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ABSTRACT Location data is valuable for various applications such as epidemiology, natural disasters, and
urban planning but causes exposure of sensitive information, e.g., home or work place, from collected data
in a datastore. Local Differential Privacy (LDP)-based data collection is a promising technology to protect
sensitive information. A mobile device modify data to make each piece of data indistinguishable from others
but keep its intrinsic value for statistical characteristics in data. Although LDP fundamentally protects the
privacy exposure from a data store, a datastore suffer a shortcomings on it; as a datastore can never validate the
modified data due to concealed raw data, that allows anyone to tamper with one’s data or inject any amount
of data, and thus manipulate the statistics of the whole data in a datastore, called data poisoning attack. As a
device does not disclose raw data and a datastore cannot collaborate to validate data with a device who may
be an adversary on this mutual distrust relationship, data collection needs an ability to avoid the effect of
data poisoning.. The cause of data poisoning is the direct relationship between data volume and statistic;
the more data a device sends gives more statistical changes on merged data in a datastore. In this paper,
we propose to decouple statistical characteristics from data volumes on LDP-based data collection process
to minimize the effect of poisoned data on a datastore.We utilize Oblivious Transfer (OT) protocol to retrieve
only statistic characteristics of receiving data at a datastore. As OT protocol inevitably strengthen privacy
protection on LDP-based data collection and accordingly drops statistic characteristics of data, We adjust
LDP processing to collaboratively work with OT protocol. The proposed adjustment method adapts the
protection strength of LDP to OT protocol behavior so that a data store receives data containing sufficient
statistical characteristics. We conduct qualitative and experimental overhead analysis and show that our
method decouples the relationship between statistical characteristics from data volume. Our experimental
result also prove that the overhead can be acceptable on devices such as smartphones and IoT.

INDEX TERMS Local differential privacy, oblivious transfer protocol, location data, privacy-preserving
data mining, data security.

I. INTRODUCTION
The ubiquity of mobile/IoT devices has led the data-driven
society. In a data-driven society, we can collect location data
through sensors, applications, networks, and APIs. The col-
lected location data can be stored and managed in databases
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and the cloud for analysis at any time. One of essential data
is location data consisting of people’s waypoints and trajec-
tories because it is extremely useful for various applications
such as urban planning, epidemiology, and disaster preven-
tion [1], [2], [3], [4]. Although the main interest of those
applications is the statistical trend of people’s movement, the
location data contains sensitive information such as home or
work place and could be possibly a cause of privacy exposure.
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FIGURE 1. The Overview of LDP. Each Device (Client) inputs their raw data
x to a privacy mechanism φ(v ) that outputs perturbed data y , and sends y
to the datastore. The datastore computes statistics from the aggregated y .

To anonymize such sensitive information, Local Differ-
ential Privacy (LDP)-based privacy protection attracts great
attention [5]. In LDP, a device does not trust any third party,
including the datastore or other devices, and will not expose
raw data because sharing their raw data can lead to a privacy
leak. Instead, the device adds minor changes (or noise) to
all values of data at the point of sensing data, i.e. before the
device sends their data to a datastore. Figure 1 is the overview
of LDP process. Each Device (Client) obtains perturbed data
y via inputing their raw data x to a privacy mechanism φ(v),
and sends perturbed data y to the datastore. This process is
called as perturbation. Since LDP never disclose any raw data
outside of the device, no matter how much extra information
an adversary may have, he or she cannot be identified. LDP
also does not aggregate the raw data in a datastore, client can
join the data collection even with untrustworthy datastore.

However, LDP has been pointed out that is vulnerable
to various poisoning attacks [6], [7] because LDP has no
mechanism for a datastore to validate whether received data
is reliable. The cause is that the datastore collects data from
devices in the way of correlating data volume and data statis-
tical characteristics. The more data a device sends gives more
statistical changes on merged data in a datastore. An adver-
sary’s device can tamper with the data or inject arbitrary
amounts of data to intentionally change the statistical char-
acteristics of the whole data in the datastore. Since benign
devices also do not disclose raw data for fear of privacy leaks,
datastore cannot collaboratively validate modified data with
a device who may be an adversary. This relationship between
devices and datastore create an environment of mutual
distrust.

In this paper, we propose a location data collection that
extracts the statistical characteristic of receiving data irre-
spective of its data volume in an environment of mutual
distrust. Our method combine LDP and Oblivious Transfer
(OT) protocol [8] to obtain statistical characteristics only.
OT protocol forces a receiver to discard messages with a
certain probability. We utilize this mechanism for letting the
datastore (receiver) collect only the statistical characteristic

of data from devices (sender). If a malicious device mali-
ciously crafts the data or amplifies the data volume, OT proto-
col drop crafted data before reaching datastore. An adversary
thus impossibly distort the statistical characteristic and the
datastore can mitigate data poisoning attack.

Although OT protocol contributes to decoupling the rela-
tionship between statistical characteristics and data volume,
we additionally have to adjust the degree of perturbation and
whole data volume. The amount of perturbation is calculated
on the assumption that all data is received by the datastore in
the case of utilizing OT protocol, the datastore receives fewer
pieces of data, and thus received data get to have a stronger
protection level than expected. Moreover, this sampling by
OT protocol makes the amount of data necessary to extract
statistics insufficient. Hence, we need to adjust perturba-
tion and data volume for extracting statistical characteristics
while keeping all privacy. In our proposal, the devices adjust
the degree of perturbation depending on protection strength
before LDP processing raw data. After receiving perturbed
data, the datastore complements partially missing perturbed
data due to OT protocol by generating synthetic data based
on a pair of random devices. This generating synthetic data
enable to bring the perturbed data volume closer to raw data
volume, and extract statistics more accurately.

This work is extension of our preliminary version in Ref-
erence [9]. The current version has some significant novelty
compared to preliminary version. Our proposal in preliminary
version degrade the statistics in data because the method drop
almost data by OT protocol; in contrast, our proposal in the
current version recovers missing data by oversampling so
that statistics can be extracted. The current version enable to
extract statistics with accuracy close to that of pure LDP (See
Section V). Moreover, we design our current proposal to min-
imize the impact of two data poisoning attacks. preliminary
version did not validate the impact of data poisoning attack,
but current version actually show that our method is more
secure than pure LDP via extensive experimental evaluation.

The contributions of this study are threefold: First,
we establish the location data collection in an environment
of mutual distrust by combining LDP and OT protocol.
While the mere combination of these two techniques would
result in the loss of statistics, we were able to properly
transfer the statistics by adjusting the perturbation of LDP
and complementing data loss of OT protocol. Second, the
proposed method mitigates data poisoning attacks, which
have been pointed out as a vulnerability of LDP. Assum-
ing that an adversary is actually included in the data col-
lection in a certain percentage, we conduct an experiment
to check what percentage of the statistics can be extracted
accurately. The experimental results show that our proposal
is more robust against data poisoning attacks than pure LDP.
Third, we show that the proposed method can actually collect
statistics through experiments on real/synthetic datasets, and
measured privacy protection, execution time, and throughput
so that the method can be applied to IoT and mobile environ-
ments with small memory.
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The structure of this paper is as follows: we first give
the related work about anonymization, perturbation, and
OT-based data collection in Section II. In Section IV,
we design a novel LDP-based data collection to decouple
statistical characteristics from data volumes. In Section V,
we analyze our proposal from a viewpoint of privacy and
overhead. In Section VI, we compare our method with related
work and discuss the possibilities and limitations of using
statistics transfer outside of its scope. Finally, in Section VII,
we summarize this study and refer to future work.

II. RELATED WORK
A. LDP-BASED LOCATION DATA COLLECTION
LDP enables all device to protect their privacy even device
cannot trust the datastore. In LDP, what each device has to
do is only adding noise to its own data to ensure indistin-
guishability and sending numerically different or noisy data.
Then, The degree of indistinguishability is determined by the
privacy budget ϵ. LDP provides mathematically privacy pro-
tection regardless of the adversary’s background knowledge
because each device (client) only sends the perturbed data.
Since the datastore cannot check original data in the client
device, LDP can guarantee the client’s privacy even if the
datastore is malicious. To effectively satisfy LDP, Errounda
and Liu [10] proposed assigning different privacy protection
strengths for each timestamp, and Zhao et al. [11] proposed
assigning different privacy protection strengths in time and
space within a terminal. In both methods, privacy is strongly
protected by LDP. However, LDP is vulnerable to data poi-
soning attack [6], [7] because LDP has no method for a data-
store to verify whether received data is reliable. The adversary
thus can succeed in guiding data analysis to the wrong result
[6], [7]. To collect only statistical trends from devices (includ-
ing adversaries), the datastore must receive/discard packets
from the devices without violating client’s privacy.

B. OT PROTOCOL-BASED LOCATION DATA COLLECTION
As a way of selecting packets to receive while keeping
received data secret, Oblivious Transfer Protocol (OT pro-
tocol) [8] is effective technique. In OT protocol, a sender
(device) sends many encrypted packets with public key, each
of which includes a different piece of data, and a receiver
(datastore) decrypts and obtains some of them in a predeter-
mined probability by the trick of key exchange. This protocol
is originally used for secure computation, privacy-preserving,
etc. OT protocol is a broadly studied cryptographic primitive
which involves two mutually distrustful peers who wish to
interact with each other in order to transfer messages in
an oblivious manner. OT protocol is a two peer protocol
between a client and a datastore, by which the client transfers
some value to the datastore. Since the OT protocol allows
the datastore to unilaterally choose the data it receives, the
client has no way of knowing what value the datastore is
receiving (decrypting). Many related work have adopted OT
protocol is to collect and sample location while protecting

FIGURE 2. Overview of the IPA/OPA.

client’s privacy [12], [13], [14]. OT protocol certainly allows
sampling of receiving data, but it does not anonymize/perturb
the sensitive data itself. For this reason, as with CDP, privacy
is not protected if the client does not trust the datastore to
protect their privacy while managing the data.

In summary, LDP can protect privacy more securely than
other methods (anonymization approaches and CDP), but it
is not effective for location data collection if the datastore
cannot be trusted by the device, which risks distorting the
statistics of the datastore by an adversary. On the other hands,
OT protocol allows the datastore to discard/receive data, but
the device must unconditionally trust the datastore. To solve
this dilemma, we utilize LDP and OT protocol together to
collect location data in an environment of mutual distrust.

III. THREAT MODEL
In this section, we present our threat model. There are two
types of attacks on LDP: those at the input stage and those
at the output stage [6], [7]. As defined in reference [6], [7],
we set the definition of Input Poisoning Attack (IPA) and
Output Poisoning Attack (OPA) in location data collection.
Figure 2 is the overview of IPA/OPA. In the following subsec-
tions, we explain the adversary’s capabilities, andmotivations
in each attacks.

A. INPUT POISONING ATTACK (IPA)
First of all, we define the adversary’s capability in IPA.
According to some related work [7], any adversary can easily
obtain a large number of fake accounts. We thus assume
that the adversary can create fake accounts and manipulate
them to amplify the data volume. Specifically, an adversary
accesses m fake accounts and craft their location data and/or
sends a large amount of own location information. The data-
store extracts the statistical characteristics among the n + m
devices, along with the n genuine accounts.
The adversary’s goal is to increase the amount of data

sent using fake accounts, and to distort the statistics that
the datastore would have originally obtained from the data.
An adversary can distort statistics and disrupt a service that
calculates crowding at the landmark (restaurants, railway
station, amusement parks, etc) based on location data, thereby
degrading the quality of the service. For crowdsourcing
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services, distorting statistics cause to spoil the system by
crafting fake real-time events (e.g., traffic congestions) in the
same way. This type of attack to location crowdsourcing has
been pointed out as an example of a practical GPS spoofing
in the reference [15].

B. OUTPUT POISONING ATTACK (OPA)
We assume that an adversary can access a group of fake
accounts by illegally registering and/or purchasing accounts
from dark markets [7]. If the adversary knows the implemen-
tation of the LDP process, he or she can craft the data sent
to the datastore by bypassing the perturbation or replacing
the process that outputs the perturbed value with a process
that outputs an arbitrary value (e.g., using tools to spoof GPS
tracking device and/or to amplify data by making m fake
accounts specific locations). OPA is a more serious attack
than IPA because the adversarymay use it in conjunction with
data amplification.

Unlike IPA, we consider that the adversary’s goal in OPA is
to distort the frequency of certain target locations using fake
accounts. To achieve this objective, the adversary carefully
spoofs and crafts all the location data of the fake account.
As a result, the data collected by the datastore is increased
by the number of fake accounts, as well as the number of
data, and only certain waypoints or trajectories have a high
frequency. By manipulating the frequency of the certain loca-
tion, the adversary can intentionally manipulate the service.
For example, in dating applications, an adversary can mea-
sure the distance to a particular user while spoofing his or
her own location, and can estimate the approximate location
in real-time [16]. Based on this estimation, the adversary
can deliberately act in a way that facilitates matching the
opponent’s device in the system. Not only location data can
be leaked, but also cyber-stalking can become real-life, which
automated stalking exposing user’s privacy even physically.
As a real incident of this pattern, there have been incidents
where incorrect route recommendations have led tourists to
life-threatening deserts with extremely high temperatures and
no water supply [15], [17]. In summary, an adversary in
OPA uses fake accounts to send spoofed location data to
fraudulently increase the frequency of a particular point or
route, greatly distorting the statistics that the data store would
otherwise obtain. Unlike IPA, OPA is more critical because
it allows for statistical poisoning with regard to arbitrary
locations.

IV. OBLIVIOUS STATISTIC COLLECTION
In this section, we describe the proposed Oblivious Statistic
Collection. We first describe the overview of the proposed
method and limitations in Sect. IV-A. Then, from Sect. IV-B
to Sect. IV-D, we describe the solution to each limitations.

A. LIMITATIONS ON LDP-PROCESSSING OVER OT
PROTOCOL
To realize the location data collection in an environment
of mutual distrust, we combine LDP and OT protocol. The

FIGURE 3. The overview of the proposed method. Devices send location
data over 1-out-of-n OT protocol, and the datastore merges them to
obtain statistical characteristics. Even if there is a malicious device
(adversary), they cannot distort the statistics because of the limited data
transfer rate.

combination of LDP and OT protocol decouples the rela-
tionship between statistical characteristics and data volume,
which allowing the collection of statistical features without
exposing any raw data outside of the device. Figure 3 is the
overview of proposed method, and we explain each process.
On the method, the device first samples their data and creates
amessage to be transmitted usingOT protocol.When creating
a message, the device adds noise to satisfy the LDP to protect
data privacy. All devices samples from the oldest waypoints in
order to preserve the continuity of the trajectory. For instance,
if the client holds the data volume [d], they decomposes [d]
according to the window size wmsg and sends it. The client
can send only one waypoint in this transmission method,
in other words, our method is 1-out-of-n OT protocol. Even
if the adversary amplifies their data volume excessively or
spoof their location, their data transfer rate is limited. In short,
OT protocol decouples the relationship between statistical
characteristic and data volume because the datastore never
receives except one data. All devices transfer the created OT
protocol messages to the datastore. The datastore receives
only one of the messages transferred by OT protocol and
merges the received data with the collected data. To prevent
the adversary from guiding to the wrong result by data poi-
soning (amplifying data volume and/or spoofing their data),
the datastore receives only one hash value (non-sampled mes-
sage values are dropped out) over OT protocol. This transfer
multiple times enables the datastore to collect only statistical
characteristics independent of the device’s data volume. Then
datastore analyzes the merged data to obtain the statistical
characteristics.

However, implementing LDP on OT protocol causes three
serious problems: noise amount does not become uniform
between each message of OT protocol (Problem 1), noise
amount increase due to OT protocol message drops (Prob-
lem 2), and statistic loss due to OT protocol message drops
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(Problem 3). First, we describe Problem 1. In order to protect
privacy in LDP, devices use privacy mechanisms such as the
Laplace or exponential mechanism to add noise to individual
waypoints. This helps to anonymize the waypoints from each
other. The added noise should be consistent to ensure that the
overall privacy protection is constant. However, when using
the OT protocol, only a portion of the data is transferred.
This can result in an inconsistent level of noise in the data
received by the datastore, which can lead to either insufficient
privacy protection or excessive protection that goes against
the device’s intent.

Next, we describe Problem 2. Over OT protocol, the sender
divides all data into pieces called messages and sends them.
The datastore (receiver) receives randomly selected data over
OT protocol with a predetermined probability. This mecha-
nism, which is equivalent to sampling, generates excessive
noise relative to the amount of data. This is because the
device (sender) does not know in advance how much data
the datastore will receive, and the device adds noise on the
assumption that they will receive all the data. Figure 5 shows
a specific example of privacy loss due to pure LDP over
OT protocol. In Figure 5, LDP is used on the OT to collect
location data while protecting privacy. A simple combination
of LDP and OT provides overly strict privacy protection
because the majority of data is not received until the datastore
samples the message. If data is collected so that ϵ = 10 for
the entire message by protecting it with ϵ = 1 for each of
the 10 messages, but OT protocol actually drops 8 of those
messages, the entire message will have ϵ = 2, and the spatial
correlation would not be maintained correctly. The amount of
noise (perturbation) to satisfy the LDP depends greatly on the
message length in the OT and how many of the messages are
received by the datastore.

Finally, we explain Problem 3. OT protocol divides data
into messages and transfers them, but because most of the
messages are lost, the data volume received by the datastore
is small. For example, if there are 100 participating devices
and 100 records of location data are collected per device,
pure LDP is able to collect 10,000 records of data, but this
method collects only 100 records. Extracting statistics from
small-scale data is difficult, and the added noise to satisfy
LDP makes it even more difficult to extract statistics when
LDP is implemented over OT protocol compared with normal
data. Therefore, Combining LDP and OT protocol need data
engineering to increase the data volume as the original data
so that statistics can be extracted. In this regard, simply
increasing the data volume will generate synthetic data that
is completely different from the distribution of the original
data. In order to extract appropriate statistics, it is necessary
to adjust the data volume, taking into account the original data
distribution.

B. ENCODING LOCATION DATA
To solve Problem 1 of Sect. IV-A, we encodes location data.
By converting from numerical location data (latitude, longi-
tude, timestamp) to categorical location data (hash value),

our method makes the noise amount on each message uni-
form. By making the amount of noise uniform on a message-
by-message basis, the privacy protection strength remains
constant even if OT protocol loses messages. Moreover, for
a categorical data format (small-domain), the noise amount
to satisfy LDP is small [18]. This is because categorical
data is more coarse-grained and easier to disambiguate than
numerical data, i.e., it is easier to satisfy the LDP.

As encoding method, we use Quadkey [19]. Unlike com-
mon encoding for location data such as GeoHash,1 QuadKey
assigns a hash value to each tile based on mercator coor-
dinates rather than latitude and longitude and can represent
distances in the real world more accurately. Many research
on location data frequently uses quadkey to provide real-
world-based services and data analysis [20], [21], [22]. While
GeoHash recreates 32 map segments, QuadKey recursively
quadrants the map, allowing for the finely controlled col-
lection of location data granularity. In QuadKey, by setting
the zoom level 2zoom to represent the granularity of the
segmentation, the datastore can finely control and collect the
location data granularity. For each additional level, each tile
is divided into four sub-tiles of equal size. In short, QuadKey
can more accurately represent geographical distances in the
real world. Figure 4 show the example of quadkey’s hash
around the Trocadéro Square (latitude = 48.858093 and
longitude = 2.294694). As illustrated in Figure 4 at the 3-th
zoom level (θLevel = 3), Trocadéro Square is mapped into
a tile with the quadkey ‘‘012’’. In our proposal, all client
(device) use QuadKey and encode their location data into a
hash value (categorical data) based on the2zoom agreed upon
with the datastore.

C. ADJUSTING PERTURBATION
To address the Problem 2 in Sect. IV-A, our proposal adjusts
the total amount of noise added to each message. By adjust-
ing the total amount of noise according to the proportion of
messages that are lost, the method prevents excessive privacy
protection.

We will describe the order of OT protocol. After encoding
to categorical data format by Quadkey, all device perturb their
location and create an OT protocol’s message for transferring
data to the datastore. The devices then add noise to the data
(hash value) to protect privacy. As the perturbation for hash
value, we use the k-Ary Randomized Response (k-RR) [23],
which is a perturbation mechanism that outputs a value dif-
ferent from the input value with a certain probability at a
discrete value. k-RR perturbs the data on the device so that
it becomes indistinguishable, thus satisfying the ϵ-LDP. On
k-RR, the device samples genuine hash value v on the device
with a probability p of Equation (1) (they sample fake hash
value with a probability q of Equation (1)) to satisfy ϵ-LDP,

1GeoHash is one of the public domain geocoding methods based on
latitude/longitude, developed by Gustavo Niemeyer while creating the geo-
hash.org web service.
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FIGURE 4. QuadKey encoding and zoom level 2zoom.

and sends part of it to the datastore as a message wmsg.

RkRR(y|v) =


p =

eϵ

eϵ + d − 1
, if y = v

q =
1

eϵ + d − 1
, if y ̸= v

(1)

p′ =
p1
p2

, q′ =
p2 − p1
d − 1

(2)

Then, we cause Problem 2 of Sect. IV-A if we just combine
k-RR and OT protocol. The proposed method thus adjusts the
amount of noise added to location data between the devices
and datastore. Specifically, the proposed method perturbs the
data of each message by adjusting the protection strength
in advance, adapting it to the final protection strength to
be achieved (See Figure 6). To determine the number of
messages for the entire data, the method calculates the great-
est common divisor (GCD). Then, the method employs the
Euclidean algorithm, which is the most efficient method to
obtain GCD. We derive GCD of p and message size wmsg
by Euclidean algorithm, and calculate the minimum divisors
p1, p2 of p and wmsg to be k-RR’s adjusted probabilities p′, q′

after decomposition (See Equation (2)). This allows us to
set an appropriate perturbation probability according to ϵ

and wmsg. In this case, the perturbation probability p′ after
decomposition is less than eϵ

eϵ+d−1 . Also, q
′ is greater than

1
eϵ+d−1 . Therefore, p

′, q′ are more stringent than p, q defined
in k-RR respectively, and protect privacy more strongly than
the pure ϵ-LDP.

D. AGGREGATION AND OVER-SAMPLING
To handle Problem 3 in Sect. IV-A, our method oversample
received data. Compared to pure LDP, the proposed method

receives less data, whichmaking it difficult to correctly obtain
statistical characteristics from the aggregated data as a whole.

To increase the amount of data while maintaining statistical
characteristics, we increase the sample size by generating
synthetic data. We use the Multi-Label Synthetic Minority
Over-Sampling Technique (MLSMOTE) [24] for synthetic
data generation, which can be used for multi-label categor-
ical data. In order to prevent oversampling from eliminating
characteristics in the data (e.g., large cities have higher pop-
ulation densities, rural areas have lower population densities,
etc.), we intentionally synthesize the data while preserving
imbalanceness in aggregated data.

Finally, datastore estimates statistical characteristics from
the oversampled location data. As an estimator, we use pop-
ulation density data (vi, ti)(i = 1, 2, . . . , n) consisting of
device locations to estimate statistical characteristics. This
research adopt Kernel Density Estimation (KDE) to estimate
the probability density function with relatively high accuracy
even when only a small sample are available, and it can match
the true probability distribution when the sample is infinite.
KDE provides statistical characteristics even for location data
which parametric methods cannot be applied due to the dif-
ficulty of making distributional assumptions. We define the
population density distribution for a given time period as in
Equation (3).

f (v, t) =
1

hthS

I∑
i=1

Kt

[
t − ti
ht

]
KS

[
v− vi
hS

]
(3)

The kernel functions Kt and KS in Equation (3) are the kernel
functions for each time and spatial component, where Kt is
the uniform distribution most used in the representation of
time andKS is the quarticmost used in studies of spatial statis-
tics. The bandwidths ht and hS of the kernel functions Kt and
KS are parameters and need to be tuned. In this paper, we tune
the parameters by training on population density data and
searching for candidate bandwidth pairs. Within the training,
the evaluation time point tk (k = 1, 2, ..K ) and the evaluation
period 1t is the period of time that is considered to occur at
tk . For each given pair of candidate bandwidths (ht , hS ), the
population density distribution c at the evaluation point tk of
a given study period is calculated using the mk population
density data within the time bandwidth d in Equation 1, and
the set of tilesGk(b) whose f (v, t) value is within tile coverage
β from the top of all tiles in the area to be forecast is extracted.

V. EXPERIMENTAL EVALUATION
The experimental evaluation measure four aspects: pri-
vacy protection, accuracy of statistics collection, robust-
ness to poisoning attacks, and overhead (execution time and
throughput).

A. IMPLEMENTATION
We implement all program on ASRockRack 3U8G+/C621E
workstation, CPU is 40-core Intel Xeon Gold 6230 Pro-
cessor at 2.10 GHz, 262 GB RAM, and the host OS is
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FIGURE 5. The overview of the combination of pure LDP and OT protocol. Since the datastore (receiver) receives randomly selected data with a
predetermined probability over OT protocol, if the device (sender) adds noise to all data, the amount of noise is excessive. Then, the datastore cannot
correctly extract statistical characteristics from the data.

FIGURE 6. Overview of the perturbation adjustment in our proposed method: to apply LDP on OT protocol, we adjust the Euclidean algorithm to add
appropriate noise for the number of messages in OT protocol.

Ubuntu 18.04 LTS. For implementation environment, we use
OS-level virtualization Docker to simulate data collection
between 100-clients and one datastore. The 100 containers
that play the role of client (device containers) were built with
the mem_limit provided by docker-compose to limit the size
to 2GiB. Device containers send data to datastore containers
(datastore containers) using sockets.

As a cryptographic primitives in OT protocol, we adopt
Pedersen’s Commitment [25] as a public key scheme, which
is a public key exchange scheme that is computationally
secure. The client sends the message sequence wmsg, which
is perturbed and sampled from the data v′ to the datastore
in encrypted form. But the datastore chooses an arbitrary
number σ from n, and decrypt this σ -th value only. Next,
the client creates a public key K = (g; h) using wmsg and σ .
From the encrypted values wi and yi, the datastore calculates
wbσ (= vb) using (wi, yi) received from the client and decrypts
gµσ ← yσ /hw

b
σ . Since the Decisional Diffie Hellman (DDH)

assumption holds for the entire sequence of operations, the

client cannot estimate the σ defined by the datastore, and
the datastore likewise cannot know the distribution of the
entire message sequence wmsg and the original data v. Since
it has been shown that the combination of Oblivious Transfer
and Pedersen’s Commitment is sufficiently secure [26], [27],
[28], the client can securely send perturbed data and public
keys while protecting their privacy. After decrypting, OT pro-
tocol checks the consistency of the last message received
(including those that were not decrypted in the datastore).
For data authentication, we use Bulletproofs [29] as one of
challenge-response authentication to check the consistency.
Bulletproofs requires very little communication for verifica-
tion and can be implemented in low-memory environments
such as mobile terminals. Since the client does not have to
broadcast the original data over the network, and the content
of the challenge sent by the client is different each time,
the security risk is very low even if the challenge/response
leaks. After data authentication by Bulletproofs, the proposed
protocol is terminated.
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B. PRIVACY EVALUATION
The noise amount depend on the privacy budget and perturba-
tion probability. For privacy evaluation, we therefore measure
the perturbation probability q for each privacy budget ϵ and
compare three of them: pure LDP, LDP over OT protocol, and
our proposal. Since the simple combination of OT protocol
and LDP results in an excessive amount of noise, we analyze
how much probability q of the all method outputs perturbed
value. In this experiment, the client generates location data
as random numbers (uniform distribution), serializes them
into a sequence, and sends them to the datastore via each
method (pure LDP, LDP over OT protocol, and our proposal).
Here, we have three parameters: privacy budget and zoom
level. The range of the privacy budget is ϵ(ϵ ∈ [0, 10]), and
the quadkey’s zoom level 2zoom is verified at [1, 4] (If the
datastore set 2zoom is 4 between datastore and device, then
the tile consist of 256 (= 44)).
The Figure 7 shows the measured q for each 2zoom when

ϵ is varied. A common feature for all 2zoom is that the
difference of q between pure LDP and our proposal is smaller
than the difference between pure LDP and LDP over OT
protocol. As explained in Section IV-C, simply combining
OT protocol and LDP results in an excessive amount of noise
because datastore drop the majority of messages. This is
the reason why q of LDP over OT protocol is abnormally
high relative to ϵ compared to pure LDP. In Figure 7, LDP
over OT protocol has a perturbation probability q for the
privacy budget about 0.1 to 0.2 higher than that of pure LDP.
Simply combining OT protocol and LDP did not approxi-
mate the perturbation probability of pure LDP. In contrast,
the proposed method adjusts the noise amount in advance
according to ϵ and the number of drop messages. In the-
ory, our perturbation probability q′ approximate 1

eϵ+d−1 (the
perturbation probability of pure LDP). Such as LDP over
OT protocol, combining multiple privacy protections usually
results in too strong privacy protection (removing statistical
characteristics), but the proposed method has the same pri-
vacy protection probability as pure LDP. In summary, q of
the proposed method is smaller than LDP over OT proto-
col (the baseline) at all 2zoom, and the noise amount is as
low as pure LDP while achieving data collection in mutual
distrust.

Next, we describe the difference among each2zoom. When
the 2zoom is low, the coarser granularity of data collec-
tion required less noise (small perturbation probability q) to
guarantee indistinguishability, and there is a large difference
among pure LDP, LDP over OT protocol, and our proposal.
On the other hands, In the case of 2zoom is high, the noise
amount is large (high q) because the finer granularity of the
data collection makes it difficult to anonymize data from each
other. This is the reason why it is difficult to approximate the
same q of pure LDP. Based on these results, it can be seen
that simple LDP over OT protocol without proposed method
is not able to collect statistics properly because its privacy
protection is too strong.

C. APPROXIMATION ACCURACY OF STATISTICS
COLLECTION
We evaluate whether the location data actually collected by
the proposed method loses its statistical characteristics due to
privacy protection. Since the proposedmethod is more private
because it combines several privacy protections, it is more
difficult to preserve statistics than pure LDP. This experiment
evaluates the approximation accuracy of the proposedmethod
against pure LDP.

For the evaluation, we need to set up a specific task using
the location data. A popular use of location data in urban
development and marketing is the estimation of population
density. This study also assumes the use of location data
for population density estimation, and evaluates whether the
collected data can be used for population density estimation.
For measurement, we use Dynamic population distribution
dataset for Helsinki Metropolitan Area [30] as real dataset.
Not only real dataset, but also we use Power-law/Uniform
dataset as synthetic dataset. Since the real dataset also con-
tains correlations and geographic features, we also validate
our proposal on a synthetic-dataset which has no correlations
and geographic features.

Table 1 indicate the result of approximation accuracy on
each dataset. The closer to the accuracy of pure LDP, the
better the proposed method is at collecting statistics. The
tendency as a whole is that the accuracy is almost linearly
proportional to ϵ. For each dataset, both pure LDP and our
proposal are affected by the imbalance of the dataset. HMA
Espoo and HMA Vantaa have scattered distributions (high
variance), and even when ϵ = 9, the accuracy is not high.
On the other hands, HMA Helsinki, HMA Kauniainen and
Power-law are locally concentrated in some areas, and thus
both pure LDP and our proposal are considered to have
achieved high accuracy. Although uniform dataset had a large
variance, it was easy to make indistinguishable because the
2zoom was not large, which lead to high accuracy.

D. ATTACK EVALUATION
In this section, this study evaluates the robustness of pure
LDP and our proposal to poisoning attacks. For our evalu-
ation, we use the uniform dataset in Sect V-B.

1) IMPACT OF IPA
Here, we evaluate the robustness pure LDP and our proposal
against IPA. By measuring the accuracy of statistic collection
when the percentage of adversaries is set to [0%, 25%, 50%,
75%, 95%], we investigate the degree to which pure LDP
and the proposed method suffer deterioration due to IPA. The
experimental setup is similar to Sect V-B, with 100 containers
of client roles sending data to the datastore. Out of these
100 devices, a certain percentage [0%, 25%, 50%, 75%, 95%]
of the adversaries attempt to distort the statistics via the IPA.
The adversary sends 10 times more data than the benign
device.
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FIGURE 7. Box plot show the probability q in privacy mechanism for each privacy budget ϵ, measured for each quadkey zoom level θlevel. The larger the
value of probability q, the more perturbed the output value is, thus protecting privacy. The smaller the value of ϵ, the stronger the privacy protection.

TABLE 1. The approximation accuracy of statistical collection.

Figure 8 (a) to (d) shows the accuracy of population pre-
diction in pure LDP under IPA, and Figure 8 (e) to (h) shows
the proposed method. Each percentage represents the ratio of
adversaries; the darker the color, the higher the percentage of
adversaries. For instance, 25% for the dataset Uniformmeans
that 25 out of 100 users are adversaries. Since pure LDP is not
equipped with any mechanism to downsample the received
data, the accuracy is strongly affected by IPA, which results
in severe degradation. For instance, in Figure 8 (a) to (d), the
accuracy is reduced to from 0.2 to 0.4 for all ϵ, especially
when the ratio of adversaries exceeds 50%, indicating that
the statistics are not preserved in the datastore. In contrast, the
proposed method limits the data volume per device, no matter
how many IPAs an adversary sends. Therefore, our method
show that statistics can be preserved as long as the ratio of
adversaries is not extremely high. In Figure 8 (e) to (h), even
if the ratio of adversaries exceeds 50%, half of the statistics
can be preserved compared to the case with no adversaries
at all.

2) IMPACT OF OPA
The containers used in the experiment and the ratio of adver-
saries are exactly the same as in the IPA experiment. Out
of these 100 device-role container, a certain percentage [0%,
25%, 50%, 75%, 95%] of the adversaries attempt to distort the
statistics via the OPA. Unlike IPA, the adversary intentionally
spoof the value of data to manipulate the distribution at an
arbitrary location. This experiment define that the adversary
sends 10 times as much data as the IPA.

Figure 9 (a) to (d) shows the accuracy of population pre-
diction under OPA in pure LDP, and Figure 9 (e) to (h)
shows the proposed method. The higher the value of accuracy

on the vertical axis, the more intrinsic value is preserved
on the data store side, and the higher the privacy budget,
the more intrinsic value is preserved. Likewise Figure 8 in
Sect V-D1, each percentage represents the percentage of
adversaries; the darker the color, the higher the percentage of
adversaries. Pure LDP is not equipped with any mechanism
to limit the data transmission rate, so the accuracy is strongly
affected by OPA, which results in severe degradation. In
Figure 9 (a) to (d), the accuracy is reduced to from 0.2 to
0.4 for all privacy budgets, especially when the ratio of
adversaries exceeds 50%, indicating that the statistics are not
preserved in the datastore. InOPA, the adversary intentionally
spoofs to a value, which is more severely aggravated than
in IPA. In contrast to pure LDP, the proposed method limits
the data sent per device. Even if an adversary spoofs and
sends values, the impact is only as great as the number
of adversarys, since the data volume that can be sent is
severely limited. Therefore, our method can preserve statis-
tics as long as the ratio of attackers is not extremely high.
In Figure 9 (e) to (h), even if the ratio of adversaries exceeds
50%, our method preserve half of the statistics compared to
the case with no adversaries case.

E. OVERHEAD MEASUREMENT
In our method, the execution time and the throughput vary
greatly depending on the amount of data and the size of
OT protocol message. Depending on these overheads, the
proposedmethodwill be difficult to apply in caseswhere real-
time performance is required in data collection and acquisi-
tion of statistical characteristics, and in power-saving devices
such as IoT and smart devices. To validate their overhead
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FIGURE 8. The barplot shows the accuracy of statistic collection in pure LDP (upper columns) and proposed method (lower columns) for each privacy
budget under IPA.

FIGURE 9. The barplot shows the accuracy of statistic collection in pure LDP (upper columns) and proposed method (lower columns) for each privacy
budget under OPA.

and discuss the performance, we analyze the overhead by
measuring the execution time and throughput.

1) EXECUTION TIME
To verify the reality of the proposed method in population
density estimation, we evaluate the execution time. Naturally,
the execution time varies depending on the size of the mes-
sage wmsg to be sent. This is because the larger the message
size, the more time is required for oversampling and Bullet
Proof, which are executed by the datastore after reception.
As experimental design, we measure the execution time until
all phases of setting parameters (wmsg : [100, 1000, 10000]),
adjusting perturbation for OT protocol, and sending location
data between the device and datastore are completed.

All Box plot in Figure 10 shows the execution time dis-
tribution of proposed method for each wmsg. The degree of
variation is not large for each wmsg, but the execution time
itself increases in proportion to the window size. This is
because the amount of data over OT protocol increases in pro-
portion to wmsg, and it takes execution time for the datastore

to receive and decrypt the data. Next, we analyze this result
in terms of the realistic population density estimation and the
requirements. Population estimation is performed at various
time slots (e.g., hourly, daily, yearly) [31], [32], [33], [34], but
to our knowledge the shortest time slot was every 30 minutes
(1800 seconds) [31]. Since even with the largest messege size
(wmsg =10000) in our experiment, the maximum execution
time is 486 seconds, the proposed method can be executed in
a realistic time for population density estimation.

2) THROUGHPUT
In the normal TCP protocol, how much data a datastore
can receive at one time depends on the size of data. How-
ever, in the proposed method (OT protocol), the data volume
received by the datastore is always constant no matter how
much data is sent by the device side, thereby the through-
put is expected to be constant. As the amount of data pro-
cessed per unit of time in the datastore, we also measure the
receive throughput from the execution time and the amount of
data (bits) communicated between the two docker container

VOLUME 11, 2023 21383



T. Sasada et al.: Oblivious Statistic Collection With Local Differential Privacy in Mutual Distrust

FIGURE 10. Box plot shows the execution time of the proposed LDP for different window sizes wmsg. The execution time distribution at each wmsg is
plotted in combination with the associated box plots. The bar plot shows the throughput at each window size.

(device-role containers and the datastore-role container). Bar
plot in Figure 10 shows the throughput for each wmsg. When
wmsg is small (such as 100) the variation of the throughput is
small, and it is about 150 Bit/sec at most.

However, unlike the intended design of the proposed
method, throughput is not constant. The Figure 10 indicate
that there is a slight proportional relationship between wmsg
and throughput. In particular, there is a significant difference
in throughput of up to 650 Bit/sec for wmsg = 100 and
wmsg = 10000. This is considered to be an indirect effect of
the memory load on the datastore container, not the received
data itself. The required perturbation probability depends
on the privacy budget, zoom level, and window size. The
calculation of perturbation probabilities is partially looped by
these parameter settings (e.g., the greatest common divisor
cannot be obtained by Euclidean Algorithm), resulting in
excessive memory load. This is believed to be the reason why
the throughput was not constant. This result is reasonable in
actual data collection because multiple process threads run in
parallel in actual data collection.

VI. DISCUSSION
Finally, we discuss the comparison with related work, out-of-
scope applicability of this research, and our limitations.

A. OTHER APPLICATION
This study decouple the relationship between statistical char-
acteristics and data volume by combining the LDP over the
OT protocol. The Attack on LDP [6], [7] is carried out in var-
ious ways, such as generation of malicious raw data, modifi-
cation of LDP process or parameters, and data amplification.
Our proposal may be valid for these attacks. Furthermore, the
proposed method provides a guideline that data collection is
possible even for mutual-distrust pairs. In our trust model, the
device does not trust third parties, including the data store,
and thus does not expose any of its original data outside the
device. Due to the possibility of LDP attacks, the data store
also does not trust that the device will send the correct data
at all. In other words, we can say that the proposed method
achieves data collection in mutual-distrust pairs. To the best

of our knowledge, there are no studies that have achieved data
collection in mutual-distrust pairs. Thereby, applying LDP
over the OT protocol may be a solution to these problems
in future data collection. Also, the proposed method is not
suitable for obtaining precise location information, but it
is suitable for collecting landmark-based trajectories (e.g.,
visiting the Eiffel Tower from Charles de Gaulle airport via
the Arc de Triomphe). Landmark-based data collection has
been studied mainly for the purpose of congestion, event,
location verification, and disaster forecasting [35], [36], [37].
The proposed method that can collect categorical locations is
considered to have high affinity.

B. LIMITATION
The limitations are the integrity of the privacy budget and ver-
ification of input data. If the device spoofs the privacy budget
after the connection is established, the datastore cannot meet
strict LDP. This is very dangerous because it can lead to
unintended privacy leaks. Moreover, if the device spoofs the
input data to the privacy mechanism, the datastore no longer
decouples statistical characteristics from data volume. Spoof
detection of input data has long been considered a difficult
problem, but it is also necessary in this study.

There may also be cases other than our assumed adversary
pattern. In this paper, we assumed that the proportion of
adversaries is constant, but in reality it may change as new
participants join or leave the data collection. An increase in
the proportion of adversaries could also significantly distort
the statistics at any given moment. Although we design the
proposed method with the 1-out-of-n OT protocol, it may
be possible to handle such cases by adjusting the number of
messages to be lost, for example, depending on the increase
or decrease of the adversary. In that case, however, it would be
necessary to design a new function that dynamically adjusts
the noise amount as the number of messages lost changes.

VII. CONCLUSION AND FUTURE WORK
In this study, we designed and implemented LDP over OT
protocol to decouple the statistical characteristics from data
volume. We proved our proposal is robust to data poisoning
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attacks to LDP through experimental evaluation. Our exper-
imental evaluation reveals three facts: (1) The proposed
method can extract statistics with higher accuracy than pure
LDP, even when strong privacy budgets are set. (2) Pure LDP
is vulnerable to both IPA and OPA, but the proposed method
is robust and can preserve statistics of location data with
high accuracy. (3) The overhead (execution time/throughput)
of the proposed method is acceptable for population density
estimation from mobile terminals by comparing it with the
reference citations.

Next, we summarize our method from the viewpoint of
security, sustainability, and efficiency aspects. The proposed
method is significantly secure because it uses only suffi-
ciently secure ciphers, and there is no risk of decryption
during the OT protocol process. From a security perspective,
we mainly discuss whether the proposed method will not leak
privacy. Since the proposed method uses only sufficiently
secure ciphers, there is no risk of decryption during the
OT protocol process. The received data is also authenticated
by Bulletproof, so it is secure enough that no intermediary
can falsify the data during the step of OT protocol. Next,
we discuss sustainability and how far we can respond to
changes in devices and datastores. The proposed system can
continuously collect data as long as the target device is not
damaged. Although there is a limit to the capacity of the data
store and data must be discarded when the volume exceeds
a certain level, there is no problem from the standpoint of
sustainability. Finally, we summarize the efficiency. In the
proposed data collection, the datastore is never idle as long as
data is sent from the device. The burden on the devices is also
small and efficient, consisting only of pre-processing to con-
vert the data into a gridded structure and down-sampling by
the OT protocol. However, it is also possible to dynamically
control the data volume sent by devices as they move, and
proposals for further efficiency improvements are possible.

Finally, we describe some interesting and important direc-
tions for future work. It is known that location data does
not satisfy strict LDP if data is continuously published.
We thereby can consider substituting the privacy mechanism
that is assumed to be used for location data. Experiments
using actual mobile devices instead of Docker environment
would also be of great value and interest. In actual mobile
devices, delays occur depending on the throughput of the
privacy mechanism, and delays also affect the accuracy of
analysis on the datastore. We also suspect there are other
applications for this proposal in privacy research beyond
population density estimation that could be investigated.
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