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ABSTRACT Recently, the penetration of electric vehicle (EV) has increased, and several motor companies
have declared a paradigm shift to EVs. However, most existing studies focusing on EV charging scheduling in
power system operations neglect the integrated operation of transportation and distribution systems. Because
EVs affect both systems, it is necessary to consider the grid operation and the individual EV’s preferences
(charging cost and time) simultaneously. In this study, an integrated power-transportation system structure
and operation algorithms are developed to analyze the impact of EVs on the distribution system. In addition,
this study proposes an optimal EV driving model that consists of two driving patterns: routine driving and
long-distance driving. For routine driving patterns, the Markov chain model is implemented considering the
mileage and conditions of individual EVs. Subsequently, long-distance driving patterns are developed to
select the optimal route through reinforcement learning. In addition, the EV aggregator structure of EV
charging stations can effectively predict local charge demands and perform charge control in real-time.
An integrated power-transportation system is developed using the IEEE RBTS system and the integrated
system architecture and algorithms are developed using MATLAB. It utilizes the ACOPPF function of
MATPOWER to evaluate systematic stability and derive DLMP (Distributed Locational Marginal Price).
This study conducts performance verification in various scenarios, confirming the effect of charging control
of EV aggregators considering system stability, loss reduction, and cost reduction of the entire system.

INDEX TERMS Electric vehicle, route selection, aggregator, power-transportation system, driving schedul-
ing, charging scheduling.

NOMENCLATURE
pt The probability of change at

time t-1.
SOCϵ The initial State-of-charge.
snum The state count by MDP

environment.
i, j The starting/arrival point.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chenghong Gu .

EVperform The drive performance of
EVs (kWh/km).

d ij The distance from i to j.
Pricech(j) The charging rate at loca-

tion j.
tdepa(j) The Arrival time from

departure point to j.
treq The charging time.
Pfast The power output of quick

charge.
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xi (t) The charging station sched-
ule by adjusted time.

xj (t) The general load for the
entire system by adjusted
time.

AG The number of charging sta-
tions in the system.

T The simulation time.
Pschi (t) The submitted charging sta-

tion schedule via time.
Load j (t) The general load for the

entire system via time.

I. INTRODUCTION
Recently, EVs have attracted attention because of their eco-
friendliness, considering issues such as the increase in green-
house gases caused by internal combustion engine vehicles
and global warming [1]. In addition to current policies for
supplying EVs by countries, it is expected to achieve a 30%
penetration rate of EVs [2]. An increase in the supply of EVs
can significantly impact the power system, and a system for
smart grid technology and stable system operation is required
to stabilize the power supply and demand [3].

EVs have had problems with long-term charging times
in the early days and problems with range anxiety due to
their battery capacity; however, several efforts have been
made to develop technologies to solve them. Because of the
development of technology for EVs, BEVs (Battery EVs)
such as Tesla’s Model S and Chevrolet’s Volt also has a
mileage of more than 400 km, and sales of such BEVs are on
the increase globally [3], [4], [5]. While such high-capacity
fast charging technology and improved battery performance
led to significant progress in driving EVs, the impact on the
power system has become more critical [6], [7]. The effects
of EVs on the system can cause problems such as increased
power transmission losses in the system, increased load
peaks, voltage problems in the distribution system, premature
aging of the transformer, overloading the transmission capac-
ity, system reconfiguration, and infrastructure expansion
[6], [7], [8], [9].

Research that considers EVs can be divided into two main
types when operating the system. First, EVs are scheduled
from the perspective of a system operator, such as a distri-
bution system operator (DSO) or microgrid operator (MGO).
Therefore, these studies mainly used stochastic charging time
to reflect the characteristics of EVs in the general optimal
system operation method. Second, EVs usually only treat
EVs as loads or ESS and use them for system operation,
so there may be some parts that need to consider the actual
selectable rational behavior of EV drivers. An example is par-
ticipation in control or frequency adjustment services inhibit-
ing variability in renewable energy. Reference [10] and [11]
contributed to the grid by utilizing it for frequency adjustment
and renewable energy output assistance, respectively, through

several EVs, but the driver’s behavior is not being considered,
making it any different from ESS.

To solve the above problem, there are studies that intro-
duced EV aggregators. This EV aggregator refers to middle
managers, such as parking lots and charging stations, and
considers individual benefits from two perspectives through
the hierarchical structure. As system operators cannot mon-
itor or control individual EVs, they have a structure that
communicates with multiple EVs through EV aggregators to
control charging and discharging.

EV aggregator participation in the EV power market
(capacity market, reserve ancillary service like reserve mar-
ket, frequency regulation, others) is typical, and as shown
in [12], system operators pass key variables of system con-
straints to EV aggregators, which have a hierarchical structure
of charging individual EVs. In addition to driving patterns,
there are studies that show that charging patterns change
in consideration of EV drivers’ propensity [13]. However,
this paper did not consider changes in driving patterns and
charging positions.

It is common that consider the drivability of EVs, selecting
the optimal charging location and path. These studies mainly
establish a transportation system to select the optimal route
from a particular origin to a destination and determines the
route of public transportation such as buses and taxis. How-
ever, considering the time and region charging rates only, the
drivability of EVs is similar to load shifting in the power sys-
tem. This problem can cause the power system in the power
market, where local differential rates such as locational mar-
gin prices (LMPs). For this reason, [4] induced congestion
to be mitigated by fluctuating charging rates in consideration
of power system congestion and voltage stability. A previous
study [14] changed the LMP at the location at the time the
vehicle is charged, leading the next vehicle to a lower price;
however, there is a limitation that the distance between nodes
does not reflect the charging rate and the vehicle’s driving
path in real-time.

There is also a study on the distribution-LMP calculation
that applies the concept of LMP to the distribution system for
stable operation. [15] conducted a study on the calculation of
DLMP by considering EVs, OLTCs (On Load Tap Changer),
and reconfiguration of feeders. Reference [16] calculated
the DLMP based on the day-ahead LMP and the expected
load and used it for power system operation by considering
the system congestion through the expected charge of EVs.
However, neither study considered variability in real-time nor
based it solely on scheduling. If the DLMP calculated based
on the day-ahead scheduling increases, the vehicle could
make different choices on the actual operation day. In this
study, we focused on distributing EVs through local pricing
considering power system stability. In contrast [17] focused
on EV drivers so that they could choose optimal routing
between multiple EVs as a way of considering EV drivers’
minimum latency, driving time, and charge. Reference [18]
conducted an iterative least cost vehicle routing process that
utilizes the communication of EVs with competing charging
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stations to exchange data such as electricity price, energy
demand, and arrival time. [19] focused on determining the
optimal number of EV charging stations to install. However,
both studies did not consider system stability and cost reduc-
tion of the entire system. Reference [20] shows the optimal
scheduling of V2G, [21], [22] showed the integrated power-
transportation system structure modeling. Reference [23]
proposed the charging scheduling problem of a park-and-
charge system considering the EV battery charging degrada-
tion cost while satisfying the battery charging characteristic.
Reference [24] showed the battery degradation cost model of
EV lithium-ion batteries with the optimal charging schedule
of 400 EVs.

Still, these papers only showed the optimal operation in
emergencies and did not focus on the information required for
the actual operating system and the system’s stable operation.

The contributions of this paper are listed as follows:
1. Integrated power-transportation system structure mod-

eling: Driving schedule modeling of EVs using the Markov
chain model and structural modeling of power-transportation
systems.

In the integrated system, an operation algorithm that con-
siders both the traffic-centric and electric power-centric views
of EVs was presented, and a more realistic situation was
simulated.

2. Development of EV aggregator’s day-ahead charging
scheduling and real-time charging algorithm: Development
of EV aggregator’s algorithm for EV aggregators consid-
ering vehicle driving schedule, parking time, and required
energy. Furthermore, by presenting the coordination algo-
rithm between EV aggregators, it is possible to solve the
problem that occurs at a single charging station.

3. Development of an optimal charging and driving path
selection algorithm for vehicles using reinforcement learning:
Development of an optimal charging and driving path selec-
tion algorithm considering DLMP based on reinforcement
learning. DLMP contributes to solving the instantaneous peak
and local voltage problems in the LMP market.

As a result, the effect of EV charging on the distribution
system was analyzed, and the operation of the EV aggregator
can contribute to the system’s stable operation. In addition,
the effect of charging cost on vehicle route selection has
been confirmed, and the power system can distribute charging
demand through DLMP.

In this study, the effects of EV aggregators on distribution
systems with increasing distribution of EVs and changes in
power system structure in distributed energy are studied.

Section II describes the structure of the entire system and
Section III deals with the individual modeling of EVs and the
operational algorithm of EV aggregators.

In Section IV, the results are analyzed by performing a
case study of the proposed structure. Section V presents the
conclusions of the study and directions for future research.
The main points of this paper are 1) analysis of the systematic
operation impact of EV charging in the integrated deployment
environment of transportation and power systems, 2) the

FIGURE 1. Integrated system structure.

operation algorithm of the EV aggregators, and 3) changes
in the EV driving path and system impact considering the
regional differential price.

II. DESIGN OF THE INTEGRATED SYSTEM
A. CONCEPT OF INTEGRATED SYSTEMS
EVs can be a distributed energy source close to consumers
at home. However, as individual EVs participate in the elec-
tricity market, the capacity is small to monitor and control
the distribution system operator (DSO), which is a burden
for system operators to communicate with all EVs. In addi-
tion, controlling this individually requires considerable data
from DSOs, and it is difficult to operate while satisfying the
driver’s needs.

Figure 1 shows a general structure that enables system
operations and EV market participation in conjunction with
DSOs, with EV aggregators to manage EVs [17], [24]. In this
structure, EV drivers can check system prices and charge at
low prices, and DSOs can use EV aggregators to identify and
use the power consumed in charging EVs without managing
individual EVs. EV aggregators manage multiple charging
stations (EVCSs) in each region, each managing charging
EVs in the neighboring region. The EV aggregator is typically
located between the DSO and the EV driver in the power
system. In addition, EV aggregators can predict charging
schedules by receiving information such as driving schedules
or charging demand times from EVs.

Figure 2 shows the architecture of the integrated power-
transportation system. The higher layer is the grid of the
traffic system, and the lower layer is the power distribution
system simulated by the IEEE RBTS system. In this fig-
ure, the blue area is residential, the red area is commercial,
and the orange areas have high loads of factory characteris-
tics; the light green area was divided into areas with charging
stations and areas for charging EVs. An EV charging load
is connected to a single node, which is connected through
a particular link when charging an EV in a nearby area.
Moreover, it is assumed that all EVs connected to the corre-
sponding nodes can be communicated with EV aggregators
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FIGURE 2. Integrated power-transportation system structure.

FIGURE 3. Operating scheme for integrated systems.

about charging control and data collection system. Several
EV operations occur in transportation systems, and the link
managed by EV aggregators reflects the charging power of
parked EVs.

Therefore, the power system performs system operation
based on the load usage of the corresponding node. EVs’
driving pattern also affects the DLMP calculations during the
day-ahead. It is also assumed that these calculated DLMPs
affect the EV driving schedule again, resulting in the interac-
tion between the two systems.

Figure 3 shows the overall operational scheme of the pro-
posed system. Figures 1 and 2 assume demand bids and
pricing between market operators and DSOs have ended.
As discussed earlier, this paper only deals with the problem
at the transmission level by studying the distribution systems.
Moreover, it is assumed that it has already been performed
for the LMP calculation process at the transmission level.

Therefore, the DSO’s demand bidding and LMP determi-
nation process is not addressed, and DSO utilizes LMP to
operate the distribution system. (① -②)

Aftermarket clearing in the transmission system, the DSO
informs the EV aggregator of the LMPdetermined on the day-
ahead (③). It predicts the EV parking schedule expected to be
entered the next day for each charging station. It calculates
the charging schedule by considering the LMP received from
the EV aggregator (④). The EV aggregator receives charging
scheduling results of the day-ahead from the charging stations
located by region.

The EV aggregator adjusts the charging schedule between
charging stations based on the day-ahead charging schedule
results for several charging stations (⑤). The EV aggregator
delivers the adjusted charging scheduling results to the DSO
(⑥). The DSO performs ACOPF (AC Optimal Power Flow)
for all time of the following day, reflecting the EV’s charging
schedule with the expected general load (⑦).

The DSO provides the charging limit capacity of the charg-
ing station along with the DLMP obtained during the system
analysis if there is no problem with the system operation
after the system analysis (⑧). ③-⑧ is the day-ahead operation
section and is reflected in the EV charging control of the EV
aggregator and operation of the day-ahead power system.

On the same day, real-time system operation is simulated in
a 15 min time step. The EV aggregator receives driving and
charging information from EVs only for vehicles selecting
the optimal route, updates the price information based on the
real-time charging station situation, and delivers it to EVs.
EVs perform optimal route selection based on the updated
pricing (⑨). The EV checks the parking conditions according
to the driving schedule by time periods (⑩). Each charging
station conducts a charging schedule for a parked vehicle
( 11⃝). It performs charge control within the charging capacity
according to priority. After charging the EV, the DSO cal-
culates power flow to check the system condition ( 12⃝- 13⃝).
As a result of calculating DLMP and the day-ahead schedule
management results, stable impact and economic feasibility
are analyzed from the system perspective on results after the
real-time operation ( 14⃝).

III. SCHEDULING & OPERATION ALGORITHM
OF EV AGGREGATORS
Section III describes how to model the driving schedule for
EVs and EV aggregators. As mentioned in Section II, the
driving schedule for EVs is divided into two types: routine
driving and long-distance driving. The EV driving sched-
ule model for routine driving is when the charging position
does not change with routine driving, but the charging time
changes with the price.

In the case of long-distance driving, on the contrary,
it determines which route and where to charge for long-
distance. Furthermore, this section shows the EV aggregator’s
operational algorithm for charging scheduling and control
individual EVs.
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FIGURE 4. Transportation system structure in target area.

A. EV SCHEDULING MODEL
Figure 4 shows the power system of the integrated system
onto the transportation system for routine driving schedules.
The distance between the lattices is 5 km, and 1 step is
assumed to be moved during 1 time step, defined as 15 min.
For EV charging, the green-marked part in Figure 4 becomes
the charging station (CS) that performs charging, assuming
it is connected through a track. Each CS is responsible for
managing the charging of EVs connected to the surrounding
loads, which are buses that meet the charging needs of the
surrounding area for the convenience of research but are
assumed to be one CS on the system. Therefore, there is
assumed to be vehicle movement between CS and CS in
Figure 4.
Before considering the power system, a Markov chain

model was developed to derive themileage and driving condi-
tions of EVs by referring to the study in [25]. It also obtained
and applied vehicle data by referring to the 2017 travel data
from the National Home Travel Survey (NHTS). [26]

Figure 5 shows a Markov chain diagram showing the state
change in EV at t - 1 time to EV at time t .

In this figure, the abbreviations have the following mean-
ings: the state drive (D) – residential (H) – working (W) –
commercial (C), and P will be described in Equation (1). The
figure shows the next time of each state and the probability
of each state. In probability, the probability of changing
from driving to the home state at t - 1 time is expressed as
PtD→H . Equation (1) is a modification of the Markov chain
diagram shown in Figure 5, and an hourly Markov chain
matrix representing the probability of changing from time
t - 1 to time t state. For all simulation times, such a Markov
chain model was applied to determine the state of each time
step to generate the one-day driving data of one EV.

Subsequently, the travel distance between state changes is
calculated from the time period-specific state data obtained

FIGURE 5. Markov chain diagram.

from the driving data, and the location in Figure 4 is syn-
chronized as much as possible. In this study, the driving time
between the state data is calculated to derive the location
data from the driving state data. Each vehicle calculates
a travelable distance according to the driving time from a
position arbitrarily determined by its initial state to determine
its post-driving position. The initial SOC of the battery is
set to be determined by the gamma distribution, as shown in
(2) and (3):

Tt =


PtD→D PtD→H
PtH→D PtH→H

PtD→W PtD→C
PtH→W PtH→Q

PtW→D PtW→H
PtC→D PtC→H

PtW→W PtW→C
PtC→W PtC→C

 (1)

y = f (x| a, b) =
1

ba0 (a)
xa−1e

−x
b (2)

SOCϵ = 15 + y (3)

where a is the shape parameter, b is the scale parameter and
SOCϵ is initial SOC.

B. DRIVING SCHEDULING OF LONG-DISTANCE VEHICLES
WITH REINFORCEMENT LEARNING
Unlike in Figure 4, within the target area, long-distance
driving vehicles perform their schedules in the traffic sys-
tem structure in Figure 6. Given the long-distance driving,
Figure 4 shows the distance between grids set to 5 km, and
Figure 6 sets it to 15 km. As previously discussed, we derive
the driving schedule by selecting the optimal charging and
driving path using RL. In addition, a route can be moved from
the origin to the destination to simplify the simulation.

As shown in Figure 6, the state is limited to the origin-
destination and charging area. The action is limited to the
driving route to another state and charging after driving the
origin route. For example, the action available at the origin is
CS 3; if not CS 3, the following available charging locations
are CSs 1 or 5.

Figure 7 shows a flowchart of the route selection algorithm.
First, the EV drive schedule calculates the required charging
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FIGURE 6. Transportation system structure of long-distance vehicles.

FIGURE 7. Flowchart of driving route selection algorithm using
reinforcement learning.

capacity that must be charged, and the charging time required
for fast charging is inversely calculated. Subsequently, the
charging cost for each CS and the amount of electricity
consumed in themoving route according to the departure time
of the origin are applied as reinforcement learning to calculate
the moving route and charging route. Then, the MDP is com-
posed of the state of the point, the action indicating the route
or charging state, and the cost meaning the reward. Finally,
a vehicle driving and charging schedule are calculated based
on the derived results.

Equation (4), as shown at the bottom of the page, is a
state set for the state in each environment, (5), as shown
at the bottom of the page, is an action set with a total of
four actions, divided into two driving paths and charging
behavior after driving, where snum is state count by MDP
environment. Furthermore, because reinforcement learning
typically learns to maximize rewards, this work consists of
rewards considering the minimum charging cost and distance
(cost to the amount of electricity consumed while driving).

Suppose the typical driving behavior is chosen in (6), as
shown at the bottom of the page. In that case, the compen-
sation value is calculated as the cost of consumption energy
according to the mileage, where i is the starting point, j is
the arrival point, Price is the charging rate (LMP or DLMP),
EV perform is the drive performance of EVs (kWh/km). dij
is the distance from i to j, Pricech(j) is the charging rate
when charging at location j. The electricity bill is applied to
average of price, which is to be converted into an expense,
assuming that the vehicle has been charged at an average rate
on the same day because it doesn’t know the cost of charging
previously. Assuming that the EV is charged at an average
rate, the power consumption for the distance traveled along
the route can be converted into a cost. The calculation for the
second term is when the cost of driving distance calculated
earlier considers the cost of charging at that location. If the
destination simply moved from the destination to CS3, the
cost for the distance traveled is regarded as -reward as it
corresponds to the first term in Equation (6). On the other
hand, if charging is performed after moving to CS3, it is
considered a -reward considering the cost of moving distance
and charging cost. If all four actions do not exist, move to any
state that is not connected,

leaving the reward as −∞ to disable it.
Equation (7), as shown at the bottom of the page, calculates

the charging cost at the destination point in such cases, where
tdepa(j) is arrival time from starting point to j, treq is charging
time, Pfast is quick charging output. In Figure 6, for charging
in CS2, the arrival time is specified regardless of the driving
path. This is because the transportation system is lattice-
structured, going to the destination located diagonally, and
if CS2 does not charge, it does not charge anywhere else
but only driving. In other words, arriving at CS 2 at the
seventh time step after departure from the origin does not

S = {s1, s2, . . . , snum} (4)

A = {ar1, acr1, ar2, acr2} (5)

ri (ai) =


−1 × (avg(Price) × EV perform × dij) , j ∈ sj, ai ∈ {ar1, ar2}

−1 × [
(
avg (Price) × EV perform × dij

)
+ Pricech(j)] , j ∈ sj, ai ∈ {acr1, acr2}

−∞ , j /∈ sj

(6)

Pricech(j) =

tdepa(j)+treq∑
t=tdepa(j)

(Price(t) × Pfast )/4 (7)
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TABLE 1. Result of reinforcement learning algorithm.

change. Therefore, assuming that the required charging time
is charged at the electricity bill for that time based on the
arrival time by the charging station, it can be expressed as
(7), and the cost can be calculated. This is because SOC
applied the initial SOC set for the vehicle and did not consider
the energy used by the driving until it reached the charging
station. The reason for dividing by 4 in the denominator is
that we applied the time step to 15 minutes in this paper.

As a result of reinforcement learning in Table 1, after
departure, it arrived at its destination through the charging
station ‘3-5-2-8’, andwas charged at CS 3. The charging costs
in Table 1 confirm that CS 3 is not the cheapest charging
station. However, since the -reward for the distance was
considered simultaneously, the same result can be obtained.

The cumulative -reward by the current driving route is -
2.8138, and the cumulative -reward is -3.0614 when moving
to ’departure-3-1-8-destination’ in the case of charging at
charging station 1. In the case of moving to ‘Departure-3-
1-8-7-Destination’, it was not selected because the driving
route was shorter even though there was a price difference
of -3.0807. Therefore, among the optimal paths, charging is
performed at charging station 3 because the charging cost of
3 is the cheapest among the charging prices of stations 2, 3,
5, and 8.

By the above equation, we design the driving scheduling of
long-distance vehicles with reinforcement learning. We will
explain the day-ahead scheduling algorithm for the EV aggre-
gator of EV presented in this paper.

C. DAY-AHEAD SCHEDULING ALGORITHM FOR EV
AGGREGATOR
Figure 8 shows the EV aggregator’s day-ahead scheduling
algorithm for the CS. The day-ahead scheduling algorithm
aims to predict the EV driving schedule for the next day at the
CS and plan the charging schedule accordingly. Therefore,
the price is first delivered by the day-ahead time, and the CS
performs EV driving schedule prediction. Based on the EV
driving scheduling model described in section III above, the
EV driving schedule prediction generates driving schedules
for each vehicle with the number of EVs in the entire inte-
grated system. The vehicle driving schedule data generated
in this way is defined as one scenario, and in this paper, the

FIGURE 8. EV Aggregator’s day-ahead scheduling algorithm flowchart.

charging schedule is set to derive based on 100 scenarios.
After 100 EV driving schedules are created, it is determined
whether each vehicle in one scenario is connected to a charg-
ing station.

Figure 9 shows a flowchart for these vehicle-specific
charging schedules. In this figure, tst is the time of the cur-
rent entering vehicle, tb_st is the time of previous entering
vehicle at same charging station. Gamma distribution value
is referred in equation (2), treq is the time required to charge
more than the required SOC, and tparking is the parking time.
SOC can be divided into two types when entering the vehicle
because the first entered vehicle will enter the vehicle with the
SOC lowered through driving and because entering vehicles
after more than one travel per day will be charged at the CS.
In one scenario, all vehicles perform charging schedules in
the same condition. When scheduling is performed for all
vehicles connected to the daily CS, the same task is repeated
for all scenarios. Subsequently, suppose the iterations are
performed as many times as the set scenario. In that case, the
median is calculated from the charging schedule of all sce-
narios and derived from the day-ahead charging scheduling.
In the day-ahead charging scheduling algorithm, CSs derive
scheduling results in a form that guarantees to charge sched-
ules for individual EVs without any constraints. The charging
time may be stagnant if the reservation results at the CS are
confirmed throughout the system. Therefore, adjusting the
charging demand of EVs in EV aggregators is necessary.
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FIGURE 9. Charging schedule flowchart of each vehicle.

The cooperative scheduling algorithm in the EV aggregator
is configured as a quadratic function, as shown in the formula
below:

min
T+4∑
t=T+1

∑
i∈AG

xi (t)2 + ωxj (t)2 (8)

T+4∑
t=T+1

xi (t) =

T+4∑
t=T+1

Pschi (t) , ∀i (9)∑
i∈AG

(−1×xi (t)) + xj (t) = Load j (t) , ∀t (10)

0 ≤ xi (t) ≤ max xi (t) , ∀t (11)

min f (x) subject to : h (x) = 0; g(x) ≤ 0 (12)

where i is the charging station, xi (t) is the charging station
schedule by adjusted time, xj (t) is the general load for the
entire system by adjusted time, AG is the number of charging
stations in the system, T is the simulation time, Pschi (t) is
the submitted charging station schedule via time, Load j (t)
is the general load for the entire system via time and ω is the
weighting factor.

Equation (8) is an objective function for adjusting the
charging schedule of the CS. The objective function is
designed to find the minimum value of the sum of the square
of the normal load and the square of the charging scheduling.

Equations (9)–(11) are constraints. Equation (9) requires
the same amount of day-ahead scheduling power over an hour
and the same amount of charging power after adjustment.
Equation (12) is the formal expression of general ACOPF.

FIGURE 10. Charging station real-time charge control flowchart.

f (x) means a control variable and a can be seen as an expres-
sion for power generation cost. An equivalent constraint,
h (x), is usually a constraint on the balance of active/reactive
power. Non-equivalent constraints expressed by g(x) include
generator output limitations, line capacity limitations, and
voltage ranges.

As previously mentioned, the EV driver chooses the charg-
ing time, which excludes EV aggregators from charging at
different times, or at different prices. Therefore, this con-
straint allows shifting at a time step adjusted in 15-min
intervals within the same time frame but prevents shifting
to another time. In addition, as in the objective function, the
algorithm is performed in hours, and the scheduling adjust-
ment time is limited to one hour.

This is because when charging an electric vehicle, drivers
generally prefer to charge it from a lower hour. The LMPs that
EV drivers consider for the day-ahead charging schedule are
announced hourly. Thus, scheduling can be adjusted within
the same time frame, but EV drivers can make different
choices at different prices so that scheduling can be adjusted
simultaneously.

D. REAL-TIME CHARGING OF EV AGGREGATOR
Figure 10 shows a flowchart for real-time charging control.
The flowchart in Figure 10 is made at every time step.
Therefore, the CS checks whether the vehicle is parked at
this time and checks information such as parking time and
SOC. Subsequently, the charging schedule is carried out
based on the data of each vehicle. For example, charging
should be performed first in the case of fast charging, and
charging should then be done considering the SOC for each
vehicle, remaining parking time, and required charging time.
After real-time charging scheduling, the priority of individual
EVs is calculated. The formula for calculating priority is as
follows:

PIi (t) = ω1pisoc (i) + ω2pit (i) + ω3pimode(i) (13)

ω1 (i) =
1 − e−α×SOCi(t)

1 − e−α(SOCreq−SOCmin)
(14)
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FIGURE 11. EV Aggregator’s day-ahead scheduling algorithm flowchart.

ω2 (i) = e−β×
PTi(t)−treq(t)

PTi(t) (15)

ω3 (i) =

{
0, charging mode = slow
1, charging mode = fast

(16)

where PIi (t) is the priority index of time t of vehicle i.
pisoc (i), pit (i) and pimode (i) are the index of the required
energy, charging time and charging mode of the vehicle i
respectively. PTi (t) is the parking time of the vehicle i, α

and β are the weight factor which set 5 and 10 respectively.
Equation (13) is a calculation formula for the priority index
for each vehicle, and Equations (14)-(16) are three weight
calculation formulas. The priority index in Equation (13) is
calculated as the sum of the products of each weight and
the coefficient for each weight. At this time, PIi (t) appears
as a value between 0 and 1. PIi (t) is set to 1 only for
vehicles assumed to be long-distance traveling vehicles. This
is because it was determined that, in the case of long-distance
vehicles, charging at a low rate is important, but moving to a
predetermined destination is important, so even if a situation
in which the price fluctuates occurs, the choice is made to
perform charging unconditionally.

IV. CASE STUDY
In this study, as shown in Figure 11, the power system
modifies the IEEE RBTS Bus 4 system structure [27]. The
system is selected because it has a radial distribution sys-
tem structure, and the substation receiving power from the
transmission system is implemented with six transformers
and seven feeders, thereby making it suitable for plotting a
small urban distribution system. The location and type of load
were applied equally in the grid. In the IEEE RBTS system,
only the average and peak loads are shown, so the case study

TABLE 2. Grid parameters.

TABLE 3. Type and length of each branch.

TABLE 4. Load types and locations.

TABLE 5. Electric vehicle charging feeder.

applies the commercial and residential load patterns that fit
with the same peak load. To add the EV charging station to
this system, we extend the node so that the grid can transfer
the energy to the charging system, as shown in Figure 11.

The main system parameters set by the simulated distribu-
tion system are defined in Table 2, track type and length as
shown in Table 3, load type and location as shown in Table 4,
and EVs charging feeder as shown in Table 5. This study
assumes EVs have the same specifications, and simulations
are performed by applying the parameters listed in Table 6.
EV capacity and driving performance were applied to the
TeslaModel S data [28]. At this time, the driving performance
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TABLE 6. Electric vehicle and EV charger parameters.

is reduced to 50% performance to increase power usage,
considering research convenience.

The number of EVs was calculated based on load peaks,
and the number of vehicle registrations in California, United
States, and 319.5 vehicles per MW was identified [29], [30].
The number of vehicles per MW at the peak was assumed
according to the number of registered vehicles compared
to the total load peak. Therefore, 2,706 EVs were set as
the number of everyday EVs, assuming 10% of the total
27,052 EVs, and the number of long-distance EVs was set
at 135 or approximately 5%.

In the entire integrated system, as previously described,
the system operator submitted the forecast load to the higher
system operator, and it was assumed that the LMP was cal-
culated above and passed to the system operator. Therefore,
it is assumed that the LMP is delivered in Figure 13, and
the results of the subsequent steps are described. The general
load of the entire grid is applied, as shown in Figure 12,
and the following is the day-ahead charging load scheduling
of the local EV aggregator. For day-ahead scheduling, the
scheduling results are derived by applying the median value
of the prediction scenario, as mentioned earlier.

Figure 14 shows the EVCS-specific day-ahead charging
scheduling results based on the driving patterns of general
EVs. The graph in blue on the figure shows the day-ahead
scheduling result for each driving scenario, and the red is the
day-ahead scheduling result submitted to the system operator.
Figure 15 shows the scheduling results by EV aggregator
for vehicles that perform fast charging over long distances.
The charging station performs scheduling based on LMP, and
most charging in the CS 1 region can be seen in Figure 15,
and the charging time is also concentrated between 09:00 and
18:00 (Low-rate time). It was confirmed that some charging
stations where charging schedules occur charge with base
load during low price hours. As in the day-ahead scheduling
results for everyday vehicles, it was inevitable that a large
peak occurred for a short period of time right after the hourly
price fluctuated. Therefore, to compensate for this problem,
it is necessary to perform scheduling adjustment between
charging stations. FIGURE 12. General load curve.
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FIGURE 13. LMP profile.

FIGURE 14. Day-ahead scheduling results of charging station (general
vehicle).

FIGURE 15. Day-ahead scheduling results of charging station (optimal
path vehicle).

Figure 16 shows the day-ahead scheduling results of
Figures 14 and 15. Although the number of optimal
route-selecting vehicles in the system is only 5% compared to
the usual vehicles in the system, it does not significantly affect
overall scheduling; some CSs where the charging schedule
occurs have been observed to charge the base load during
low-cost times. It is inevitable that a large peak occurs for
a short time immediately after the hourly price changes, such
as in the results of day-ahead scheduling for routine vehicles.

FIGURE 16. Day-ahead scheduling results of charging station.

FIGURE 17. Comparison of EV CS’s day-ahead scheduling results.

Therefore, performing scheduling adjustments between CSs
to compensate for these problems is necessary.

Figure 17 shows the results of day-ahead scheduling and
coordination scheduling of EVCS. As shown in the figure,
it is confirmed that the load peak mitigated by scheduling
adjustment is possible. Figure 17 shows that there is no
significant difference from the existing scheduling in areas
where the charging schedule is generally smooth, such as
between 3 and 6 and 15 to 21; at 14:00, there is a significant
effect of peak mitigation by scheduling adjustments.

In the coordinated scheduling, the charge load at that time
remains at 1.5 MW on average, while the peak reaches a
value of more than 4 MW in a moment. After the initial
15 min peak, the remaining 45 min were at 1 MW level, with
considerable load fluctuations for an hour.

This can be seen as caused by EVs waiting for charging
simultaneously as the LMP shows a low price during the
afternoon from 14:00. Table 7 lists the parameters applied
to the case study. This parameter contains the value of peak
load, EV penetration rate, and the number of general and
long distance EVs. During the charging schedule of EVs
entering the day, the EVs charge at low-cost times depending
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TABLE 7. Applied parameters.

FIGURE 18. Comparison of EV charging schedule results with the
day-ahead load.

on parking time, which is why charging power is concentrated
in the early 14:00 when the price is low.

This can also be seen in EVCS peaks that occur signif-
icantly, and if these charging schedules are not controlled,
they significant impact on the entire system, as shown in
Figure 18. The peak that occurs at 14:00 exceeds 100 MW,
which is more than 10 MW higher than the actual peak of
approximately 90 MW at 16:00–17:00, significantly affect-
ing the system’s operation. Furthermore, compared to the
general load peak, the existing peak load was approximately
84.5 MW, which increased to 88.5 MW, considering the
charging demand of EVs. Thus, increasing peaks due to
increasing loads due to EV charging are unavoidable. How-
ever, suppose the charging schedule is not adjusted in EV
aggregators. In that case, unexpected peaks may occur in a
non-peak time, or momentary peaks may lead to the need to
expand facilities.

The following results from the DLMP calculations per-
formed using MATPOWER [31]. Moreover, the facts
observed in Figure 19 show that the cost had increased sig-
nificantly since 18:00, when the existing load peaked.

The DLMP and LMP of EVCS with the highest values at
the relatively low-load dawn time differ by $0.6/MWh, but
by peak time of 19:00, there is a $2/MWh difference. In other
words, the higher the load, the greater the overall system loss,
indicating a more significant price difference. Figure 20(a)
shows a price difference of approximately $0.45/MWh at a
significant reduction in the peak occurring suddenly.

Conversely, as shown in Figure 20(b), the DLMP increases
at 15:00 when the load is increased by moving the lowered

FIGURE 19. DLMP by adjustment scheduling.

FIGURE 20. DLMP changes due to scheduling.

peak by the scheduling adjustment to that time. However,
the price difference for this time is approximate $0.16/MWh,
resulting in a relatively smooth DLMP by scheduling adjust-
ments. In Figure 20(a), which has the highest DLMP differ-
ence by scheduling adjustment, the price difference is only
$0.45/MWh; however, in proportion, the price reduction is
1.7%. There is a big difference in that this is not the result of
shifting the price to another time but the price reduction that
occurred simultaneously.
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TABLE 8. Daily losses on integrated systems.

FIGURE 21. EV number in real-time operation.

The cooperative operation algorithm between the EVCS
adjusts the scheduling considering the EVCS and the loss of
the overall system. It has been confirmed that the difference
in DLMP is caused by the adjusted charging scheduling and
maintaining the power system stability. Table 8 identifies a
loss reduction of 0.05 MWh in daily losses. This is not a
numerical significance level, but the total daily energy use
is a loss reduction in the same situation.

The next step is to perform real-time operations after day-
ahead scheduling. In real-time operation, the EV aggregator
performs charging control based on the results of cooperative
scheduling and selects the path by a specified LMP or DLMP.
Figure 21 shows the time of entry for vehicles by optimal
route selection. The vehicle arrives only during the daytime.
This is because when modeling long-distance driving vehi-
cles, the arrival time is set within the simulation time.

Therefore, vehicles that performed optimal route selection
were aware of the DLMP determined the day-ahead, which
could be considered when selecting the CS location. Based

FIGURE 22. Daily driving data of EV 15.

on the vehicle information entered, the peculiarity is that
vehicles connected to EVCS 7 are more frequent than in other
regions. This is because EVCS 7 has a low DLMP among
EVCS except for LMP in Figure 19.

Furthermore, the EVCS-specific incoming vehicles show
that they are concentrated in 1, 4, and 7, similar to EVCS 1, 4,
and 7 located in the region closest to the departure-destination
due to the structure of the transportation system. Compared to
the EVCS-specific DLMP graph in Figure 18, fewer vehicles
enter between 8 and 9 and 20 to 21 when the price is at its
highest, which, as mentioned earlier, seems to charge before
the price rises further or after a long time. Vehicles that make
optimal route selection are charged with fast charging, which
is performed for three-to-four-time steps. Therefore, if the
vehicle is inspected between 11:00 and 12:00, many vehicles
are arriving after 11:00 to 12:00, which is lower than before,
when the price has risen further; vehicles entering EVCS
4 and 7 are charging in the nearest area to the destination
where there is no place to charge, or in the nearest area before
the price goes up further. EVCS 6 can be located nearby and
similarly entered; however, as mentioned earlier, EVCS 6 is
located at the end of the feeder and is not likely to be selected
as higher prices are being formed.
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Figure 22 (a) represents the data on the driving location.
It is located in the EVCS 3 area from 0:00 to 6:00, and
is connected to EVCS 3 again after driving for a while.
Afterward, it moves to the EVCS 5 area again at 7:00, starts
driving around 11:30, moves to the EVCS 4 area, parks for
a while, drive again, and connects to EVCS 4. After that,
it can be interpreted as driving just before 15:00 and arriving
at EVCS 5. In addition, compared with Figure 22 (b), it can
be seen that the battery is charged through rapid charging
after 3:00 from the initial parking time. This is because the
vehicle was pushed out of priority when charging with slow
charging, and charging did not occur between 0:00 and 3:00,
and after 3:00, the change to fast charging mode occurred
due to low SOC and short charging time. Therefore, after the
mode is changed, sufficient SOC has been secured through
fast charging, and it can be confirmed that separate charging
is not performed because it has sufficient SOC during the time
zone connected to EVCS 5 for the first time.

As such, we checked the optimal route selection for EVs.
However, in this case, revealing the objective of reducing
system congestion and loss as targeted was difficult, as the
difference in time changes by DLMP (up to $0.45/MWh) is
much more significant than the difference in price changes by
DLMP.

V. CONCLUSION
In this study, we analyze the effect of charging EVs on the
distribution grid with increasing EV penetration and exper-
iment to control them through EV aggregators. The follow-
ing structures and algorithms are proposed to analyze the
impact of charging EVs on the system. To analyze the impact
of charging EVs on the distribution system, a system with
integrated transportation and power grids are designed. In the
developed structure, the charging schedule is designed based
on the driving schedule of the EV, and we design a structure
to see that these charging loads also affect the power sys-
tem. EV aggregators are designed in a hierarchical structure.
This structure comprises EV aggregators in each region, per-
forming full-day charging demand scheduling according to
regional characteristics and coordinating day-ahead charging
demand schedules at the top of EVCS that perform real-time
charging control.

Developed integrated systems and development algorithms
are constructed, and the charging demand of vehicles is
achieved by modeling the EV driving schedule, charging
schedule, and charging control of the EVCS. ACOPF is
performed at a particular stage in the day-ahead to analyze
the effect of charging EVs on the system, resulting in dis-
tributed LMPs. DLMP effectively determines the charging
rate of EVs. At this time, if the system operator simply
predicts the charging schedule of the vehicle and calculates
and announces the DLMP, the DLMP at different times
from the predicted charging demand can be lowered, thereby
causing problems with the unexpected system. In this study,
EV aggregators can contribute in terms of system stability

to system operators by performing charge control based on
predictive scheduling to compensate for these problems.

The study confirmed that the presence of EV aggregators
could alleviate the peaks of integrated systems caused by
the free charging of EV drivers and that the DLMP of the
distribution grid could ease system congestion by moving
vehicle movement and charging demand to other regions.
The problem of peaks occurring during the initial period of
price change at individual EV charging stations is resolved
through the adjustment algorithm between EV aggregators.
If the DSO can be coordinated with multiple EV aggregators
in the distribution system, it can reduce the instantaneous
peak in the grid and reduce the economic burden through the
delay of power facilities. And as EV’s charging patterns and
charging location change depending on the price (DLMP),
it can be seen as a demand response. In addition, EV drivers
can charge at a lower rate, reducing the waiting time for
charging. These findings can be used to simulate problems in
the systems caused by increased EV distribution and to reflect
them in the system operation and operation plan, as well as
study the system operation method considering EVs with the
presence of new market participants called EV aggregators.
In the future, based on the integrated system developed in
this paper, we plan to analyze the impact of LMP and power
systems according to the timing of EV charging demand
forecast in the LMP market model.
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