Q+ k12R+ k13S + k14T (19)

PP = k0F + k1G+ k2H + k3I + k4J + k5i3
+ k6M + k8N + k7O+ k9P

+ k10Q+ k11R+ k12S + k13T (20)

QQ = k0F + k1G+ k2H + k3I + k4J + k5K

+ k6L + k7M + k8N + k9O+ k10P

+ k11Q+ k12R+ k13S + k14T (21)

RR = k0F + k1G+ k2H + k3I + k4J + k5K

+ k6L + k7M + k8N + k9O+ k10P

+ k11Q+ k12R+ k13S + k14T (22)

SS = k0F + k1G+ k2H + k3I + k4J + k5K

+ k6L + k7M + k8N + k9O+ k10P

+ k11Q+ k12R+ k13S + k14T (23)

TT = F (24)

C. QUANTUM CIRCUIT FOR TOOM-COOK 8-WAY
MULTIPLICATION
Figure 5 −8 shows a high-level quantum circuit for con-
structing the Toom-Cook 8-way multiplication. The quantum
circuit generally follows the computational steps described
previously, e.g., the splitting process, evaluation points, point-
wise multiplication, interpolation, and recomposition. The
quantum Toom-Cook 8-way multiplication necessitates five
underlying operations, which include copy, addition, subtrac-
tion, shift, and the underlying sub multiplication operations.
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FIGURE 6. Quantum Circuit of evaluation point x .

FIGURE 7. Quantum Circuit of evaluation point y .

In order to accomplish the input splitting step, we first place
the n−bit number x as the initial multiplicand in each of the
registers designated x0, x1, x2, x3, x4, x5, x6, and x7. This
separates x into eight pieces, each of which is n

8 in length.
Accordingly, the evaluation of each x and y is depicted in
Figures 6 and 7, which all run simultaneously due to the fact
that they operate on separate registers. Figure 8 depicts the
point-wise multiplication and interpolation performed by the
Toom-Cook 8-way quantum circuit.

Each result of interpolation has an 2n
8 -bit size equal to

TT , SS, RR, QQ, PP, OO, NN , MM , LL, KK , JJ , II , HH ,
GG, and FF . In the last stage, recomposition combines the
interpolation results that initially required 190 n

4 -bit addition
circuit operations, and without overlapping the adds.

V. RESULTS AND ANALYSIS
In this section, we will discuss the results of the Toom-
Cook 8-way circuit design and their complexity, as shown in
Table 1, by the metrics of cost multiplication to the Toffoli
count, qubit count, and Toffoli depth. For the analysis of
gate-count calculations on multipliers, we use the same basic
scenario assumption to calculate the gate count as [2], [7],
and [8], that one Toffoli gate can be used to perform one-bit
number multiplication, and the cost of the in-place adder An
must be less than or equal to 2n Toffoli gates, where n is the
bit size of the larger addend, in order to compare the final
result equivalently to the previous study.

In the Larasati et al. study, they use the division circuit so
that they can consider strategies to implement the constant
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FIGURE 8. Quantum circuit consisting of point-wise multiplication and the interpolation of the Toom-Cook 8-way. The image depicts, in the
form of function block boxes, the six different processes that, when combined, make up the Toom-Cook 8-way quantum circuit. The
operations consist of copying, subtracting, adding, shifting, and sub-multiplying the data.

multiplication from [36] by performing a Toffoli count of
4n(n+1) to achieve the lowest feasible cost while conducting
quantum division. In contrast to the ToomCook 3-way design
by Larasati et al., this study does not use division to simplify
the evaluation of points x and y, thereby reducing costs even
further. This will impact the overall efficiency and depth of
quantum multiplication. In the Toom Cook 8-way design,
despite using the division function, we only use the copy and
add functions, which only require the CNOT gate. Thus, the
space and time efficiency of this Toom-Cook 8-way can be
improved.

A. TOFFOLI GATE COUNT
Let Tn represent the cost of using the Toom-Cook 8-way
multiplier to multiply two larger n-bit values. As a result,
An represents the cost of adding or subtracting n-bits.
To realize n-bit Toom-Cook 8-way multiplication,
15 operations n

8 submultiplications and three adder types

of varying lengths (28 operations n
8 -bit, 190 operations 2n

8 -
bit, and five operations n

8 -bit addition and subtraction) are
required. Equation 25 is then used to determine the Toffoli
cost of an n-bit Toom-Cook 8-way multiplication. Further-
more, for recursive implementations, the cost rises to Equa-
tion 26, and Equation 27 becomes equivalent when the Toffoli
cost of An = 2n is substituted.

Tn = 15T n
8

+ 28A n
8

+ 190A n
4

+ 5 A 3n
8

(25)

Tn = 15log8 nT1 + 28(A
n
8

+ 14A
n
64

+ · · · + 14log8(n)−1A1)

+ 190(A
n
4

+ 95A
n
32

+ · · · + 95log8(n)−1A2)

+ 5(A
3n
8

+ 2 A
3n
64

+ · · · + 2log8(n)−1A3) (26)

Tn = 15log8 n +

log8(n)−1∑
i=0

[
56n(

15
8
)i
]

(27)
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Using the geometric series
∑m−1

i=0 r i =
1−rm
1−r , we can cal-

culate the Toffoli cost of recursive implementation, denoted
by Equation 28.

Tn = 15log8 n + 56n
(
1 − ( 158 )

log8 n

1 − ( 158 )

)

= nlog8 15 + 56n
(
1−nlog8(

15
8 )

1 − ( 158 )

)
= 57nlog8 15 − 64n (28)

The obtained result of Equation 28 does not account for
the typical uncomputation procedure performed in a quantum
environment. This strategy is also considered in [2], [7],
and [8] research, so Equation 29 incorporates the uncomputed
process to avoid roughly doubling the previously acquired
cost. Note that we employ the same definition of ‘‘clean cost’’
as Larasati et al. in the following equation.

Tn(clean) = 112nlog8 15 − 128n (29)

B. SPACE-TIME COMPLEXITY ANALYSIS
Bennett in [41] introduced the technique of reversible peb-
ble games for measuring asymptotic performance improve-
ments in the context of space consumption in the context
of space-time complexity analysis. This technique is utilized
extensively in reversible computing, which makes time and
space complexity analysis possible and enables time-efficient
finite-space computing [42]. This method will allow us to
evaluate the difference in the cost of the successfully opti-
mized multiplication and compare it to the results of previous
studies. We determined the optimal cost of multiplication by
following the procedures outlined in [2], [7], and [8].

In the Toom-Cook 8-way algorithm, 15 simultaneous mul-
tiplications were done in a recursive way to make a quinary
eight structure. There are 15l nodes of size 3−ln for an input
of size n at level l, and this input has a total circuit cost
of n( 158 )

l . Equation 30depicts the total price of the quinary
tree. For determining the optimal tree height k for optimal
performance, use Equation 32.

n
N∑
i=0

(
15
8

)i

, N = log8 n (30)

n
N−k−1∑
i=0

(
15
8

)i

=
1

8N−k

k−1∑
i=0

(
15
8

)i

(31)

In a pattern similar to Equation 29, the identity of the
geometric series enables us to locate the boundaries indicated
by Equation 32. Thus, the space can be reduced, as shown
in qubit count Equation 33. The obtained result from Equa-
tion 33, approximately equal to O(n1.245), is lower than the
initially required space assessed with Equation 34, which is
confined to the value O(nlog8 15) ≈ O(nn1.30229).

k ≤
N

2 −
log 8
log 15

≈ 0.8116 (32)

QC = O
(
n
(
15
8

(
log 15

2 log 15−2 log 8

)
log8 n

))
≈ O(n1.245) (33)

n
log8 n−1∑
k=0

(
15
8

)k

= n
(1 −

(
15
8

)log8 n
1 −

15
8

)
(34)

The Toffoli depth of a circuit is a prevalent way to describe
its time complexity [7], [43]. It can be calculated by multi-
plying the number of subtrees Sk at the k − th level by the
corresponding depth Dk . Consequently, we can express the
Toffoli depth Td as in Equation 35.

Sk = 15

(
1− log 15

2 log 15−log8

)
log8 n

Dk =
n

8

(
1− log 15

2 log 15−log8

)
log8 n

Td = SkDk = n
(
15
8

)(
1− log 15

2 log 15−log8

)
log8 n

≈ n1.0569 (35)

C. COMPLEXITY ANALYSIS COMPARISON
The schoolbook multiplication, or a naïve approach sim-
ilar to Toom-Cook 1-way, requires O(n2) steps, which is
quadratic in the amount of the input; this is also the value
for Naive’s Toffoli depth. In addition, an enhanced study
in 2004 places Naive’s Toffoli depth at O(n log n) [44]. For
asymptotic performance analysis in the quantum implemen-
tation, the schoolbook method requires O(n) for the qubit
count andO(n2) for the Toffoli count and depth values. Quan-
tum multiplication costs involved are (4n + 1) qubit count,
(4n2−4n+1) Toffoli depth, and (4n2−3n) Toffoli count [7],
[8]. Afterward, some studies in multiplication, i.e., Toom-
Cook 2-way (Karatsuba), Toom-Cook 3-way, etc., attempt to
obtain the minor step or complexity.

Asymptotic performance study in Karatsubamultiplication
yielded qubit count O(nlog2(3)) for qubit count and Toffoli
count, as well as the same result value for CNOT consump-
tion [1], [3] [15]. Improvements to the value of asymptotic
performance analysis and cost for quantum implementation
for the multiplication of Karatsuba can be referred from
Parent et al.’s research, where the asymptotic values for qubit
count O(n1.427), the same O(nlog2(3)) for Toffoli count, and
Toffoli depth O(n1.158) [2], [7] [8].

In Parent et al. study, the value of the qubit count n1.427, the
Toffoli count O(nlog2 3), and the Toffoli depth n1.158, which
then for the qubit count value of asymptotic performance
analysis the quantum Karatsuba multiplier implementation,
were improved by van Hoof’s research in [3] with value 3n
for the qubit count. The Karatsuba variant from Putranto et al.
is reported to have the lowest CNOT usage fromO(n2) CNOT
in van Hoof to O(nlog2(3)) which claimed as compliment
research from previous, a time-efficient based while preserv-
ing space-efficient quantum multiplication implementation
by van Hoof [15] and Banegas et al. [40].
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TABLE 1. Comparison of multipliers’ asymptotic performance and implementation cost using the toffoli count, qubit count, and toffoli depth as
space-time complexity metrics. to give a thorough comparison of the development of complexity multiplication research for the naive schoolbook,
karatsuba, and toom-cook-based studies from prior studies, we present our findings for toom-cook 2-way, 4-way, and 8-way.

Paldivis’s research on the complexity of the Toom-Cook-
based multiplication obtained values of O(n) Qubit count,
O(n2) Toffoli Count, and O(n) Toffoli Depth. The multi-
plication implementation to design Shor’s quantum factor-
ization requires 3n + 1 qubits, 4n(n + 1) Toffoli, and 8n
Toffoli depths [36]. Dutta et al. study [7], which Larasati et.al.
also referred to in [8], improved the asymptotic performance
analysis values for the qubit count of n1.404, Toffoli count
O(n log6 16), and Toffoli depth n1.143. With the values of
qubit count n1.404, Toffoli count 49nlog6 16, and Toffoli depth
n1.143, the cost of implementing quantum is reduced [7].

An estimate of the asymptotic performance analysis value
of n1.353 qubit count, O(n2) Toffoli count, and n1.112 for
Toffoli depth is given by recent research on Toom-Cook
multiplication by Larasati et al. As the research that also
underlies this research, Larasati et al.’s research is intended
to be the lowest in implementing the cost quantummultiplier,
i.e., the number of qubits, Toffoli, and depth.

As shown in the Table 1, Toom-Cook 8-way quantum
multiplier has asymptotic performance analysis in qubit count

with n( 158 )
log 15

(2 log 15−log 8) log8 n approximately O(n1.245). In terms
of Toffoli depth, related to fast computation, the design yields
a lower logical depth bound to O(n1.0569) and Toffoli count
O(nlog8 15). Compared to the other multiplication, the results
show that the designed Toom-Cook 8-way multiplier has
the lowest asymptotic performance for qubit count, Toffoli
count, and Toffoli depth, consequently resulting in more
sub-multiplication iterations than previous work.

In particular, in terms of cost of quantum implementation,
the Toom-Cook 8-way with Toffoli count 112nlog8 15 − 128n
cost scale is smaller than the 3-way Toom-Cook with 8n2 +

66nlog3 5−72, and efficiency is much better than other Toom-
Cook-based multiplier, Karatsuba, and Naive Schoolbooks.

Similarly, the number of qubit count n( 158 )
log 15

(2 log 15−log 8) log8 n ≈

n1.245 for Toom-Cook 8-way also outperforms the efficiency
of other Toom-Cook-based multiplier, especially Toom-Cook
4-way, which is currently used in lattice-based algorithms.

Comparing our O(n1.0569) to other prior research, we note
that in Palvidis’s research, Toffoli depth reportedO(n) in their
constant multiplication ConstMult Multiplier, but they may
have a more significant cost implementation. Also, in the
research from Larasati et al., in the case of Toffoli’s count,
the Toom-Cook 3-way series withO(n) is still on a quadratic
scale, similar to the naïve technique, with constant multipli-
cation or division operations contributing significantly to its
implementation [8]. The result for the Toffoli depth value is
112nlog8 15−128n, which has proven more efficiency reached
and has the lowest cost.

VI. DISCUSSION
With a Toffoli depth of O(n1.0569) and a qubit count of
O(n1.245) in Toom-Cook 8-way, the designed multiplier also
serves as an appropriate follow-up to prove the statement
from Larasati et al.’s research [8] that a higher order in Toom-
k multiplication will give higher efficiency. Despite the fact
that numerous studies on classical calculation concur that
the Toom-Cook algorithm is fast, the [45] study asserts that
multiplication is likely inaccurate. The Toom-Cook algorithm
for multiplying polynomials may encounter difficulties due
to an interpolation step that requires dividing by an even
number. Although we also discover that this inaccuracy is a
result of the fractional results of the inversematrix in the inter-
polation, this issue can be resolved by changing the variable
type in the multiplication algorithm to float. Nevertheless,
as indicated by the [6] study, which does not use non-trivial
division, we also employ a balanced 8-way Toom-Cook oper-
ationwithout division strategy to reduce this inaccuracy issue.
Inaccuracy may affect the use of cryptography, but in our
research, it does not have much effect, considering that the
asymptotic digit values obtained are close to the actual value.
However, this paper has not discussed several challenges,
including Toom-Cook multiplication accuracy at a higher
power of 8 or process acceleration in hardware implementa-
tions such as FPGAs, as in [20]. At a higher order, inaccuracy
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may occur, according to [45]’s research. Furthermore, this
research only limits the applied quantum circuit to 8 ways so
that it can be reliable on quantum processor hardware, which
has only reached a 53-qubit quantum state.

According to the findings of Mujdei et al. [10], the
Toom-Cook is implemented in the lattice-based PQC algo-
rithm, and it can be attacked in a straightforward manner.
Toom Cook with higher sub-operations, in this case, Toom-
Cook 8-way, can generate more sub-operation iterations of
schoolbook multiplication, potentially resulting in a lower
linear threshold or a decline in peak, as shown by the
variance plot findings in the CPA-based attack research.
As a result, using space- and time-efficient multiplication,
such as Toom-Cook 8-way, is critical not only for making
the best use of resources with asymptotic performance or
for implementing at the lowest cost, but also for avoiding
attacks like CPA-based attacks. In this study, we provide a
brief overview of attacks resulting from the exploitation of
elementary arithmetic, such as correlation power analysis.
However, neither the SCA attack nor the combined SCA
attacks were described in detail. In addition, the designed
implementation of multiplication for the PQC algorithm is
not explained. Future research would benefit from including
more details on how to attack or measure its effects, as this
would result in a more technically extensive analysis of
the multiplication-based attack and its implementation in a
lattice-based
PQC algorithm.

VII. CONCLUSION
This research examines several prior studies onmultiplication
complexity in classical and quantum environment, includ-
ing the Naive schoolbook, Karatsuba, and Toom-Cook-based
multiplication. We provide insight into the function of multi-
plication in the PQC era, including PQC algorithms based on
Toom-Cook multiplication, multiplication as an exploitation
object in CPA-based SCA attacks, and the need for efficient
arithmetic to design a quantum cryptanalysis circuit. The
existing polynomial multiplication based on Toom-Cook is
straightforward to attack, as proved by prior research with
the Toom-Cook 4-way SCA attack. We created a multi-
plier with more schoolbook multiplier sub-operations and a
quantum multiplier that uses less space and time to change
the number of peaks in the CPA analysis. The Toom-Cook
8-way quantum multiplier has the lowest asymptotic perfor-
mance analysis when compared to the Naive schoolbook,
Karatsuba, and existent Toom-Cook-based multipliers. The
Toom-Cook 8-way multiplier employs numerous strategies
from earlier research, such as not using the division gate.
It achieves the best asymptotic performance analysis and
cost implementation to impact space and time efficiency.

This yields a qubit count of n( 158 )
log 15

(2 log 15−log 8) log8 n, or about
O(n1.245), and Toffoli counts and depths of 112nlog8 15 −

128n and n( 158 )
1− log 15

(2 log 15−log 8) log8 n ≈ n1.0569, respectively. The
increased likelihood of sub-multiplication iterations, which

will impact the analysis of SCA based on CPA, results from
the multiplication design’s greater efficiency. Thus, using a
multiplier in the PQC era depends on speed, efficiency, and
the prevention ofmultiplication-based attacks. In the classical
implementation, this multiplier design is expected to be a
constructor for a post-quantum algorithm that is mostly based
on lattices.
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