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ABSTRACT Taking the gear assembly of the reducer assembly line as a research background, the
hole-finding strategy for robot assembly with keyed circular pegs is proposed to solve the problem of
low hole-finding efficiency and success rate. in the circular hole-finding task, deviation domains were
divided based on a static mechanism, position vector trajectory optimization in the step distance and
direction was designed, and a deviation domain-force mapping relationship was established using a genetic
algorithm-support vector machine (GA-SVM) classification algorithm; the accuracy of this algorithm is
approximately 90.00%. Thirty groups completed the circular hole-finding task in an average time of 5.4 s.
For the square hole-finding task, dual monocular cameras were integrated to identify corner points of the
flat key and keyway. Image semantic segmentation based on deep learning was used for the corner-point
recognition of the flat key to suppress the effect of changes in light intensity; the recognition has an average
error of 0.39mm. Coarse and fine adjustment circumferential deflection strategies were adopted sequentially.
The 30 groups of square hole-finding tasks exhibited a 96.70% success rate in an average time of 10.2 s. The
proposed hole-finding strategy improves the efficiency and success rate of the gear assembly.

INDEX TERMS Keyed circular peg, learning-based robot hole finding, support vector machine, image
semantic segmentation based on deep learning, genetic algorithm.

I. INTRODUCTION
Gears are widely used in mechanical components. The gear
assembly is used in industrial robots as an alternative to
manual labor. Overcoming robot end positioning errors and
improving the efficiency and success rate of hole finding have
become a challenge.

The existing research work on robot hole finding is divided
into passive and active hole finding. The former is achieved
by adding passive flexible actuators to the robot’s end and
by performing a ‘‘blind search’’ for the hole location using
Archimedean spirals and grating-type trajectories [1], [2], [3].
However, this approach suffers from low efficiency; there-
fore, its use for hole finding remains limited. Active hole
finding involves two steps: Constructing a peg-hole pose
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error model, which includes noncontact perspective projec-
tion [4], [5], [6], [7], contact mechanics [8], and data models.
Zhu et al. [9] utilized a quad-core laser pointer and monoc-
ular vision to collect hole position information and to align
rivets; they achieved a precision accuracy of 0.08 mm.
Triyonoputro et al. [10] obtained the estimated hole lo-cation
using multi-view images with a deep neural network model
and achieved a circular peg-hole alignment with a clearance
of 0.4 mm; however, this noncontact perspective projec-
tion model offers poor interference resistance and precision.
Zhou et al. [11] established a mechanical mechanism model
of the generator-frame double circular peg-hole contact
issue and achieved a hole-finding success rate of 70.5%.
Kim et al. [12] trained a position-force mapping model for a
3-mm square area using a clustering algorithm and achieved
a model error of less than 0.35 mm. A peg-hole data model
uses machine learning methods to train contact state data
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offline and predict the current state online [13], [14], [15].
This model is updated in real time for online learning through
data input from the current contact state [16], [17], [18], [19],
[20]. Both online and offline data modeling are affected by
large data quantities and the complexity of reverting model
errors. Hole-finding trajectory optimization, which involves a
feed step and direction optimization based on the hole-finding
model [21]. Ding et al. [22] extracted optimal trajectory
features using a Gaussianmixture model and dynamicmotion
primitive for trajectory generalization learning, and they
achieved a hole-finding success rate of 83.3% for obstacle
avoidance trajectories using a complicated trajectory opti-
mization approach. The hole-finding objects listed above are
mainly intended for peg hole structures with a single regular
form and an oversized fit tolerance. The approach is not
easily portable, and the efficiency and success rate should be
improved.

Based on the existing literature, a keyed circular peg and
gears in a reducer are considered the objects of hole finding
in this study. This study aims to improve the success rate
and efficiency of hole finding and accomplish circular and
square hole finding in the centerline alignment of the circular
peg and gear hole and in the circumferential registration
of the key and keyway, respectively. To this end, a devi-
ation domain-force/torque GA-SVM mapping discriminant
data model is constructed using the static mechanism for
dividing the deviation domain. Accordingly, a position vector
trajectory optimization hole-finding approach is suggested.
A dual monocular vision approach is adopted to detect the
corner points of flat keys and keyways. The corner points
help determine the circumferential deflection angle between
the flat key and keyway. Further, an image semantic segmen-
tation based on deep learning (ISSbDL) flat key corner point
model with excellent accuracy and resistance to light intensity
interference is designed. Finally, a circumferential coarse and
refined deflection strategy is adopted in the given order to find
the square hole. The strategy proposed in this paper improves
the efficiency and success rate of combined hole finding for
small clearance circular pegs with keys.

The remainder of this paper is organized as follows:
In Section II, we describe the hole-finding problem and
scheme. In Section III-A, we present circular hole-finding
strategies involving algorithms for static mechanism analysis,
force/torque-deviation domain mapping, and path planning.
In Section III-B, we discuss the square hole-finding strategies
involving algorithms for deflection angle identification and
adjustment. Further, in Section IV, we discuss the experi-
ments and the corresponding results. Finally, in Section V,
we summarize the results of the current work and discuss the
future research directions.

II. HOLE-FINDING SCHEME
A. HOLE-FINDING PROBLEM DESCRIPTION AND SCHEME
DESIGN
As shown in Figure 1, the gearbox output mechanism consists
of a keyed circular peg (60-mm circular peg and 0.1 mm

FIGURE 1. Assembly phase division and hole-finding problem.

fit tolerance) and a flat key (50 × 18 × 11 mm) with a
circumferential fit tolerance of 0.05 mm. The assembly pro-
cedures for the keyed circular peg and gear include positional
adjustment, circular hole finding (to align the peg and peg-
hole centerlines), circular peg-in-hole, square hole finding
(for the circumferential registration of key and keyway), and
square peg-in-hole.

This study focuses on the circular and square hole-finding
stages of assembly. In the circular finding-hole stage, the
bottom face of the circular peg is in contact with the combined
construction of the gear peg-hole and keyway; therefore, it is
difficult to establish an accurate contact mechanics model.
It is also challenging to formulate a trajectory optimization
strategy. In the square hole-finding stage, the flat key has
limited freedom of movement and can only rotate around the
circumference. Further, the surface is prone to light-intensity
interference, which makes it difficult to obtain the angle of
deflection of the flat key and to perform the circumferential
identification of the keyway, making it almost impossible to
adjust the angle of deflection.

The design of the proposed scheme with the difficulties
associated with hole finding is summarized below:

(1) Circular hole-finding stage: The position deviation of
the circular peg and gear peg-hole is indicated by a position
vector with the center of the lower end face of the circular
peg (hereafter, center of the peg) as the start point and the
center of the peg-hole (hereafter, center of the hole) as the
endpoint. To find the circular hole, it is crucial to study
changes in force/torque based on the position vector size and
azimuth, create a mapping discriminant data model of the
position deviation and force/torque, and produce a trajectory
optimization strategy for the trajectory of the position vector
in the step and direction.

(2) Square hole-finding stage: This stage involves identi-
fying the deviation angle and adjusting the deviation. The
deviation angle is the angle of the circle formed by the arc of
the flat key and keyway corner points. In the proposed dual
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monocular vision solution, the flat key and keyway corner
points are identified for calculating the circumferential devi-
ation angle. A circumferential coarse and refined deflection
strategy is adopted in the given order to find the square hole.

B. HOLE-FINDING SYSTEM CONSTRUCTION
The robotic hole-finding system is shown in Figure 2. This
system comprises robot clamping keyed circular pegs, a gear-
fixing table, a double monocular vision module, a pneu-
matic element, and a computer, among other components.
The robot clamping keyed circular pegs include a six-axis
industrial robot with an end-mounted six-dimensional force
sensor, an end camera to identify the corner points of the
flat keys, and a pneumatic claw to realize real-time contact
force detection. The gear support and fixing platform include
a hole-finding platform, clamping gear cylinder, and a camera
placed at the bottom. The bottom camera also recognizes
keyway corners, and it detects misaligned gaps via the central
through-hole in the support table, which forms the double
monocular vision recognition module.

FIGURE 2. Robotic hole-finding system.

III. PROPOSED APPROACH
A. GA-SVM-BASED OPTIMIZATION OF POSITION VECTOR
TRAJECTORIES FOR CIRCULAR HOLE-FINDING
STRATEGIES
The static mechanism of force/torque variation based on
the position vector size and the azimuth angle is analyzed
in this section. The deviation domain is divided along the
position vector size and azimuth angle, a GA-SVM mapping
discriminant model of deviation domain-force and torque is
established, and a strategy for optimizing the position vector
trajectory to circular hole finding is proposed.

1) ANALYZING STATIC MECHANISM OF FORCE/TORQUE
VARIATION WITH POSITION VECTOR
Figure 3 (a) shows the contact state of the circular peg and the
gear, and Figure 3 (b) shows the bird’s-eye view of the two-
dimensional model of the peg-hole proposed by Simunovic
and the corresponding assumptions: ignoring deformation

and uniform distribution of forces along the contact sur-
face [23]. These assumptions, together with the combined
forces acting on the geometric centerD(Dx ,Dy) of the contact
surface, are used to analyze the forces in the contact state.

FZ = F1 cos σ ≈ F1 (1)

Dx = My/FZ (2)

Dy = Mx/FZ (3)

In equations (1)–(3), F1 and α represent the combined force
of the gears on the circular peg and the angle of inclination of
the circular peg, respectively. Further, cos σ is almost equal
to one because of the bottom camera’s attitude adjustment.
FZ ,Mx , and My represent the force and torque measured
by the six-dimensional force sensor, and they correspondwith
the force and torque on the circular peg. ρ and θ represent
the magnitude of the position vector beginning at the cen-
ter of the peg O and terminating at O1 and the azimuth,
respectively. ρ varies when θ is constant, as indicated in
Figures 3 (c) and (d). According to equations (2) and (3),
when FZ control is held constant, |Mx | and |My| decrease
with a drop in |OD|. As shown in Figure 3 (d), |Mx | and
|My| increase with an increase in |OD|. The trajectory θ = 0◦

begins (Figure 3 (e)) and continues until the conclusion of the
trajectory at θ = 90◦ 3(f) when ρ is constant and θ is altered.
Equations (2) and (3) show that |M x | grows with an increase
in |Dy| and |My| decreases with a decrease in |Dx |. Here,
|Dx | = |Dy| (for this trajectory, θ = 45◦) and |Mx | = |My|.
This analysis remains valid when θ changes from 0◦ to 360◦

over one week.

FIGURE 3. Mechanistic analysis of circular peg contact gears: (a) State
diagram; (b) Bird’s-eye view; (c) Increased ρ; (d) Decreased ρ; (e) Start
point of trajectory (θ = 0◦); (f) End point of trajectory (θ = 90◦).

The six-dimensional force sensor used in this study is the
ATI Omega 160, model SI-2500-400, with an accuracy error
of 1 F = 0.0682N for force F and 1 M = 0.0076N-m for
torque M. Then, the maximum position deviation of the peg
center relative to the hole center at the end of the hole finding
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can be theoretically calculated as

1xmax =

√
Mx +My + 1M

Fz − 1F
(4)

2) DEVIATION DOMAIN DIVISION AND POSITION VECTOR
TRAJECTORY OPTIMIZATION
Figure 4 (a) shows that the center of the peg O is scattered
around the center of the hole, which is searched blindly
using multiple azimuths and position vector sizes because
of the errors in the robot trajectory and orientation of the
bottom camera. The contact moment and position deviation
analysis are used to divide the deviation domain along ρ and θ

(4(b) and 4(c)) and to develop an optimization strategy for the
position vector trajectory (4(d) and 4(e)).

The deviation from location O compared to O1 is dis-
tributed with O1 as the center of the circle; here, the radius
is less than 0.6 mm, θ does not change, |M x |, |My| decreases
with an increase in ρ, and the fit tolerance of the circular peg
and peg-hole is 0.1 mm, as indicated in Figure 4 (b). With
O1 as the center of the circle, the diameters of the large devi-
ation domain, small deviation domain, and the coincidence
domain are divided at diameters of 1.2 mm, 0.6 mm, and
0.1 mm, respectively. The value of ρ is constant, and θ ranges
from 0◦ to 360◦ over a week. When |Dx | = |Dy|, |Mx | =

|My|, |Mx | increases with |Dy|, and |My| decreases with |Dx |.
Figure 4 (c) shows that the fit tolerance of the coincidence
domain is divided into eight sectoral deviation domains and
four linear deviation domains along θ .

FIGURE 4. Deviation domain division and position vector trajectory
optimization. (a) Peg center position deviation distribution and position
vector; (b) Deviation domain division along ρ; (c) Deviation domain
division along θ ; (d) Set feed steps;(e) Set the feed azimuth angle.

Figure 4 (f) shows that the trajectory feed azimuth angles
of the sector deviation and linear deviation domains are δi =

22.5◦
+ 45◦i,(i = 0, 1, 2, . . . , 7) and δj = 0◦

+ 90◦j,
(j = 0, 1, 2, 3, 4) respectively. We set a small deviation step
DS = 0.08 mmDS = 0.08 mm, which is relatively less than

the fit tolerance. The average number of steps to complete a
circular hole finding task is set at a varying distance based on
the trajectory feed azimuth and random deviation; the average
number of steps is the lowest when the step of the large
deviation is 0.4 mm. Thus, feed steps are set based on the
large, small, and coincident deviation step of DL = 0.4 mm,
DS = 0.08 mm, and D0 = 0 mm, respectively, as illustrated
in Figure 4 (e).

3) GA-SVM MAPPING DISCRIMINANT MODEL FOR
DEVIATION DOMAIN-FORCE/TORQUE
A critical prerequisite for optimizing the trajectory of a cir-
cular hole finding task is to distinguish the deviation domain
of the center of the peg based on the contact force/torque
data. SVM offers a strong classification performance for
tiny samples of force/torque data and linear multiclasses; the
classifier aims to identify the best hyperplane in the feature
space that maximizes the gap between samples.

The kernel function parameter (g) and penalty factor (C)
have a considerable effect on the accuracy and generalization
ability of SVM classification; the greater the value of C, the
better is the data fitting, the larger is the value of g, and
the lower is the classification accuracy. A genetic algorithm
with heuristics is utilized in this study to discover the optimal
C and g parameters for increasing the classification accu-
racy of SVM. The genetic algorithm employs several sets of
starting population parameters to conduct a parallel search
for enhancing the efficiency and circumventing the issue of
slipping into the local optimum using selection, crossover,
and variational global heuristics.

Figure 5 shows that the process of building the mapping
discriminant model of the deviation domain-force/torque
includes collecting force/torque data of each deviation
do-main offline from the six-dimensional force sensor; select-
ing the force/torque affecting the circular hole finding; setting
the corresponding deviation domain label as the training set;
normalizing the measured data in the range [0,1] to remove
the effect of data magnitude; inputting the normalized data
into GA, grid search (GS), and particle swarm algorithm
(PSO); identifying the optimal C and g parameters for the
highest classification accuracy based on a detailed compar-
ison; training SVM with the best parameters; and outputting
the deviation domain-force/torque prediction set.

The simulation is performed using MATLAB, wherein
180 sets of data are gathered offline and normalized for each
deviation domain independently. The first 150 sets of data as
considered the training set, and the remaining 30, the test set.
Figure 5(a) shows that the starting population size is set to 20,
the maximum number of iterations is 100, and the parameters
C and g are adjusted in the range [0,100] after binary coding,
selection of high fitness (accuracy) populations, and cross-
variation. Figure 5(b) indicates that the ideal GA parameters
for a classification accuracy of 95.87% are C = 100.00 and
g = 0.66. Compared to the best parameters C = 99.45 and
g = 0.75 (d) for the PSO with the highest classification
accuracy of 93.47% and the best parameters C = 97.62,
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FIGURE 5. Mapping discriminant model for the deviation domain-force/torque. (a) GA
search process for optimal parameters; (b) GA search for optimal parameter results;
(c) PSO search process for optimal parameters; (d) PSO search for optimal parameter
results; (e) GS search process for optimal parameters; (f) GS search for optimal
parameter results.

g = 99.36 (f) for the GS with the highest classification
accuracy of 78.40%. The best parameters C = 100.00 and
g = 0.66 for GA were used to train the SVM model; these
parameters produced a prediction set with a classification
accuracy of 93.89%. The simulation results demonstrate the
superiority of GA to find the reference compared to that using
PSO and GS. The prediction accuracy of the SVM map-
ping discriminant model optimized using the GA parameters
is 93.89%.

B. CIRCUMFERENTIAL SQUARE HOLE-FINDING STRATEGY
BASED ON DUAL MONOCULAR VISION TO IDENTIFY
CORNER POINTS
The anti-light intensity interference and high-precision ISS-
bDLflat-key corner pointmodel based on encoding–decoding
is developed in addition to the circumferential coarse-to-fine
adjustable deflection angle square hole-finding strategy for
dual monocular vision corner recognition.

1) FLAT KEY CORNER POINT MODEL FOR ISSBDL BASED ON
ENCODING–DECODING
Traditional grey-level morphology-based image segmenta-
tion approaches are susceptible to light-intensity interfer-
ence from flat key surfaces. These approaches cannot meet
the accuracy requirements when extracting low-level fea-
tures from images. Unlike conventional image segmentation

algorithms, semantic segmentation classifies each pixel based
on a specific object class, which helps solve the issue of
light-intensity interference. Deep learning-based semantic
segmentation helps extract high-level semantic features and
enhance the precision of flat key corner-point segmentation.

As shown in Figure 6, an ISSbDL flat key corner point
modelling procedure with an encoder-decoder architecture,
image preprocessing (image annotation and parameter setup),
model training, and model evaluation is employed in this
study. The preprocessed images are sent to ISSbDL for
training. The encoder in ISSbDL includes convolutional and
pooling layers aimed at decreasing the size of the feature map
and extracting the maximum amount of pixel-level semantic
information as is feasible. The decoder includes convolu-
tional, sampling, and classifier layers to recover the spatial
dimension and fuse the encoded extracted characteristics for
providing an input and output of the same size. The main
metrics used to evaluate the model are loss and mean IoU.
The mean IoU indicates the average ratio of the intersection
and union of the predicted and labelled areas of the model.
The loss indicates the difference between the predicted and
actual values of the network model. The primary objective of
training is to obtain minimum loss and maximum mean IoU.

Figure 6 shows the Halcon simulation platform devel-
oped for comparing the accuracy errors of ISSbDL and
morphological approaches while segmenting flat critical
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FIGURE 6. Corner point identification using ISSbDL and morphological methods at
various light intensities.

corner points. A total of 200 flat key images with varying
light intensities are labelled and entered into ISSbDL for
training with the following parameters: training learning rate
of 0.0001, batch size of 1, a training period of 50, the momen-
tum of 0.99, weight of 0.00005, and image dimensions of
[200, 150, 3]. The minimum loss is 0.038, and the maximum
mean IoU is 0.947; this indicates a good training impact.
The morphological method identifies corner points using
binary threshold segmentation, shape feature region extrac-
tion, and minimum enclosing rectangle. Both methods recog-
nize the same corner point in the 30 predicted images. Table 1
summarizes the comparison of the average accuracy error
between the identified and actual corner point coordinates.
The ISSbDL method identified corner point coordinates with
an average accuracy error of 0.38 mm; the average accuracy
errors under normal, low, and intense lights are 0.33mm, 0.40
mm, and 0.41 mm, respectively; the average accuracy error of
the morphological method is 0.97 mm; and the identification
success rate is 76.74%. The simulation results suggest that
ISSbDL enhances the resistance to light-intensity interfer-
ence while recognizing corner points compared to that when
using the morphological method.

2) CIRCUMFERENTIAL COARSE-FINE DEFLECTION ANGLE
REGISTRATION STRATEGY BASED ON DUAL MONOCULAR
VISION
Figures 7(a) and (b) illustrate the circumferential coarse-fine
deflection angle registration flow chart 7(a) and schematic

diagram 7(b) of the doublemonocular vision identified corner
point. The end camera recognizes the corner point Q based
on the ISSbDL flat key corner point model, and it coarsely
changes the deflection angle α for the bottom camera to iden-
tify the keyway corner point P. Here, α = 2 arcsinPQ/2OP
based on a geometric connection. Meanwhile, square hole
finding is completed if the peg direction force reaches the
set square hole-finding completion threshold. In contrast, the
peg direction force does not reach the threshold because of
corner recognition or circumferential trajectory errors. The
bottom camera recognizes the corner point e1e2 in the bright
area of the gap when the flat key is not registered as a square
hole. Then, it fine tunes the deflection angle β to the peg
direction force for reaching the set threshold with a fixed
step distance of 0.04 mm; this is slightly less than the fit
tolerance. At this moment, β = 2 arcsin e1e2/2Oe1. If the gap
is not recognized and the peg direction force does not reach
the set threshold, they are fed in the predetermined direction
(clockwise) and step distance until the peg direction force
reaches the predetermined threshold, which helps discover
the square hole.

IV. HOLE-FINDING EXPERIMENT
Experiments were conducted on the hole-finding platform
shown in Figure 2 to demonstrate the effectiveness and rate
of success for the proposed hole-finding strategy. We set
the following thresholds to determine the completion of the
hole: force F ≤ 0.10 N and torque M ≤ 0.01 N · m. We set
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TABLE 1. Comparison of the precision error (E) of two methods for some identified corner points.

FIGURE 7. Circumferential coarse-fine deflection angle registration strategy based on
dual monocular vision: (a) Flowchart for square hole finding based on dual monocular
vision; (b) Square hole finding based on dual monocular vision.

thresholds so that the robot system stops when F ≥ 50N or
M ≥ 5N · m.

A. CIRCULAR HOLE-FINDING EXPERIMENT
The circular hole-finding strategy compares the positionvec-
tor trajectory based on the GA-SVM, GS-SVM, PSOSVM
mapping discriminant models, and the Archimedes’ spiral
trajectory, as indicated in Table 2. 30 sets of experiments
were conducted; the average time of Archimedes’ spiral
trajectory (228.1 s) was greater than that of the position vector
trajectory (8.2 s). These results indicate that the position
vector trajectory optimization circular hole-finding strategy
is highly effective. The average time of the position vector
trajectory based on the GA-SVM mapping discrimination
model is 5.4 s, which is less than the average times for
the GS-SVM and PSO-SVMmapping discrimination models
by 6.1 s and 2.4 s, respectively. Further, GA-SVM has a
higher accuracy and success rate for the position vector tra-
jectory hole-finding strategy.

Figures 8 (a) and (b) show the experimental diagrams of
the position vector trajectory circular hole-finding process
based onGA-SVMand the position vector trajectory based on
GA-SVM, GS-SVM, and PSO-SVM mapping discriminant

models, respectively. The starting deviation A (252.81 mm,
260.23 mm) is followed by δi = 67.5◦ (i = 1), DL = 0.4 mm
trajectory to B (252.96 mm, 259.86 mm); δi = 22.5◦ (i =

0), DS = 0.08 mm trajectory to C (253.04 mm, 259.83 mm);
δj = 0◦ (j = 0), DS = 0.08 mm trajectory to D (253.12 mm,
259.83 mm) and E (253.20 mm, 259.83 mm). The GA-SVM
mapping discriminant model based on the position vector tra-
jectory circular hole-finding requires 6.4 s for hole-finding.
Figure 8 (c) shows the force/ torque variation over time for
the group’s GA-SVM mapping discriminant model based
on the optimized position vector trajectory in circular hole-
finding process. Fx and Fy are mainly related to the contact
friction. In A1B1 to C1D1 process, as equivalent ρ decreases,
θ decreases to 0◦, thenMx decreases to fluctuates around the
threshold, while My remains constant at a high value. In the
D1E1 process, My drops sharply at 5.9 s before stabilizing
at 6.4 s to reach the threshold value for the circular hole-
finding process. The variations of force or torque with time
during the circular hole-finding process is in accordance with
the mechanistic analysis. The Archimedes spiral trajectory
as 261 s, whereas the GS-SVM and PSO-SVM mapping
discriminant models take 11.8 s and 7.9 s to optimize the
position vector trajectory, respectively.
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TABLE 2. Comparison of experimental results of different methods for circular hole finding.

FIGURE 8. Group of hole-finding experiments: (a) GA-SVM-based position vector
trajectory circular hole-finding process; (b) Position vector trajectories-based
three mapping discriminant models; (c) GA-SVM-based plot of force/torque
variation with time during a position vector trajectory.

FIGURE 9. Error in the actual position of the peg center relative to the
hole center 1x for 30 sets of experiments.

As shown in Figure 9, the maximum position deviation
1x of the peg relative to the hole center after the 30 sets
of experimental hole findings is counted. Considering sensor
uncertainties, the 1x values are within a clearance range
of 0.1 mm for force-guided peg-in-hole tasks.

B. SQUARE HOLE-FINDING EXPERIMENT
Table 3 summarizes the comparison results of the circum-
ferential square hole-finding strategies for dual monocular
visual recognition and blind search. Both ISSbDL and mor-
phological approaches are used for a flat key angle point
detection in dual monocular visual recognition. In 30 sets
of experiments conducted under varying light intensities, the
average time of the blind search (435.2 s) is longer than the
average time of square hole finding using dual monocular

visual recognition (14.0 s). The success rate is 96.70%, the
model is 7.6 s faster, and the precision is 20% higher than
that of the dual monocular hole-finding strategy based on
morphology. The ISSbDL-based dualmonocular square hole-
finding strategy achieves good efficiency and a high success
rate.

Figure 10 (a) shows the experimental diagram of the
ISSbDL-based dual monocular square hole-finding, and
Figure 10 (b) depicts the square hole-finding trajectory of
the process. The bottom camera identifies the corner point Q
(262.36 mm, 225.23 mm), and the end camera identifies
the corner point P1 (288.55 mm, 257.03 mm) based on the
ISSbDL flat key corner; the precision error is 0.37 mm.
The coarse-adjustment deflection angle α = 71.96◦ and the
detection peg direction force does not reach the threshold.
The bottom camera detects the clearance corner points e1
(244.19 mm, 225.40 mm) and e2 (244.83 mm, 225.40 mm)
with a 0.04 mm step distance based on the direction of
β = 0.52◦ reductions until the peg direct force reaches the
threshold. The dual monocular square hole-finding based on
ISSbDL requires 10.8 s. According to the 17.1 s required
for the morphological double monocular square hole finding,
a blind search requires 417.6 s. Figure 10 (c) shows that the
entire Fx ,FyMx ,My process fluctuates within the threshold
when detecting the change in Fx ,Fy,FZ ,Mx ,My with time
for this process. The P1Q coarse-adjustment deflection angle
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FIGURE 10. Group of square hole-finding experiments: (a) ISSbDL-based dual
monocular vision recognition for square hole finding; (b) ISSbDL-based on dual
monocular vision recognition for square hole-finding trajectories;
(c) ISSbDL-based dual monocular visual recognition of square hole finding
force/torque over time.

TABLE 3. Comparison of the experimental results of the different methods of finding square holes.

process requires 2.2 s, and the e1e2 fine adjustment process
requires 8.4 s; at 10.6 s, Fz drops sharply from 10 N, and
at 10.8 s, it reaches the square hole-finding threshold with
stability.

V. CONCLUSION
A 60-mm circular peg (tolerance = 0.1 mm) and a
52 × 18 × 11 mm flat key (circumferential tolerance =

0.05 mm) was used to compose the keyed circular peg.
The circular peg and gear peg-hole are aligned along the
centerline, and the key and keyway are registered along the
circumference.

1) TheGA-SVMmapping discriminantmodel of the devi-
ation domain-force/torque is developed based on the
static mechanism for dividing the deviation domain;
an optimum circular hole-finding strategy for position
vector trajectory in the step and direction was also
provided. The simulation of 30 sets of experiments
confirmed that a circular hole finding was successfully
achieved with 90% GA-SVM precision. The average
efficiency of the circular hole was 5.4 s, 41.2-times
shorter than the average efficiency of the Archimedes
spiral trajectory and 6.1 s and 2.4 s shorter than the
average efficiency of the position vector trajectory
optimization strategy based on the GS-SVM and PSO-
SVM models, respectively.

2) We established an ISSbDL flat key corner model,
dual monocular visual identification corner, and the
circumferential coarse to fine adjusting square hole-
finding approach. After 30 sets of experiments,
the average accuracy error of the ISSbDL method
was 0.39 mm (0.60 mm shorter than the average
accuracy of the morphological method).The aver-
age efficiency and success rate of the ISSbDL-based
dual monocular square hole-finding strategy were
10.2 and 96.70%, respectively. Compared to the cir-
cumferential blind search, the efficiency and average
efficiency of the dual monocular square hole-finding
strategy based on morphology were reduced by a fac-
tor of 41.7 and 7.6 s; the success rate was enhanced
by 20.00%.

The proposed circular and square hole-finding strategies
achieved high success rates and excellent efficiency, and it
helped identify some reference values for robot hole-finding
using a keyed circular peg. This study has the limitation that
hole finding requires a visual attitude adjustment prior to
separating the hole finding assignment into two phases, circu-
lar hole finding and square hole finding, which complicates
the hole finding processes. In the future, an intelligent hole-
finding approach will be suggested to combine circular hole
finding and square hole finding into a single operation to
increase efficiency and success rates.

21496 VOLUME 11, 2023



H. Huang et al.: Hole-Finding Learning Strategy for a Robot Assembly With Keyed Circular Peg

REFERENCES
[1] K. Van Wyk, M. Culleton, J. Falco, and K. Kelly, ‘‘Comparative peg-in-

hole testing of a force-based manipulation controlled robotic hand,’’ IEEE
Trans. Robot., vol. 34, no. 2, pp. 542–549, Apr. 2018.

[2] B. Baksys, J. Baskutiene, and S. Baskutis, ‘‘The vibratory alignment of the
parts in robotic assembly,’’ Ind. Robot, vol. 44, no. 6, pp. 720–729, 2017.

[3] S. Wang, G. Chen, H. Xu, and Z. Wang, ‘‘A robotic Peg-in-Hole assem-
bly strategy based on variable compliance center,’’ IEEE Access, vol. 7,
pp. 167534–167546, 2019.

[4] K. Wang, D. Liu, Z. Liu, G. Duan, L. Hu, and J. Tan, ‘‘A fast object
registration method for augmented reality assembly with simultaneous
determination of multiple 2D–3D correspondences,’’ Robot. Comput.-
Integr. Manuf., vol. 63, Jun. 2020, Art. no. 101890.

[5] P. Cirillo, G. Laudante, and S. Pirozzi, ‘‘Vision-based robotic solution for
wire insertion with an assigned label orientation,’’ IEEE Access, vol. 9,
pp. 102278–102289, 2021.

[6] Y. Fan, X. Lv, J. Lin, J. Ma, G. Zhang, and L. Zhang, ‘‘Autonomous
operation method of multi-DOF robotic arm based on binocular vision,’’
Appl. Sci., vol. 9, no. 24, p. 5294, Dec. 2019.

[7] W. Sun, Z. Zhang, and W. Zhang, ‘‘A coaxial alignment method for large
flange parts assembly using multiple local images,’’ IEEE Access, vol. 9,
pp. 16716–16727, 2021.

[8] Q. Wang, R. Hou, J. Li, Y. Ke, P. G. Maropoulos, and X. Zhang, ‘‘Posi-
tioning variation modeling for aircraft panels assembly based on elastic
deformation theory,’’ Proc. Inst. Mech. Eng., B, J. Eng. Manuf., vol. 232,
no. 14, pp. 2592–2604, Dec. 2018.

[9] W. Zhu, H. Liu, and Y. Ke, ‘‘Sensor-based control using an image point and
distance features for rivet-in-hole insertion,’’ IEEE Trans. Ind. Electron.,
vol. 67, no. 6, pp. 4692–4699, Jun. 2020.

[10] J. C. Triyonoputro, W. Wan, and K. Harada, ‘‘Quickly inserting pegs into
uncertain holes using multi-view images and deep network trained on
synthetic data,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Nov. 2019, pp. 5792–5799.

[11] B. Zhou, L. Liu, and G. Chen, ‘‘Contact analysis for dual peg-in-hole
assembly of automobile alternator frame,’’ Mech. Ind., vol. 21, no. 2,
pp. 1–16, 2020.

[12] K. Kim, J. Kim, T. Seo, H. S. Kim, and J. Kim, ‘‘Development of efficient
strategy for square peg-in-hole assembly task,’’ Int. J. Precis. Eng. Manuf.,
vol. 19, no. 9, pp. 1323–1330, Sep. 2018.

[13] M. Q. Mohammed, L. C. Kwek, S. C. Chua, A. Al-Dhaqm, S. Nahavandi,
T. A. E. Eisa, M. F. Miskon, M. N. Al-Mhiqani, A. Ali, M. Abaker, and
E. A. Alandoli, ‘‘Review of learning-based robotic manipulation in clut-
tered environments,’’ Sensors, vol. 22, no. 20, p. 7938, Oct. 2022.

[14] W.Wu, H. Zhou, Y. Guo, Y.Wu, and J. Guo, ‘‘Peg-in-hole assembly in live-
line maintenance based on generative mapping and searching network,’’
Robot. Auto. Syst., vol. 143, Sep. 2021, Art. no. 103797.

[15] Z. Zhang, G. Peng, W. Wang, Y. Chen, Y. Jia, and S. Liu, ‘‘Prediction-
based human–robot collaboration in assembly tasks using a learning from
demonstration model,’’ Sensors, vol. 22, no. 11, p. 4279, Jun. 2022.

[16] Z. Wang, F. Li, Y. Men, T. Fu, X. Yang, and R. Song, ‘‘Deep deterministic
policy gradient with reward function based on fuzzy logic for robotic peg-
in-hole assembly tasks,’’ Appl. Sci., vol. 12, no. 6, p. 3181, Mar. 2022.

[17] Y. Wang, C. C. Beltran-Hernandez, W. Wan, and K. Harada, ‘‘Hybrid
trajectory and force learning of complex assembly tasks: A combined
learning framework,’’ IEEE Access, vol. 9, pp. 60175–60186, 2021.

[18] F. Aschersleben, R. Griemert, F. Gabriel, and K. Dröder, ‘‘Reinforcement
learning for robotic assembly of fuel cell turbocharger parts with tight
tolerances,’’ Prod. Eng., vol. 14, no. 4, pp. 407–416, Oct. 2020.

[19] J. Xu, Z. Hou, W. Wang, B. Xu, K. Zhang, and K. Chen, ‘‘Feedback
deep deterministic policy gradient with fuzzy reward for robotic multiple
peg-in-hole assembly tasks,’’ IEEE Trans. Ind. Informat., vol. 15, no. 3,
pp. 1658–1667, Jul. 2019.

[20] F. Li, Q. Jiang, S. Zhang, M. Wei, and R. Song, ‘‘Robot skill acquisition
in assembly process using deep reinforcement learning,’’Neurocomputing,
vol. 345, pp. 92–102, Jun. 2019.

[21] P. Guo, Z. Zhang, Y. Liu, Y. Liu, D. Zhu, and C. Shao, ‘‘A skill program-
ming method based on assembly motion primitive for modular assembly
system,’’ IEEE Access, vol. 9, pp. 101369–101380, 2021.

[22] G. Ding, Y. Liu, X. Zang, X. Zhang, G. Liu, and J. Zhao, ‘‘A task-learning
strategy for robotic assembly tasks from human demonstrations,’’ Sensors,
vol. 20, no. 19, p. 5505, Sep. 2020.

[23] S. Sergio, ‘‘Part mating theory for robot assembly,’’ inProc. 9th ISIR, 1979,
pp. 183–193.

HAIBIN HUANG received the Ph.D. degree in
measuring and testing technologies from Xiamen
University, in 2011.

He is currently an Associate Professor with
the School of Mechanical and Automotive Engi-
neering, Xiamen University of Technology. His
research interests include robot control technol-
ogy, intelligent control algorithm research, and
engineering application.

HUAKANG CHENG received the B.S. degree in
automotive engineering from the Hefei University
of Economics, in 2020. He is currently pursuing
the M.S. degree with the School of Mechanical
and Automotive Engineering, Xiamen University
of Technology.

His research interests include intelligent assem-
bly technology and image processing algorithms
for robots.

TONGTE WANG received the B.S. degree in
mechanical design-manufacture and automation
from the Shaoxing University of Arts and Science,
in 2018. He is currently pursuing the M.S. degree
with the School of Mechanical and Automotive
Engineering, Xiamen University of Technology.

His research interests include robot end-effector
design and parallel robot research.

TINGSHUO FU received the B.S. degree in auto-
motive engineering from the Huaiyin University
of Technology, in 2020. He is currently pursuing
the M.S. degree with the School of Mechanical
and Automotive Engineering, Xiamen University
of Technology.

His research interests include robot control tech-
nology and assembly platform design.

CHAOSHENG ZOU received the M.S. degree in
electrical engineering specialty from the Qinyi
University of Science and Technology, in 2015.

He is currently an Executive Director, the
Chairperson, and the General Manager of Xiamen
Winjoin Technology Company Ltd. His research
interests include research on assembly technology
and engineering application of industrial robots.

VOLUME 11, 2023 21497


