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ABSTRACT CUR decompositions are interpretable data analysis tools that express a data matrix in terms
of a small number of actual columns and/or actual rows of the data matrix. One bottleneck of existing
relative-error CUR algorithms lies on high computational complexity for computing important sampling
probabilities. In this paper, we provide a simple yet effective framework that considers energy-based
sampling algorithm. On one hand, we provide an intuitive and fast relative-error sampling algorithm for
column selection problem. On the other hand, by combining the relative-error sampling algorithm with
adaptive sampling algorithm we provide a novel CUR matrix approximation algorithms which is referred
to as energy-based adaptive sampling algorithm. The sampling algorithm is the first adaptive relative-error
CUR decomposition in the coherent sense. Specially, in each stage of our algorithm, we sample columns
or rows from data matrix using sampling probabilities that are directly proportional to Euclidean norms of
the columns or rows of the original data and residual matrix, respectively. Our empirical results exactly
indicate that the new adaptive sampling algorithm typically achieves a good balance between computational
complexity and approximate accuracy.

INDEX TERMS Randomized algorithm, CUR decomposition, subsampling, energy sampling.

I. INTRODUCTION
In modern data analysis applications, dealing with and
approximating large data matrices are common. Examples
of such data matrices include web images, web documents
and gene responses. The truncated singular value decompo-
sition (SVD) plays a fundamental role that provides the best
low-rank approximations of the original data matrices, with
respect to any unitarily invariant norm. In view of the dif-
ficulties of interpretation, there exists a great concern to find
and study matrix approximations that are explicitly expressed
in terms of a small number of actual rows or columns of the
original data matrices.

In this context, CUR decompositions are particularly inter-
esting, as they directly sample actual rows or columns of
matrices to form the random sample and preserve the inter-
pretability of the original data [1]. Therefore, the CUR
matrix decompositions have been extensively discussed in
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the theoretical computer science, the machine learning, and
the numerical linear algebra community [2], [3], [4], [5], [6],
[7]. The more applications of CUR decomposition include
modeling large-scale traffic networks, large-scale retrieval,
and compression sensing, and so on. Moreover, the related
studies have been extended to tensor CUR which can be
thought of as multi-dimensional generalizations of CUR
decompositions [8], [9], [10]. The computational complexity
of sampling probabilities and approximate accuracy are two
fundamental problems.

Given a data matrix A ∈ Rm×n, employing simple nonuni-
form sampling probabilities that depend on the Euclidean
norms of rows and/or columns of A itself, Drineas et al. [11],
[12], [13] proposed a CUR algorithm with additive-error
bound. An additive-error bound may be expressed as ∥A −
CUR∥F ≤ ∥A − Ak∥F + ϵ∥A∥F , where 0 < ϵ < 1, Ak
denotes the best rank-k approximation toA, and ∥A∥F denotes
the Frobenius norm of A (cf. Section II). Mitrovic et al. [14]
referred the algorithm as the energy sampling algorithm
since the square of Euclidean norm of a signal vector
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represents the total energy contained in the signal. Although
these methods also can be used to approximate matrix mul-
tiplication or compute low-rank approximations, none of
them addresses relative-error approximations aspects of this
approach. A relative-error bound may be expressed as ∥A −
CUR∥F ≤ (1+ ϵ)∥A− Ak∥F = ∥A− Ak∥F + ϵ∥A− Ak∥F .
Noting form ∥A − Ak∥F ≤ ∥A∥F that in general the scale
of the additive-error is somewhat larger, Drineas et al. [15]
devised a randomized CUR algorithm called the subspace
sampling algorithm which has relative-error bound by using
the statistical leverage scores, so the computational cost of
this algorithm is at least equal to the cost of the truncated
SVD of A.

The CUR matrix decomposition problem has a close con-
nection with the column selection problem. As pointed out
in Wang and Zhang [16], CUR is a harder problem than
column selection because ‘‘one can get good columns or
rows separately’’ does not mean that ‘‘one can get good
columns and rows together’’. Motivated by this problem,
Wang and Zhang [16] developed an adaptive sampling algo-
rithm for improving existing CUR. Combining the near-
optimal column selection algorithm of Boutsidis et al. [17]
and the adaptive sampling algorithm for solving the CUR
problem, Wang and Zhang [18] provided an algorithm with
a much tighter theoretical bound than existing algorithms.
However, under common scenarios, the algorithm becomes
less efficient when the column number c and row number
r are large [18]. On the other hand, U matrix in CUR
decomposition can be computed in different ways after con-
structing C and R. Wang et al. [19] provided a technique
for computing the U matrix more efficiently in CUR matrix
decomposition. Boutsidis and Woodruff [20] developed
relative-error CUR algorithms selecting the optimal number
of columns and rows, together with a matrix U with optimal
rank.

The above studies lead us to the following questions:
(1) Can simple energy sampling algorithm generate relative-
error approximation? (2) Can we achieve a good balance
between the computational complexity of sampling probabil-
ities and approximate accuracy?

In this paper we focus on how to efficiently construct high-
quality C and R matrices for CUR. We develop a simple
yet effective sampling algorithm which is the first adaptive
sampling in the coherent sense. Specifically, in each stage of
the energy adaptive sampling algorithm, we sample columns
or rows from data matrix with the same type of probabili-
ties that are directly proportional to Euclidean norms of the
columns or rows of the original data and residual matrix,
respectively. Meanwhile, we provide a new relative-error
bound theory for the adaptive CUR decomposition. Based on
the theoretical results, our main empirical contribution is to
provide an evaluation of the running time and approximation
errors of our adaptive sampling algorithm on several real data
sets. The empirical results indicate that the simple energy
adaptive sampling typically achieves low computational cost
with comparable accuracy.

The rest of this paper is organized as follows. Section III
introduces several existing column selection and CUR algo-
rithms. Section IV describes and analyzes our novel CUR
algorithm. Section V empirically compares our proposed
algorithm with two widely known algorithms.

II. NOTATION
For a vector a ∈ Rm, let ∥a∥2 denote the Euclidean norm
of a. For a matrix A ∈ Rm×n, let A(j), j = 1, . . . , n, denote
the jth column of A as a column vector, A(i), i = 1, . . . ,m,
denote the ith row of A as a row vector, and Aij denote the
(i, j)th element of A. For any orthogonal matrixU ∈ Rm×l , let
U⊥ ∈ Rm×(m−l) denote an orthogonal matrix whose columns
are an orthonormal basis spanning the subspace of Rm that is
orthogonal to the column space of U . Let the rank of A be
ρ ≤ min{m, n}. The SVD of A is denoted by

A =
ρ∑
i=1

σiuivTi = UA6AV T
A

= UAk6AkV
T
Ak + U

⊥
Ak6Ak⊥V

⊥T
Ak , (1)

where σi = σi(A) denotes the ith singular value, i = 1, . . . , ρ,
UAk ∈ Rm×k , 6Ak ∈ Rk×k , VAk ∈ Rn×k correspond to the
top k singular values, 6Ak⊥ ∈ R(ρ−k)×(ρ−k) is the diagonal
matrix containing the bottom ρ − k nonzero singular values
of A. Ak =

∑k
i=1 σiuivTi = UAk6kV T

Ak denotes the best rank-
k approximation to A, and σmax(A) and σmin(A) denote the
maximum and minimum singular values of A, respectively.
The condition number of A is κ(A) = σmax(A)/σmin(A). The
Moore-Penrose generalized inverse of Amay be expressed as
A+ = VA6

−1
A UT

A . The Frobenius norm of A is defined by

∥A∥F =
(∑m

i=1
∑n

j=1 A
2
ij

)1/2
.

Based on SVD, the statistical leverage scores of the
columns of A relative to the best rank-k approximation to A
are defined as

levj = ∥(V T
Ak )

(j)
∥
2
2, j = 1, . . . , n. (2)

The corresponding subspace sampling probabilities are
defined as

pj = levj/∥VAk∥
2
F = levj/k, j = 1, . . . , n. (3)

The simple energy-based sampling probabilities satisfy

pj = ∥A(j)∥22/∥A∥
2
F , j = 1, . . . , n. (4)

III. RELATED WORK
In Section III-A, we describe the subspace sampling algo-
rithms for column selection and CUR of Drineas et al. [15]
which will be used as a benchmark for comparison.
In Section III-B, we present an adaptive sampling algorithm
for CUR and its relative-error bound established byWang and
Zhang [18]. This algorithm is a building block of some more
powerful algorithms, and our novel CUR algorithm also relies
on this algorithm.
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A. THE SUBSPACE SAMPLING ALGORITHM
1) COLUMN SELECTION VIA SUBSPACE SAMPLING
ALGORITHM
Given a matrix A ∈ Rm×n, column selection is a problem of
selecting c columns of A to construct C ∈ Rm×c to minimize
∥A−CC+A∥F . There are a variety of column selection algo-
rithms achieving relative-error bounds in the literature [15],
[17], [21], [22]. We only present some results related to this
work.
Lemma 1 (The Subspace Sampling for Column Selection

[15]):Given a matrix A ∈ Rm×n, a target rank k ≪
min{m, n}, and the probabilities in (3), the subspace sampling
algorithm selects c = O(k2ϵ−2 log(1/δ)) with replacement to
construct C ∈ Rm×c. Then

∥A− CC+A∥F ≤ (1+ ϵ)∥A− Ak∥F

holds with probability at least 1− δ.

2) THE SUBSPACE SAMPLING ALGORITHM FOR CUR
Drineas et al. [15] proposed a two-stage randomized CUR
algorithm which has a relative-error bound with high prob-
ability (w.h.p.). In the first stage the algorithm samples c
columns of A to construct C , and in the second stage it
samples r rows from A and C simultaneously to construct
R andW and let U = W+. The sampling probabilities in the
two stages are proportional to the leverage scores of A and C ,
respectively. Here we show the main results of the subspace
sampling algorithm in the following lemma.
Lemma 2 (The Subspace Sampling for CUR [15]): Given

a matrix A ∈ Rm×n and a target rank k ≪ min{m, n}, the
subspace sampling algorithm selects c = O(k2ϵ−2 log(1/δ))
columns and r = O(c2ϵ−2 log(1/δ)) rows with replacement
to construct C ∈ Rm×c and R ∈ Rr×n. Then

∥A− CUR∥F = ∥A− CW+R∥F ≤ (1+ ϵ)∥A− Ak∥F

holds with probability at least 1 − δ, where W contains the
rows of C with scaling.

B. THE ADAPTIVE SAMPLING ALGORITHM
The relative-error adaptive sampling algorithm is originally
established in Theorem 2.1 of Deshpande et al. [21]. The
algorithm is based on the following idea: after selecting a
proportion of columns fromA to formC1 by an arbitrary algo-
rithm, the algorithm randomly samples additional c2 columns
according to the residual A− C1C

+

1 A. Wang and Zhang [18]
proved the following more general error bound for the same
adaptive sampling algorithm.
Lemma 3 (The Adaptive Sampling Algorithm [18]):

Given a matrix A ∈ Rm×n and a matrix C ∈ Rm×c such
that rank(C) = rank(CC+A) = ρ(ρ ≤ c ≤ n). We let
R1 ∈ Rr1×n consist of r1 rows of A, and define the residual
B = A − AR+1 R1. Additionally, for i = 1, . . . ,m, we define
pi = ∥B(i)∥22/∥B∥

2
F . We further sample r2 rows i.i.d. from

A, in each trial of which the i-th row is chosen with the
probabilities pi. Let R2 ∈ Rr2×n contain the r2 sampled rows

and let R = [RT1 ,RT2 ]
T
∈ R(r1+r2)×n. Then we have

E∥A− CC+AR+R∥2F ≤ ∥A− CC
+A∥2F

+∥A−AR+1 R1∥
2
F ,

where the expectation is taken w.r.t. R2.
Guaranteed by Lemma 3, any column selection algorithm

with relative-error bound can be applied to CUR approxima-
tion. We show the result in the following lemma.
Lemma 4 (The Adaptive Sampling for CUR [18]): Given

a matrix A ∈ Rm×n, a target rank k(≪ m, n), and a column
selection algorithm Acol which achieves relative-error upper
bound by selecting c ≥ f (k, ϵ) columns. By selecting
c ≥ f (k, ϵ) columns of A to construct C and r1 = c rows
to construct R1, both using the algorithm Acol , followed
by selecting additional r2 = c/ϵ rows using the adaptive
sampling algorithm to construct R2, the CUR matrix decom-
position achieves relative-error upper bound in expectation:

E∥A− CUR∥2F ≤ (1+ ϵ)∥A−Ak∥2F ,

where R = (RT1 ,RT2 )
T and U = C+AR+.

According to Lemma 4, Wang and Zhang [18] com-
bined the near-optimal column selection algorithm of
Boutsidis et al. [17] and the adaptive sampling algorithm for
solving the CUR problem, giving rise to an algorithm with a
much tighter theoretical bound than previous algorithms. The
analysis of this algorithm is given in Lemma 5.
Lemma 5 (A Special Adaptive Sampling for CUR [18]):

Given a matrix A ∈ Rm×n, a target rank k(≪ m, n), the CUR
algorithm described in Algorithm 2 of Wang and Zhang [18]
randomly selects c = 2k

ϵ
(1+ o(1)) columns of A to construct

C ∈ Rm×c, and then selects r = c
ϵ
(1 + ϵ) rows of A to

construct R ∈ Rr×n. Then we have

E∥A− CUR∥2F = E∥A− C(C+AR+)R∥2F
≤ (1+ ϵ)∥A−Ak∥2F .

Algorithm 1 Column Selection Algorithm via Energy-Based
Sampling

1: Input: a real matrix A ∈ Rm×n, target rank k , error parameter ϵ ∈ (0,
1], confidence parameter 1− δ ∈ [0, 1), target column number c = O(
τ2ϵ−2 log(1/δ)), where τ2 is given in Theorem 8 and m ≥ n (without
losing generality);

2: Compute energy sampling probabilities in (4);
3: Sampling c columns from A with the probabilities in (4) to construct
C ;
4: return C .

IV. MAIN RESULT
We first establish a novel relative-error bound theory for
energy sampling column selection algorithm in Section IV-
A. We then combine the energy sampling column selection
algorithm and the adaptive sampling algorithm for solving the
CUR problem in Section IV-B, giving rise to a new energy
sampling CUR algorithm with a low time complexity and
comparable accuracy.
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Algorithm 2 Adaptive CUR via Energy-Based Sampling
Algorithm

1: Input: a real matrix A ∈ Rm×n, target rank k , error parameter ϵ ∈ (0,
1], confidence parameter 1− δ ∈ [0, 1), target column number c = O(
τ2ϵ−2 log(1/δ)), target row number r = c

ϵ (1+ ϵ);
2: Stage 1: Select c columns of A to constructC ∈ Rm×c using Algorithm

1;
3: Stage 2: Select r rows of A to construct R ∈ Rr×n using the following

procedures:
4: Select r1 = c rows of A to construct R1 ∈ Rr1×n using Algorithm 1,
5: Residual matrix B← A− AR+1 R1,
6: Adaptively sample r2 = c/ϵ rows from A to construct R2 ∈ Rr2×n

according to the sampling probabilities pi = ∥B(i)∥22/∥B∥
2
F , i = 1,

. . . ,m;
7: return C,R = (RT1 ,RT2 )

T , and U = C+AR+.

A. COLUMN SELECTION VIA ENERGY SAMPLING
ALGORITHM
In this section, we first consider any probabilities that satisfy
the following conditions:

pj = ∥A
(j)
k ∥

2
2/∥Ak∥

2
F , j = 1, . . . , n, (5)

where Ak is the best rank-k approximation to A.
Theorem 6: (Approximate Energy Sampling for Column

Selection):Given a matrix A ∈ Rm×n and a target rank k ≪
min{m, n}, and the probabilities in (5), the energy sampling
algorithm selects c = O(τ 2ϵ−2 log(1/δ)) with replacement to
construct C ∈ Rm×c. Then

∥A− CC+A∥F ≤ (1+ ϵ)∥A− Ak∥F

holds with probability at least 1 − δ, where τ 2 = τ 2(Ak ) =
(
∑k

i=1 σ 2
i )(
∑k

i=1 σ−2i ).
Our main tools in the proofs of Theorem 6 are the use

of a novel matrix inequality and similar techniques as in
Drineas et al. [15]. We provide the complete proofs of Theo-
rem 6 in Appendix.
Remark 7: In Theorem 6, if κ(Ak ) = 1, then τ 2 =(∑k
i=1 σ 2

i

) (∑k
i=1 σ−2i

)
= k2, and hence we may obtain

the same condition on the chosen column number c as that
in the subspace sampling algorithm (cf. Lemma 1). It follows
from the submultiplicativity of Frobenius norm that k2 =
∥Ik∥2F = ∥6Ak6

−1
Ak ∥

2
F ≤ ∥6Ak∥

2
F∥6

−1
Ak ∥

2
F = τ 2. Thus,

in general energy sampling algorithm requires more columns
than subspace sampling algorithm to be chosen for the worst-
case bounds. Note that the energy sampling algorithm has the
same type of sampling probabilities as that in the adaptive
sampling stage. We will demonstrate in Section V that the
following energy-based adaptive CUR can provide very good
Frobenius norm reconstruction in real data analysis by sam-
pling a number of columns and/or rows that equals a small
constant, e.g., 2 or 3, times the rank parameter k .
It is easy to see that the sampling probabilities in (5)

require the calculation of SVD of A. The requirement may be
either unrealistic or inefficient. Fortunately, we have a natural
approach to deal with this problem. In fact, we may use the
energy sampling probabilities in (4) and obtain the following
theorem as a corollary of Theorem 6 in which k = ρ is set.

Theorem 8 (Energy Sampling for Column Selection):
Given a matrix A ∈ Rm×n, ρ = rank(A), ϵ ∈ (0, 1], and the
sampling probabilities in (4), the energy sampling algorithm
selects c = O(τ 2(A)ϵ−2 log(1/δ)) with replacement to con-
struct C ∈ Rm×c. Then

A = CC+A

holds with probability at least 1−δ, where τ 2(A) = τ 2(Aρ) =
(
∑ρ

i=1 σ 2
i )(
∑ρ

i=1 σ−2i ).

B. ADAPTIVE CUR VIA ENERGY SAMPLING ALGORITHM
In this section, we combine the energy sampling column
selection algorithm (Theorems 6 and 8) with the adaptive
sampling algorithm (Lemma 4) to the CUR problem, obtain-
ing effective and efficient CUR algorithm.
Theorem 9: ([Adaptive CUR With Approximate Energy

Sampling):Given a matrix A ∈ Rm×n, a target rank k(≪
m, n). By selecting c ≥ O(τ 2(Ak )ϵ−2 log(1/δ)) columns of
A to construct C and r1 = c rows to construct R1, both
using Algorithm 1, followed by selecting additional r2 = c/ϵ
rows using the adaptive sampling algorithm (Algorithm 2)
to construct R2, the CUR matrix decomposition achieves
relative-error upper bound:

∥A− CUR∥F ≤ (1+ ϵ)∥A−Ak∥F ,

holds with probability at least 1 − δ, where R = (RT1 ,RT2 )
T

and U = C+AR+.
Similar to Theorem 8, we may use Algorithm 2 and obtain

the following theorem as a corollary of Theorem 9 in which
k = ρ is set.
Theorem 10 (Adaptive CUR With Energy Sampling): Let

a matrix A ∈ Rm×n, ρ = rank(A), ϵ ∈ (0, 1]. By selecting
c ≥ O(τ 2(A)ϵ−2 log(1/δ)) columns of A to construct C and
r1 = c rows to constructR1, both usingAlgorithm 1, followed
by selecting additional r2 = c/ϵ rows using the adaptive
sampling algorithm (Algorithm 2) to construct R2, we have

A = CUR

holds with probability at least 1 − δ, where R = (RT1 ,RT2 )
T

and U = C+AR+.

V. EMPIRICAL COMPARISON
In Section V-A, we conduct empirical comparisons among
our energy sampling based adaptive CUR algorithm (Algo-
rithm 2) with the other two CUR algorithms introduced in
Section IV. We report the error ratio and the running time of
each algorithm on each data set. The error ratio is defined by

Error Ratio =
∥A− Ã∥F
∥A− Ak∥F

,

where Ã = CUR for theCURmatrix decomposition, Ak is the
best rank-k approximation and can be used as a relative-error.
Note that we only consider the running time of each algorithm
for constructing C and R, since the three CUR algorithms
used two different procedures for the computation of matrix
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TABLE 1. A summary of the data sets.

FIGURE 1. Empirical results on the Macaw data set (dense matrix); left panels: k = 10, c = ak , and r = ac; right panels: k = 50,
c = ak , and r = ac .

U after constructing C and R. In Section V-B we intuitively
demonstrate the true effectiveness of our method.

A. COMPARISON OF CUR ALGORITHM
In this section, we empirically compare our adaptive CUR
algorithm (Algorithm 2) with the adaptive CUR algorithm of
Wang and Zhang [18] and the subspace sampling algorithm
of Drineas et al. [15]. For the last two sampling algorithms,
we compute the sampling probabilities exactly via the trun-
cated SVD for the sake of saving time.

We conduct experiments on three datasets obtained from
the Internet, including two 2560 × 1600 natural images
with dense matrix structure and a set of biology data
with sparse matrix structure. Table 1 briefly summarizes
some information of the datasets. Arcene is from the UCI
datasets [23]. Arcene is a biology dataset with 900 instances
and 10000 attributes. Each dataset is actually represented as
a data matrix, upon which we apply the CUR algorithms.
We conduct the experiments on an iMac with Intel Core i5
3.1GHz CPUs, 8GB RAM, and macOS Sierra 10.12.6 sys-
tem. We implement the algorithms in R environment, and use
the R Spectra package function ‘svds’ for truncated SVD.

The parametric setup adopted here was essentially the
same as Wang and Zhang [18]. For each data set and each
algorithm, we set k = 10 or 50, and c = ak , r = ac, where a
ranges in each set of experiments. We repeat each of the three
randomized algorithms 10 times, and report the minimum
error ratio and the total elapsed time for constructing C and
R of the 10 rounds. We depict the error ratios and the elapsed
time of the three CUR matrix decomposition algorithms in
Figures 1, 2, and 3.
First of all, let us compare the three CUR algorithms

via examining their error ratio and running time under
dense matrix structure. The results in Figures 1-2 show
that the two adaptive CUR algorithms have much lower
error ratio than the subspace sampling algorithm in all
cases. Although our energy-based adaptive CUR algorithm
has slightly larger error ratio than the near-optimal col-
umn selection based adaptive CUR algorithm, the for-
mer is much more efficient for the approximation to such
dense image matrices. The experimental results show our
adaptive CUR algorithm exactly achieves a good bal-
ance between computational complexity and approximate
accuracy.
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FIGURE 2. Empirical results on the Owl data set (dense matrix); left panels: k = 10, c = ak , and r = ac; right panels: k = 50,
c = ak , and r = ac .

FIGURE 3. Empirical results on the Arcene data set (sparse matrix); left panels: k = 10, c = ak , and r = ac; right panels: k = 50,
c = ak , and r = ac .

In the following, let us compare the three CUR algorithms
via examining their error ratio and running time under sparse

matrix structure. It is seen from Figure 3 that the two adaptive
CUR algorithms again have much lower error ratio than the
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FIGURE 4. (a): the original image. (b) to (d): the different CUR decompositions with a = 1.5. (e) to (g): the different CUR decompositions with
a = 2.

subspace sampling algorithm. As for the running time, the
other two CUR algorithms are slightly more efficient than
our adaptive CUR algorithm in some cases. As pointed out
in Wang and Zhang [18], this is reasonable since each of
the other two CUR algorithms gains from sparsity of the
biology data matrix. Note that our adaptive CUR algorithm
grows linearly and is slightly more efficient than the other
two CUR algorithm under certain cases. Moreover, for the
sparse biology data matrix all the three CUR algorithm is
more efficient than the dense image data matrix.

B. COMPARISON OF IMAGE QUALITY
To intuitively demonstrate the effectiveness of our method,
we conduct a simple experiment on the 2560× 1600 Macaw
image discussed in Section V-A.We set target rank parameter
k = 50 and sample c = ak columns to form C and r = ac
rows to form R according to each of the three CUR algorithms
by varying a. We show the image Ã = CUR in Figure 4.
Figure 4(b), (c) and (d) are obtained by the subspace

sampling algorithm [15], the adaptive CUR algorithm of
Wang and Zhang [18] and our adaptive CUR algorithm in
Section IV, where a = 1.5. Obviously, the approximation

quality of the two adaptive sampling is much better than the
subspace sampling algorithm in this setting.

Figure 4(e), (f) and (g) are obtained by taking a = 2 and
using the three CUR algorithms respectively. The approxima-
tion quality is significantly improved. Moreover the approx-
imation quality of the two adaptive sampling is still slightly
better than the subspace sampling algorithm, and with low
computaional complexity, our adaptive CUR approximation
quality is nearly as good as that of Wang and Zhang [18].

VI. CONCLUSION
In this paper we have built a new relative-error bound
for the energy-based adaptive sampling algorithm. Accord-
ingly, we have devised novel CUR matrix decomposition
and approximation algorithms which possesses an elegant
balance between computational complexity and approxi-
mate accuracy. We have shown that our adaptive sam-
pling algorithm achieves relative-error upper bound by
using very simple sampling probabilities and the corre-
sponding adaptive sampling algorithm. Our proposed CUR
algorithm is scalable provided that matrix multiplication
can be highly efficiently executed. Finally, the empirical
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comparisons have also demonstrated the benefits of our
algorithm.

APPENDIX
PROOF
We provide the proofs of Theorem 6 in this paper in this
section. Our main tools in the proofs are the use of a matrix
inequality and several lemmas of general interest.
Lemma 11 (A Matrix Inequality): Let A ∈ Rρ×ρ be a

symmetric matrix, and 6 = diag(σ1, . . . , σρ) ∈ Rρ×ρ a
diagonal invertible matrix. Then

∥A∥F ≤ ∥6A6−1∥F , (6)

and the equality holds if and only if

|σ1| = · · · = |σρ |.

Proof: Recall that for any matrix D ∈ Rm×n,

∥D∥2F =
m∑
i=1

n∑
j=1

D2
ij,

and note that

6A6−1 =

 σ1σ
−1
1 A11 · · · σ1σ−1ρ A1ρ
...

. . .
...

σρσ−11 Aρ1 · · · σρσ−1ρ Aρρ

 .

Thus we have from the symmetry of A that

∥6A6−1∥2F =

ρ∑
i=1

ρ∑
j=1

σ 2
i σ−2j A2ij

=

ρ∑
i=1

A2ii +
∑
i̸=j

σ 2
i σ−2j A2ij

=

ρ∑
i=1

A2ii +
∑
i<j

(
σ 2
i

σ 2
j

+
σ 2
j

σ 2
i

)
A2ij

≥

ρ∑
i=1

A2ii +
∑
i<j

2A2ij

=

ρ∑
i=1

A2ii +
∑
i̸=j

A2ij

= ∥A∥2F ,

and the lemma follows.
Since our main algorithms will involve sampling columns

and/or rows from input matrices, we provide a brief review
of a sampling matrix formalism that was introduced in
Drineas et al. [15] and with respect to which our sampling
matrix operations may be conveniently expressed. First,
assume that c columns of A are chosen in c i.i.d. trials by
randomly sampling according to a probability distribution
{pi}ni=1, and assume that the it th column of A is chosen in
the tth (for t = 1, . . . , c) independent random trial. Then,
define a block sampling matrix S ∈ Rn×c to be a zero-one
matrix where Sit t = 1 and Sij = 0 otherwise, and define

the rescaling matrix D ∈ Rc×c to be the diagonal matrix
with Dtt = 1/

√
cpit , where pit is the probability of choosing

the it th column. Clearly, C = ASD is an m × c matrix
consisting of sampled and rescaled copies of the columns of
A, and R = (SD)TA = DT STA is a c × n matrix consisting
of sampled and rescaled copies of the rows of A. In certain
cases, we subscript S and D with C or R (e.g., C = ASCDC
and R = DTRS

T
R A) to make explicit that the corresponding

sampling and rescaling matrices are operating on the columns
or rows, respectively, of A.
For simplicity of notation in the proofs of the next several

lemmas, we let S = DST denote the rescaled row sampling
matrix. Let the rank of the matrix SUA = DSTUA be ρ̃, and
let its SVD be

SUA = USUA6SUAV
T
SUA ,

where ρ̃ ≤ ρ.
Lemma 12: Let ϵ ∈ (0, 1], e be the Euler’s number,

approximately equal to 2.71828, τ 2(A) =
(∑ρ

i=1 σ 2
i (A)

)(∑ρ
i=1 σ−2i (A)

)
, and define ϒ = (SUA)+ − (SUA)T . If the

sampling probabilities satisfy (4) and if r ≥ 36τe2/(αϵ2),
then with probability at least 1− 1/3e:

ρ̃ = ρ i.e., rank(SUA) = rank(UA) = rank(A), (7)

(SA)+ = VA6
−1
A (SUA)+, (8)

∥ϒ∥2 = ∥6SUA −6−1SUA∥2 ≤ ϵ/
√
2. (9)

Proof: To prove (7), note that for all i ∈ {1, . . . , ρ}

|1− σ 2
i (SUX )|
= |σi(UT

X UX )− σ 2
i (U

T
X S

TSUX )|
≤ ∥UT

X UX − U
T
X S

TSUX∥2 (10)

≤ ∥UT
X UX − U

T
X S

TSUX∥F (11)

≤ ∥6X

(
UT
X UX − U

T
X S

TSUX
)

6−1X ∥F (12)

= ∥VX6X

(
UT
X UX − U

T
X S

TSUX
)

6−1X ∥F (13)

= ∥XTUX6−1X − X
TSTSUX6−1X ∥F . (14)

Note that (10) follows from Corollary 8.1.6 of Golub and Van
Loan [24], (11) follows since ∥ · ∥2 ≤ ∥ · ∥F , (12) follows
from Lemma 19, and (13) follows since VX is a matrix with
orthogonal columns. To bound the error of approximating
∥XTUX6−1X ∥F by ∥XTSTSUX6−1X ∥F , we apply Theorem 6
in Drineas et al. [11]. Since the sampling probabilities pi
satisfy (4), it follows from Theorem 1 in Drineas et al. [11].
and by applying Markov’s inequality that with probability at
least 1− 1/3e:

∥XTUX6−1X − X
TSTSUX6−1X ∥F

≤ 3eE
[
∥XTUX6−1X − X

TSTSUX6−1X ∥F

]
≤

3e
√

αb
∥XT ∥F∥UX6−1X ∥F . (15)

By combining (14) and (15), recalling that τ =

∥6X∥F∥6
−1
X ∥F = ∥XT ∥F∥UX6−1X ∥F , and using the
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assumed choice of b, it follows that

|1− σ 2
i (SUX )| ≤ ϵ/2 ≤ 1/2

since ϵ ≤ 1. This implies that all singular values
of SUX are strictly positive, and thus that rank(SUX )=
rank(UX ) = rank(X ), which establishes the claim (7).

To prove the second claim, note that

(SX )+ = (SUX6XV T
X )
+

= (USUX6SUXV
T
SUX6XV T

X )
+

= VX (6SUXV
T
SUX6X )+UT

SUX . (16)

Notice that since ρ = ρ̃ with probability at least 1−1/3e, all
threematrices6SUX ,V

T
SUX , and6X are square ρ×ρ matrices

with full rank, and thus are invertible. In this case,

(6SUXV
T
SUX6X )+ = (6SUXV

T
SUX6X )−1

= 6−1X VSUX6−1SUX . (17)

By combining (16) and (17) we obtain that

(SX )+ = VX6−1X VSUX6−1SUXU
T
SUX

= VX6−1X (SUX )+,

which establishes the second claim (8).
To prove the third claim (9), we use the SVD of SUX and

note that

∥ϒ∥2

= ∥(SUX )+ − (SUX )T ∥2
= ∥(USUX6SUXV

T
SUX )

+
− (USUX6SUXV

T
SUX )

T
∥2

= ∥VSUX
(
6−1SUX −6SUX

)
UT
SUX ∥2

= ∥6−1SUX −6SUX ∥2,

which establishes the equality in (9). The last equality holds
since VSUX andUSUX are matrices with orthogonal columns.
Finally, to prove the inequality in (9), recall that under the
assumptions of the lemma ρ = ρ̃ with probability at least
1− 1/3e, and thus σi(SUX ) > 0 for all i ∈ {1, . . . , ρ}. Note
that

∥6−1SUX −6SUX ∥2

= max
i∈{1,...,ρ}

∣∣∣∣σi(SUX )− 1
σi(SUX )

∣∣∣∣
= max

i∈{1,...,ρ}

∣∣∣∣∣σ 2
i (SUX )− 1

σi(SUX )

∣∣∣∣∣ (18)

Using the fact that, by (10), for all i ∈ {1, . . . , ρ},

|1− σ 2
i (SUX )| ≤ ∥U

T
X UX − U

T
X S

TSUX∥2,

it follows that for all i ∈ {1, . . . , ρ}

1
σi(SUX )

≤
1√

1− ∥UT
X UX − U

T
X STSUX∥2

.

When these are combined with (18) it follows that

∥6−1SUX −6SUX ∥2

≤
∥UT

X UX − U
T
X STSUX∥2√

1− ∥UT
X UX − U

T
X STSUX∥2

.

Combining this with the Frobenius norm bound of (15), and
noticing that our choice for b guarantees that 1− ∥UT

X UX −
UT
X STSUX∥2 ≥ 1/2, concludes the proof of the inequality

in (9). This concludes the proof of the lemma.
The next lemma provides an approximate matrix multipli-

cation bound that is useful in the proof of Lemma 15.
Lemma 13: Let ϵ ∈ (0, 1], and τ be defined as in

Lemma 12. If the sampling probabilities satisfy (4) and if
b ≥ 36τe2/(αϵ2), then with probability at least 1− 1/3e:

∥UT
X S

TSU⊥X U
⊥T
X Y∥F ≤

ϵ

2
∥U⊥X U

⊥T
X Y∥F .

Proof: First, note that since UX is an orthogonal matrix
and since UT

X U
⊥
X = 0, we have that

∥UT
X S

TSU⊥X U
⊥T
X Y∥F

= ∥6−1X 6XUT
X S

TSU⊥X U
⊥T
X Y∥F

≤ ∥6−1X ∥F∥6XUT
X S

TSU⊥X U
⊥T
X Y∥F

= ∥6−1X ∥F∥6XUT
X U
⊥
X U
⊥T
X Y −6XUT

X S
TSU⊥X U

⊥T
X Y∥F

= ∥6−1X ∥F∥X
TU⊥X U

⊥T
X Y − XTSTSU⊥X U

⊥T
X Y∥F (19)

Since the sampling probabilities satisfy (4) and thus are
appropriate for bounding the right-hand side of (19). Thus,
it follows from Markov’s inequality and Theorem 6 in
Drineas et al. [11] that with probability at least 1− 1/3e:

∥UT
X S

TSU⊥X U
⊥T
X Y∥F

≤ 3eE∥UT
X S

TSU⊥X U
⊥T
X Y∥F

≤
3e
√

αb
∥6−1X ∥F∥X

T
∥F∥U⊥X U

⊥T
X Y∥F

=
3τe
√

αb
∥U⊥X U

⊥T
X Y∥F .

The lemma follows by the choice of b.
Lemma 14: With probability at least 1− 1/3e:

∥SU⊥X U
⊥T
X Y∥F ≤

√
3e∥U⊥X U

⊥T
X Y∥F .

Proof: Let Q = U⊥X U
⊥T
X Y , and let i1, i2, . . . , ib be the b

rows of Q that were included in SQ = DSTQ. Clearly,

E
[
∥SU⊥X U

⊥T
X Y∥2F

]
= E

[
∥DSTQ∥2F

]
=

b∑
t=1

M∑
i=1

pi
∥Q[i]∥

2
F

bpi
= ∥Q∥2F .

The lemma follows by applying Markov’s inequality and
taking the square root of both sides of the resulting inequality.
Lemma 15: Suppose X ∈ Rn×p has rank ρ, Y ∈ Rn×q. Let

Z = min
2∈Rp×q

∥Y − X2∥F = ∥Y − X2̂∥F ,

where 2̂ = X+Y , let us run Algorithm 1 with the sampling
probabilities{pi}Ni=1 of the form (4) and assume the algo-
rithm returns as output a p × q vector 2̃ = (SX )+SY , let
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ϵ ∈ (0, 1], and let τ =
(∑ρ

i=1 σ 2
i (X )

) (∑ρ
i=1 σ−2i (X )

)
.

If b = O
(
τϵ−2 ln(1/δ)

)
rows are chosen with Algorithm 1,

then with probability at least 1− δ:

∥Y − X2̃∥F ≤ (1+ ϵ)Z. (20)

Proof: We provide a bound for ∥Y − X2̃∥F in terms
of Z , thus proving (20). First, we prove the claim (a): if
b = 324τe2/(2ϵ2) rows are chosen with the algorithm, then
equation (20) holds with probability at least 1− 1/e.

For the moment, let us assume that b = 36τe2/(2ϵ2),
in which case the assumption on b is satisfied for each of
Lemma 12, Lemma 13, and Lemma 14. Thus, the claims of
all three lemmas hold simultaneously with probability at least
1− 3(1/3e) = 1− 1/e, and so let us condition on this event.

First, we have that

Y − X2̃ = Y − X (SX )+SY

= Y − UX (SUX )+SY (21)

= Y − UX (SUX )+SUXUT
X Y

− UX (SUX )+SU⊥X U
⊥T
X Y (22)

= U⊥X U
⊥T
X Y − UX (SUX )+SU⊥X U

⊥T
X Y . (23)

Equation (21) follows from (8) of Lemma 12, (22) follows
by inserting UXUT

X + U
⊥
X U
⊥T
X = In, and (23) follows since

(SUX )+SUX = Iρ by Lemma 12.
By taking the Frobenius norm of both sides of (23),

by using the triangle inequality, and recalling that ϒ =

(SUX )+ − (SUX )T , we have that

∥Y − X2̃∥F

≤ ∥U⊥X U
⊥T
X Y∥F + ∥UX (SUX )TSU⊥X U

⊥T
X Y∥F

+∥UX�SU⊥X U
⊥T
X Y∥F

≤ ∥U⊥X U
⊥T
X Y∥F + ∥UT

X S
TSU⊥X U

⊥T
X Y∥F

+∥ϒ∥2∥SU⊥X U
⊥T
X Y∥F (24)

where (24) follows by submultiplicativity and since UX has
orthogonal columns. By combining (24) with the bounds
provided by Lemmas 12, 13, and 14, it follows that

∥Y − X2̃∥F ≤ (1+ ϵ/2+
√
3eϵ/
√
2)Z

≤ (1+ 3ϵ)Z.

Equation (20) follows with probability at least 1 − 1/e by
setting ϵ′ = ϵ/9 and using the value of b = 324τe2/(αϵ2).
The claim (a) now can be boosted to hold with probability at
least 1 − δ using standard methods. In particular, consider
the following: run the algorithm with b = 324τe2/(αϵ2)
independently ln(1/δ) times, and return a Z̃ such that the Z̃
is smallest. Then, since in each trial the claim (a) fails with
probability less than 1/e, the claim (a) will fail for every trial
with probability less than (1/e)ln(1/δ) = δ. This establishes
equation (20).

The Proofs of Theorem 6.
Since for every set of columns C = ASCDC , 2̂ = C+A is

the matrix that minimizes ∥A− C2∥F , it follows that

∥A− CC+A∥F
= ∥A− (ASCDC )(ASCDC )+A∥F
≤ ∥A− (ASCDC )(AkSCDC )+Ak∥F . (25)

To bound (25), consider the problem of approximating the
solution to min2∈Rm×m ∥A − 2Ak∥F by randomly sampling
columns of Ak and of A. It follows as a corollary of Lemma 15
that

∥A− (ASCDC )(AkSCDC )+Ak∥F
≤ (1+ ϵ)∥A− AA+k Ak∥F
≤ (1+ ϵ)∥A− Ak∥F

which establishes the theorem by combining (25).
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