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ABSTRACT Work in the development of neural incremental text-to-speech (iTTS), which is attracting
increasing attention, has recently pursued low-latency processing by generating speech on the fly before
reading complete sentences. Most current state-of-the-art iTTS systems use a prefix-to-prefix neural iTTS
framework with look-ahead of 1-2 unit segments (i.e., phonemes or words). However, since the Japanese
language is based on accent phrase units that are longer than words, using a prefix-to-prefix neural iTTS
with a look-ahead approach increases latency. Here, we propose an alternative to the end-to-end neural iTTS
architecture that does not apply look-ahead input when synthesizing speech chunks. We further propose a
method to use information from the previous time step by connecting the synthesized vector and the model’s
internal state to the current time step. We experimentally investigated the latency of various iTTS systems
with different modeling and synthesis chunks. The experimental results show that, for Japanese, the proposed
iTTS is able to synthesize better speech quality, with a similar latency range, than the conventional baseline
prefix-to-prefix neural iTTS with word units. Moreover, we found that our proposed approach improved
the prosodic naturalness among synthesized units in the Japanese language. Subjective evaluations also
revealed that the proposed approach with an incremental unit of two accent phrases achieved the best scores
in Japanese iTTS systems.

INDEX TERMS Incremental speech synthesis, end-to-end, Japanese language, accent phrase unit.

I. INTRODUCTION
Speech-to-speech translation (S2ST) is an innovative tech-
nology that translates speech signals from a source language
to another language, enabling people of different languages
to communicate in their native tongues. S2ST systems
commonly consist of three components [1]: automatic speech
recognition (ASR), machine translation (MT), and text-to-
speech (TTS) synthesis. In operation, such a system first
recognizes the source language speech as a source language
text, automatically translates this into a target language text,
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and finally synthesizes the target language speech by TTS.
In conventional systems, the process is done sentence by
sentence. Conventional S2STs produce translated speech
with significant latency for the longer speech segments of
lectures and meetings, thus creating difficulty for listeners
who are struggling to follow the speaker’s talk or an ongoing
conversation.

In contrast to conventional S2ST systems, human
interpreters generally break sentences into smaller chunks
and incrementally translate them based on partial infor-
mation with minimum latency [2]. Researchers have
recently started to develop incremental speech-to-speech
translation/interpretation systems toward a simultaneous
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interpretation process for humans. One critical difference
from standard S2ST systems is that, in an incremental
approach, each component (ASR, MT, TTS) needs to
generate on-the-fly output before it receives a com-
plete sentence. In this paper, we focus on incremental
TTS (iTTS).

End-to-end TTS systems [3], [4], [5], [6], [7] have been
proposed based on sequence-to-sequence modeling. Unlike
parametric TTS systems [8], [9], [10], the neural end-to-
end architecture simplifies models so that the neural network
directly maps input features to speech outputs or acoustic
feature outputs. Developments of neural vocoders [11], [12],
[13], [14], [15], [16] to reconstruct speech from acoustic
features or a noise sequence have also made remarkable
progress. Therefore, the speech quality of the end-to-end
architecture has reached the level of human speech [4].

Hidden Markov models (HMMs) have previously been
applied to iTTS [17], [18], [19], [20]. Taking into account
the performance improvement by end-to-end TTS systems,
sequence-to-sequence modeling has also been applied to
iTTS recently [21], [22], [23], [24], [25], [26]. In English,
a prefix-to-prefix framework [22] was proposed that allows
waits for look-ahead of 1-2 words in iTTS. Although this
prefix-to-prefix iTTS used phoneme sequences as input and
produced good speech quality, it could not automatically
control the look-ahead length. Another work [24] proposed a
prefix-to-prefix iTTS with reinforcement learning to control
the tradeoff between look-ahead words and speech quality.
Other research [23] analyzed the look-ahead effects in a
prefix-to-prefix iTTS and found that the look-ahead word
length significantly affected quality. From this analysis,
Stephenson et al. [25] proposed a method that predicts look-
ahead text using a language model. A similar method [26]
was then also proposed. These related works [22], [23], [24],
[25], [26] use phoneme sequences as input features and word
units for a synthesis chunk.

In a Japanese iTTS, based on the HMM framework [20],
the input features are sequences of phonemes and the
linguistic features of accent phrase units. Since accent phrases
are longer than a word, a word-based, prefix-to-prefix neural
network cannot be simply applied to a Japanese iTTS. When
we apply the prefix-to-prefix neural network to Japanese, the
look-ahead length is 1-2 accent phrases. Using 1-2 accent
phrases with the look-ahead approach does not produce an
unacceptable latency. We previously presented a preliminary
result of a neural Japanese iTTS system [21] that uses
accent phrases and phonemes without a look-ahead approach.
This paper is an extended version with newer modeling,
a deeper analysis of the synthesis unit, and comparisons
of latency and quality with those of the related works.
Furthermore, we propose an additional method, using various
accent features in addition to accent phrases, and use Parallel
WaveGan [15] and Tacotron2 [4] to improve speech quality.
For the Japanese baseline prefix-to-prefix iTTS, we use a
morpheme unit as the synthesis chunk to minimize latency
and then compare it to our proposed approaches. The latency

and quality of the proposed iTTS are analyzed and then
compared to the results of prefix-to-prefix iTTS.

II. JAPANESE iTTS INPUTS
Japanese is a pitch-accent aspect language. Its accent of
each mora, which indicates the relative pitch change in the
accent phrase, plays an important role in prosody, which
resembles tone types in tonal languages [27]. One mora
is approximately equivalent to one hiragana character. The
Japanese word ‘‘ha shi’’ can mean either a bridge or a pair of
chopsticks. If the pitch changes from high to low, it means a
bridge; if the pitch changes from low to high, it means a pair
of chopsticks. Such pitch information is represented not in
words or phonemes but in accent phrase units, which have one
accent type that changes a pitch from high to low. An accent
phrase has only one accent type, and the type depends on the
context. Accent type is critical for representing the meaning
in a given context, although it does not represent a phoneme
sequence. A Japanese TTS needs another input for the accent
phrase.

Fig. 1 shows a converting process from a surface text
to inputs: a phoneme and an accent type in the accent
phrase. The Japanese surface text has no word boundary,
such as a space character in English, and a morpheme
unit is useful to obtain the phoneme and the accent type.
Consequently, morpheme analysis detects morphemes in the
text, and each morpheme includes pronunciation, a part-of-
speech tag, and accent information for constructing the accent
type. To obtain features for an accent phrase, morpheme units
are reconstructed bymora units. Pronunciations are converted
to a sequence of phonemes with a pronunciation dictionary.
Furthermore, the accent phrase boundary is detected by
the part-of-speech tags, and the accent type of the accent
phrase is obtained from rules with part-of-speech and accent
information of the mora unit. Finally, phonemes and accent
types are used as inputs for the Japanese TTS, and using
features in the accent phrase for Japanese end-to-end TTS
systems is known to improve speech quality [28], [29], [30].

Features of the accent phrase are assigned to each phoneme
and defined on the mora unit. Therefore, the same feature of
the accent phrase will be assigned to each phoneme. Fig. 2
shows accent phrase features of ‘‘kyo o wa’’ (‘‘Today is’’) on
mora units in the accent phrase. We use five features in the
accent phrases. A1 is the difference between the position of
the phoneme in mora units and the positions of the accent
type. For example, A1 of the phoneme ‘‘o’’ in the second
mora unit is 1 because the difference between the position
of the phoneme ‘‘o’’ in the mora unit and the mora’s position
of the accent type is 2 − 1 = 1. We expect A1 to increase
the number of features related to the accent type and mora
units. A2 and A3 are the forward and backward positions of
the mora in the accent phrase, that is, A2 of the phoneme ‘‘o’’
in the second mora unit is 2, and A3 of the phoneme ‘‘o’’ in
the second mora unit is also 2. A4 is the number of moras
in the accent phrase, and A5 is the accent type of the accent
phrase.
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FIGURE 1. Flowchart of extracting Japanese TTS inputs.

FIGURE 2. Japanese accent features in an accent phrase.

III. METHODS
This paper deals with neural TTS, which consists of two
steps: a neural encoder-decoder model to infer acoustic
features from input sequences and a neural vocoder to
synthesize speech from acoustic features.

The baseline prefix-to-prefix iTTS uses a word unit as the
synthesis unit [22]. As described in Section II, a morpheme
unit is useful in obtaining inputs for Japanese TTS systems.
In later experiments, the Japanese baseline prefix-to-prefix
iTTS used morpheme units as the synthesis chunk instead of
word units.

A. SENTENCE-BASED TTS
A sentence-based TTS processes a text sentence by sentence,
that is, a synthesis chunk is a full sentence. A full sentence
containing N words is represented with a sequence of words
x1:N = [x1, . . . , xN ], where the word xt = [x1t , . . . , x

st
t ]

includes an input sequence of phonemes with a length st .
The encoder transforms the input sequence into another

feature sequence as hidden states h1:N = Enc(x1:N ) =

[h1, . . . ,hN ] = [h11, . . . ,h
s1
1 , . . . ,h1N , . . . ,hsNN ], where

Enc(·) represents the encoder’s process.
After getting the encoder’s hidden states, the decoder infers

acoustic features. The chunk of acoustic features for the word
yt = [y1t , y

2
t , . . .] is estimated by h1:N and y<t , where y<t =

[y1, . . . , yt−1] are sequences of acoustic features until the
previous words.More specifically, the i-th frame for anyword

is as follows:

yit = Dec(h1:N , y<t ◦ yt,<i), (1)

where Dec(·) denotes the decoder’s process, yt,<i =

[y1t , . . . , y
i−1
t ], and ◦ is the concatenation of two sequences.

Finally, the sentence’s speech waveform w1:N = [w1, . . . ,

wN ] = [w1
1,w

2
1, . . . , ] is as follows:

w1:N = φ(y1:N ), (2)

where φ(·) represents the neural vocoder’s process, y1:N are
acoustic features of the full-sentence.

B. WORD-BASED iTTS
Unlike sentence-based TTS, iTTS uses a partial synthesis
chunk instead of the full sentence. We use a prefix-to-
prefix iTTS as a baseline, where the synthesis chunk is one
word (top table in Fig. 3). The prefix-to-prefix iTTS uses
a look-ahead approach to account for the following speech
changes. The look-ahead approach waits for k words before
the encoder process. The look-ahead length is determined by
the following function:

g(t) = min{t + k, |x1:N |}, (3)

where |x1:N | indicates the total number of words in the
sentence.

Under the condition of the look-ahead approach, the
sequence of hidden states for the word is represented by
h1:g(t) = Enc(x1:g(t)) = [h1, . . . ,hg(t)]. In other words, the
sequence of hidden states is conditioned by the g(t) words.
Therefore, the i-th acoustic feature for the word and the
speech waveform of the word are as follows:

yit = Dec(h1:g(t), y<t ◦ yt,<i), (4)

wt = φ(yt ). (5)

C. PROPOSED ACCENT-PHRASE-BASED iTTS
As described earlier, an accent phrase is important for
representing Japanese intonation and meaning. Therefore,
we propose Japanese iTTS on the basis of the accent phrase as
the synthesis chunk. In contrast to subsection III-B, the full
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FIGURE 3. Synthesis chunks and their elements for a sentence-based TTS, a prefix-to-prefix iTTS, and the
proposed accent-phrase-based iTTS.

sentence containing M accent phrases is represented with a
sequence of the accent phrase x′

1:M = [x′

1, . . . , x
′
M ], where

the accent phrase x′
t = [x′1

t , . . . , x′rt
t ] includes an input

sequence of phonemeswith length rt and a sequence of accent
features (bottom table in Fig. 3). We propose two methods to
estimate acoustic features for the accent phrase.

The first method is dec+in. The encoder’s hidden states of
the accent phrase are observed:

h′
t = Enc(x′

t ) = [h′1
t , . . . ,h′rt

t ]. (6)

Acoustic features in the accent phrase y′
t = [y′1

t , y′2
t , . . .] are

estimated by h′
t and the last acoustic feature for the previous

accent phrase y′p
t−1. The i-th acoustic feature for the accent

phrase is the following:

y′i
t = Dec(h′

t , y
′p
t−1 ◦ y′

t,<i), (7)

where y′
t,<i = [y′1

t , y′2
t , . . . , y′i−1

t ]. The h′
t does not use the

hidden vectors in the previous accent phrase x′

t−1.
Fig. 4 (a) shows how dec+in functions in the Japanese

iTTS system. The first accent phrase starts from the beginning
of the sentence, and other accent phrases start from its middle.
We set the initial decoder’s inputs as the Mel spectrogram’s
last frame from the previous accent phrase.

The secondmethod, dec+in+hidden, connects not only the
last acoustic feature but also the previous states of the model
to the current states of the model (Fig. 4 (b)). Therefore,
the encoder’s hidden states and the acoustic feature are as
follows:

h′
t = Enc(x′

1:t−1 ◦ x′
t ), (8)

y′i
t = Dec(h′

t , y
′
<t ◦ y′

t,<i), (9)

where y′
<t = [y′

1, . . . , y
′

t−1].
y′p
t−1 in (7) and y′

<t in (9) are different due to encoding
processes in (6) and (8). In using the second method,

we expect it to learn not only the acoustic feature time-series
but also the model’s internal state change.

Finally, the speech waveform of the accent phrase is the
following:

wt = φ(y′
t ). (10)

IV. EXPERIMENT
A. EXPERIMENTAL CONDITIONS
1) DATASET AND MODELS
We used the JSUT dataset (version 1.1), which has 7,696
sentences (10 hours of audio sampled at 48-kHz, which
we down-sampled to 22.05-kHz) spoken by a single native
female speaker [31]. The data were divided into 7,196 pairs
(speech and input sequences) for training, 250 pairs for the
development set, and 250 pairs for the test set. We used Open
Jtalk1 for extracting the phoneme and accent features from
the text and files with speech duration.2 We used a Geforce
RTX TITAN with a memory of 24 gigabytes.

The acoustic features were extracted by Fourier transform,
and our final set was composed of 80 dimensions of log
Mel spectrogram features. The size of the Fourier transform
was 2,048 points. The frameshift and frame lengths were
10 and 50 milliseconds, respectively. We used Tacotron2 [4]
to estimate acoustic features from inputs, and a Parallel
WaveGan [15] to reconstruct speech from the acoustic
features. Unlike the original Tacotron2, we used a uni-
directional LSTM to connect hidden states of the model
and Forward Attention with Transit Agent [32] to quickly
converge the attention. We used an Adam [33] optimizer with
a 32-batch size. The learning rate was 1e-3.

We used the prefix-to-prefix model as a baseline
iTTS. The input feature is a phoneme sequence (Pho).

1Open Jtalk – http://open-jtalk.sourceforge.net/
2https://github.com/r9y9/jsut-lab
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FIGURE 4. Proposed approaches to Japanese iTTS.

To accommodate such pitch information, we used two
input types of Japanese iTTS to improve speech quality.
Pho+AccType uses phonemes and only accent types (A5)
in accent phrases. We used two embedding layers for the
phonemes and the accent types. Then we concatenated two
embedding outputs as single input. Pho+AccFeats uses
phonemes and both accent types (A5) and many accent
features (A1, A2, A3, and A4) in the accent phrases. We used
six embedding layers for the phonemes and many accent
features and concatenated the embedding outputs as one
input. Table 1 shows the size of each embedding layer in
our experiment. The first column indicates input features,
and the second indicates the size of each embedding layer.
We replaced low-frequency input features with an unknown
symbol using a threshold to deal with unknown inputs.
In Japanese iTTS, the vocabulary size is increased by two
due to the special characters that indicate the middle.

Baseline TTS and iTTS systems were trained in sentence-
based units. The speech was synthesized using each synthesis
chunk by adding location symbols to differentiate the unit’s

TABLE 1. Input feature types and embedding dimensions.

location: <s> is the sentence’s start and </s> is the
sentence’s end. The terminating process of the decoder differs
in each model. The decoding process in the TTS is controlled
by the stop flag [4]. The iTTS uses the stop flag and
the alignment distribution to stop the decoder in order to
synthesize Mel spectrogram frames [22].
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On the other hand, our proposed method was trained
on the accent-phrase-based units, and the decoding process
was controlled only by the stop flag. The speech was
synthesized using the accent phrase by adding location
symbols to differentiate the unit’s location: <s>, </s>,
<m> is the middle sentence’s start, and </m> is the
middle sentence’s end. When we used dec+in, we connected
only the Mel spectrogram to each synthesis chunk. When
we used dec+in+hidden, we connected not only the Mel
spectrogram but also the RNN hidden states on each synthesis
chunk.

2) EVALUATION INDEXES
We used natural speech as a reference in our objective
evaluation of speech quality. Then, we synthesized the speech
using various iTTS systems. We calculated a perceptual-
based measure in terms of the fundamental frequency (F0)
between natural speech and synthesized speech as follows:

Cf0 =
1
T

T∑
t=1

1200log2
|f tar0 (t)|

|f src0 (t)|
, (11)

where f tar0 is F0 of natural speech, f src0 is F0 of syn-
thesized speech, and 1200 cents represents a difference
of 1-octave [18]. We also calculated the accuracy of the
estimated spectrum usingMel cepstrum distortion [34] in dB,
defined as follows:

MCD =
1
T

10
ln(10)

T∑
t=1

√√√√2
D∑
d=1

(ydt − ŷdt )2, (12)

where t and d are the number of frames and theMel cepstrum
dimensions, respectively. y is a Mel cepstrum component of
natural speech, ŷ is aMel cepstrum component of synthesized
speech.

In our subjective evaluation of speech quality, we calcu-
lated amean opinion score (MOS) test [35] for the naturalness
of changing lengths of incremental units. Subjects listened
to each presented bit of speech audio and rated the overall
quality based on its naturalness. We used a 5-point MOS
scale, where 5 indicated excellent speech utterances (very
clear and completely natural) and 1 indicated bad speech
utterances (unclear and completely unnatural). We conducted
subjective evaluations in Japanese with 13 native speakers.
Synthesized speech samples were evaluated from 10 speech
utterances per model.

To analyze latency, we used a re-speaking system that
synthesized the same speech after playing natural speech
with each chunk. We measured the latency time from
starting an input sequence to finishing each bit of synthesis
speech. Then we calculated the frequency of latency in each
model.

B. OBJECTIVE EVALUATION OF METHODS
As described above, we used two types of input features
in Fig. 2 and a proposed approach that uses the previous

FIGURE 5. Relationship between latency and its frequency. The top figure
is (1-2): baseline prefix-to-prefix iTTS with one morphoneme+look-1
(black: average latency of 0.464 seconds) and (3-3): iTTS with one accent
phrase as a synthesis chunk (red: average latency of 0.655 seconds). The
middle figure is (1-3): baseline prefix-to-prefix iTTS with one
morphoneme+look-2 (gray: average latency of 0.572 seconds) and
(3-4): iTTS with two accent phrases as a synthesis chunk (yellow: average
latency of 1.20 seconds). The bottom figure is (1-4):prefix-to-prefix iTTS
with one morphoneme+look-3 (green: average latency of 0.667 seconds).

decoder’s input and hidden states of a model. In this
section, we evaluate the differences in the input types and
the effectiveness of the models. The iTTS’s speech quality
is objectively evaluated for the differences in input and
method.

Table 2 shows the results of the objective evaluations
with methods, input features, models, and synthesis chunks.
We made four observations regarding the Japanese iTTS.
First, the objective evaluation in F0 and MCD demonstrated
that the proposed iTTS system approaches the sentence-
based TTS (see (3-1) vs. (3-3) or (3-1) vs. (3-4)). Second,
the proposed Japanese iTTS systems with dec+in+hidden
are more efficient than word-based iTTS systems that
we reimplemented ourselves. Third, regarding the different
input types in the accent phrase, Pho+AccFeats is more
efficient than Pho+AccType. Finally, our proposed method
dec+in+hidden is better than dec+in, that is, using a large
amount of previous information is efficient.

C. OBJECTIVE EVALUATION OF RELATIONSHIP BETWEEN
SPEECH QUALITY AND LATENCY
An accent phrase is longer than a morpheme. Therefore,
we must compare the latency of the baseline iTTS and our
proposed iTTS before subjectively evaluating our proposed
method. We analyzed the latency of the iTTS models with
five methods: (1-2), (1-3), (1-4), (3-3), and (3-4).

Fig. 5 shows latencies and their frequencies. The latencies
of the proposed iTTS were 0.655 seconds with one accent
phrase and 1.20 seconds with two accent phrases. While the
latencies of the baseline methods are 0.572 seconds with
look-ahead of two morphemes and 0.667 seconds with look-
ahead of three morphemes. The latency of the proposed
methodwith one accent phrase is slightly slower but has lower
F0 error and MCD.
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TABLE 2. Objective evaluations of proposed methods. Note that full sentence in a column of the synthesis chunk means a sentence unit as the synthesis
chunk, 1 morpheme+look-k means one morpheme as the synthesis chunk with a look-ahead of k length, and 1 accent phrase and 2 accent phrases mean
one accent phrase as the synthesis chunk and two accent phrases as the synthesis chunk.

FIGURE 6. Relationship between MOS and its average latency. Note that
MOS score of (1-0) is 1.14, (1-2) is 2.78, (1-3) is 2.83, (3-1) is 4.47, (3-3) is
3.45, and (3-4) is 3.87.

D. SUBJECTIVE EVALUATION OF NATURALNESS
Next, we conducted a MOS test as a subjective evaluation
of naturalness under six experimental conditions: a baseline
iTTS with one morpheme as a synthesis chunk and no look-
ahead approach (1-0), a baseline prefix-to-prefix iTTS with
one morpheme as a synthesis chunk and a look-ahead-1 (1-
2), a baseline prefix-to-prefix iTTS with one morpheme as a
synthesis chunk and a look-ahead-2 (1-3), a topline TTS (3-
1), our proposed iTTS with one accent phrase as a synthesis
chunk (3-3), and our proposed iTTS with two accent phrases
as a synthesis chunk (3-4). Method (1-0) used one morpheme
as a short sentence with the baseline TTS model.

The subjective evaluation results and each average latency
are shown in Fig. 6. The baseline iTTS that utilized each
morpheme as a short sentence showed a lower quality than
the baseline prefix-to-prefix iTTS systems, since that model
did not use look-ahead inputs [22]. The best model was
the topline TTS with all phonemes and accent features in
the sentence; the latency was 4.63 seconds and longer than

the others. Although the objective results showed that the
proposed iTTS system approached the level of the topline
TTS, the subjective results of the proposed iTTS showed
room for improvement. The intonation between accent
phrases might attract strong attention from the evaluators,
or the Japanese iTTS systemmight needmore comprehensive
information.

iTTS systems with accent phrases showed better quality
than baseline iTTS systems. Furthermore, a statistical sig-
nificance test was conducted between the baseline prefix-to-
prefix iTTS with look-ahead-2 and each proposed Japanese
iTTS, and a significant difference was confirmed (p<0.001).

V. CONCLUSION
This paper proposed a novel Japanese end-to-end neural iTTS
architecture using an accent phrase unit. We presented a
method to connect the initial input by considering the acoustic
time-series well as a method to connect the model’s internal
state. Moreover, we used two types of input features for
the accent phrase unit. We experimentally investigated the
latency of various iTTS systems with different modeling and
synthesis chunks.

We objectively evaluated the speech quality regarding the
differences in input and method. The objective evaluation in
F0 and MCD demonstrate that the proposed iTTS system
approaches the sentence-based TTS, while the MOS score
of the proposed iTTS is still lower. The proposed Japanese
iTTS systems using the previous initial input and the previous
model’s internal state are more efficient than word-based
iTTS systems. The speech quality is improved by using
many features in the accent phrase unit for inputs. Moreover,
using a large amount of previous information is also
efficient.

Futhermore, we also subjectively evaluated speech quality.
Our results reveal that the proposed method with one accent
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phrase had better MOS scores, with a similar latency range
between the baseline with look-ahead of two morphemes and
the baseline with look-ahead of three morphemes. A method
with two accent phrases improved speech quality, although
the latency is slightly longer than in a baseline with a two-
morpheme look-ahead approach.
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