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ABSTRACT Additive manufacturing has significant advantages in complex parts of the vehicle
manufacturing. As additive manufacturing is a kind of precise production activity, different components
of manufacturing instruments need to be located in appropriate positions to ensure accuracy. The visual
Simultaneous Localization and Mapping (SLAM) can be considered to be a practical means for this
purpose. Considering dynamic characteristics of additive manufacturing scenarios, this paper constructs a
deep learning-enhanced robust SLAM approach for production monitoring of additive manufacturing. The
proposed method combines the semantic segmentation technique with the motion-consistency detection
algorithm together. Firstly, the Transformer-based backbone network is used to segment the images to
establish the a prior semantic information of dynamic objects. Next, the feature points of dynamic objects
are projected by the motion-consistency detection algorithm. Then, the static feature points are adopted for
feature matching and position estimation. In addition, we conducted a couple of experiments to test function
of the proposed method. The obtained results show that the proposal can have excellent performance to
promote realistic additive manufacturing process. As for numerical results, the proposal can improve image
segmentation effect about 10% to 15% in terms of scenarios of visual SLAM-based additive manufacturing.

INDEX TERMS Additive manufacturing, vehicular parts, visual SLAM, deep learning, dynamic scenes.

I. INTRODUCTION
Additive Manufacturing is an emerging processing technol-
ogy based on the principle of discrete stacking [1], [2], [3],
which breaks the traditional reduced material manufacturing
and equal material manufacturing production methods [4],
[5]. It is a newmanufacturing technology that does not require
the collaboration of jigs and fixtures and is not processed

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Quan.

by machine tools and equipment [6], [7], [8]. With the
unification of production standards and the maturity of raw
material technology, additive manufacturing technology is
well boosted by intelligent technology and the intersection
of basic disciplines like automotive industry, aerospace, bio-
engineering and other fields [9], [10]. At the same time,
its gradual prevalence can also breed some latent technical
breakthroughs in many cross-discipline applications [11],
[12]. Therefore, it is believed to have unlimited market
potential in terms of smart manufacturing [13], [14], [15].
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FIGURE 1. A typical example that illustrates scenarios of robust visual SLAM for additive manufacturing.

Additive manufacturing technology firstly uses computer-
aid design softwares to conduct 3D modeling for mechanical
parts. Then, slicing software is utilized to slice the 3Dmodels
according to the parameters of the parts. On this basis, the
computer algorithms are used to precisely connect each layer
to form a layer stack to quickly realize the additive manufac-
turing of parts [16], [17]. Contemporarily, the application of
additive manufacturing technology has bee more and more
general in the automotive industry [18], [19],liu2022human.
In this context, some brand-name automotive companies
currently choose to use additive manufacturing technology
in the automotive development stage to achieve the purpose
of rapid verification and optimization of components [20],
[21]. In the small batch production of automotive parts
often involve some complex parts with thin walls and
internal abdominal cavities, the traditional forging and
casting processes have limitations in processing and cannot
meet the production requirements [22], [23]. Due to the point-
by-point, line-by-line and domain-by-domain local forming
characteristics of additive manufacturing technology, it is
possible to achieve highly flexible near-net-shape additive
manufacturing in themanufacture of complex parts [24], [25].
Therefore, additive manufacturing technology has significant
advantages in the manufacturing of complex parts, and the
application prospect is very promising [26], [27].

A. MOTIVATION
In additive manufacturing, how to use vision sensors for
accurate positioning and mapping of parts is the key to realize
autonomation. With the continuous development of research,
robots are equipped with more diverse sensors, including
vision, laser, radar, and multi-sensor fusion methods. Robots
are able to perceive their environment and have the ability
to estimate the state of their systems using the sensors they
carry, they can sense their surroundings and make decisions
autonomously. These digital technologies require accurate
and robust localization with the ability to progressively build
and maintain models of the world scenes. In this work,

localization refers to the ability to obtain the internal system
state of the robot’s motion, including position, orientation,
and velocity. While mapping refers to the ability to sense
the state of the external environment and capture information
about the surroundings, including the geometry, appearance,
and semantic information of a 2D or 3D scene [28].
These components can perceive internal or external states
individually or, like simultaneous localization and mapping
(SLAM) [29], so as to facilitate control decision of robot’
poses.

The localization and mapping problem has been studied
for decades and various sophisticated hand-designed (hand-
designed) models and algorithms are being developed, such
as odometer estimation, image-based localization, position
recognition, SLAM, motion reconstruction (SfM) [29], [30].
Under ideal conditions, these sensors and models are able to
estimate the system state accurately regardless of the time,
environment constraints. However, in reality, sensor measure-
ment errors, system modeling errors, complex environmental
dynamics and unrealistic constraints (conditions) affect the
accuracy and reliability of manually designed systems [31].
Although modern vision SLAM systems are quite mature
and have satisfactory performance [32], the aforementioned
classical SLAM systems are with the assumption that the
objects for SLAM are static, and the detection and processing
of dynamic objects are very limited.

However, in actual indoor and outdoor scenes, it is
impossible to circumvent moving objects [33]. In this case,
unexpected changes in the surrounding environment may
seriously affect the camera pose estimation, increase the
trajectory error or even lead to system failure. Thus, the
detection of moving objects and the correct segmentation
of dynamic regions become important research aspects of
vision SLAM in dynamic scenes. Because of the limitations
of model-based solutions and the rapid development of
machine learning, especially deep learning, researchers have
been prompted to consider data-driven learning methods as
an alternative approach to solve this issue. The class of
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relationships between sensor data input values (e.g., vision,
inertial guidance, LiDAR data or other sensors) and target
output values (e.g., position, orientation, scene geometry or
semantics) as a mapping function [34], [35].

B. CONTRIBUTIONS
While traditional model-based solutions are implemented by
manually designing algorithms, learning-based approaches
construct this mapping function by learning large amounts
of data. The learning-based approach has three advantages.
Firstly, the learning approach can automatically discover
task-relevant features using a highly expressive deep neural
network as a general-purpose approximator. This feature
enables trained models to adapt to various scenarios (e.g.,
featureless scenes, dynamic high-speed scenes, dynamic
blur, accurate camera calibration) [36], [37]. Secondly, the
learning approach allows learning from past experiences
and actively developing new information. By building a
general data-driven model, researchers can solve domain-
specific problems without having to go through the trouble
of specifying the entire knowledge about mathematical and
physical rules when building the model. Thirdly, deep neural
networks have the ability to be scaled to large-scale problems.
Trained on large data sets through back propagation and
gradient descent algorithms, a large number of parameters
in the DNN framework can be automatically optimized by
minimizing the loss function. Thus, harnessing the power of
data and computation to solve localization and mapping is
potentially achievable.

The multi-sensor fusion scheme needs to add information
from different sensor sources, facing multiple difficulties
such as data correlation, signal synchronization, and fusion
processing, which greatly increases the complexity of the
system, and the dense scene flow approach is computationally
intensive and a great challenge for real-time computing
[38], [39]. The multi-sensor fusion scheme can construct
semantic maps to enrich the robot’s understanding of the
environment and thus obtain advanced perception, but there
are problems of misjudgment for movable objects. To address
it, this paper proposes a robust SLAM algorithm for dynamic
scenes, which uses deep learning to quickly identify dynamic
object frames combined with sparse feature optical flow
calculation to make further dynamic judgments, the scenario
of the proposed method is shown in Figure 1. Edge detection
algorithms are used to effectively segment the edges of
dynamic objects to ensure that no too many static feature
points are mistakenly removed. And a static environment 3D
point cloud map without dynamic objects are constructed to
truly realize the powerful sensing capability of autonomous
robots.

To sum up, the main contributions of this paper can be
stated as the following three aspects:

• This work aims at the additive manufacturing of
automobile parts, and explores to employ deep learning-
based vision sensing to enhance the manufacturing
process.

FIGURE 2. The workflow for main detailed process of proposed
methodology.

• This work proposes a robust visual SLAM method for
additivemanufacturing of vehicular parts under dynamic
scenes.

• This work conducts simulation experiments on real-
world scenarios to evaluate performance of the pro-
posal, and corresponding discussions are also made
for it.

II. METHODOLOGY
In our study, the transformer real-time target detection
algorithm is used to quickly obtain the rough rectangular
range of potential semantic dynamic objects in the three-
channel image of input, the ORB feature points and the
optical flow field are extracted and calculated, respectively,
which largely reduce the time to calculate the optical flow
field of all pixel points. Then by combining the semantic
data with the dynamic feature points filtered by the optical
flow field calculation, the true motion of the object can be
obtained. Then, the canny operator is adopted to detect the
edges of the dynamic objects to extract the edge data of the
dynamic objects, and to do position estimation of camera by
minimizing re-projection error of static feature points other
than dynamic objects. Finally, the map is constructed using
the key frameswith the dynamic objects removed. The overall
flow is shown in Figure 2.

A. REAL-TIME TARGET DETECTION BASED ON
TRANSFORMER
The Detection Transformer (DEtection TRansformer,
DETR) [40], [41] with an ensemble global loss that makes
predictions through bilateral match and a classical encoder-
decoder architecture, which containing three components:
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FIGURE 3. Sketch map for the technical structure of a Transformer-based vision sensing approach.

a CNN based backbone to extracte feature representations,
a Transformer pretraining model to enhance features, and
a simple feedforward network (FFN) for performing the
object detection prediction.The detail structure is shown as
Figure 3. Starting from an initial image ximg ∈ R3×H0×W0

(3 color channels, To batch the input images together with
sufficient 0 padding to have the same dimension (H0,W0) as
the largest image in same batch), a convolutional network
then to generate a activation map f ∈ RC×H×W with lower
resolution.

First, the high-level activation map of the channel dimen-
sion f is reduced from C to dimension d using a 1 × 1
convolution to generate a new feature map, which is written
as z0 ∈ Rd×H×W . Since a sequence is expected for the
encoder as input, so the spatial dimension of the feature
map z0 is collapsed to generate a new feature map with
dimension d×HW . For an encoder, it is constituted by a head
part, an attention mechanism part and a FFN part. Since the
architecture of transformer is alignment-independent (order-
independent), a fixed position encoding [8], [9] is provided
and the processed results are added to the input of each
attention layer.

For a decoder, it transforms N embeddings with size d by
multi-head attention mechanism. The authors in [40] adopted
an auto-regressive model to predict one element of the output
sequence at once. Because the decoder is also permutation-
independent (order-independent), hence thedifferent results
will be produced according to N input embeddings. And
the input embeddings are learned through the positional
encodings, and the results is defined as the queries of
object, and then are added to the input of each attention
layer. The decoder can process N queries of objects into
output feature map. The elements of the output embedding
corresponding to queries of object are decoded independently
into bounding box coordinates and are assigned the category
labels through a FFN, which get the N final predictions.
A self attention mechanism is applied on these embeddings,
the model utilizes pairwise relationships between all objects
to perform global inference on all objects.

The final prediction results is calculated by a three-layer
foward propagation network. Also, there is a hidden layer
with dimension d and a projection layer before the final
results. The normalized center coordinates, height and width
of the bounding box with respect to the input image are
predicted by the FFN, and the category labels is predicted
through a softmax function in the last layer. Thus, a fixed size
of N bounding boxes is predicted, and N is typically bigger
than the number of targets of interest in the original input.
In addition, a category label is appended to indicate that no
targets are detected within the slots (e.g., no targets of interest
in the image or targets of interest do not fill the N slots). This
category is similar to the ‘‘background’’ category in standard
target detection methods.

B. ORB FEATURE EXTRACTION
In order to carry out the static and dynamic analysis of
the object while saving the computational cost and ensuring
the real time performance, this study calculates the optical
flow field to estimate the motion state of the extracted ORB
feature points, which are mainly divided into two parts, FAST
corner point extraction and BRIEF descriptor calculation
[33], which is given in the followin:

1) Construct the image pyramid, at the same time extract
the FAST corner points for each pyamid layer using a uniform
extraction strategy based on quadtree [41], the specific
calculation process is described as follows:

Step 1: Select pixel p in the image and obtain its luminance,
assumed to be Ip;

Step 2: set the threshold T = Ip × 0.2;
Step 3: traverse a circle with radius 3 centered on pixel p.

The 16 pixel points on the circle with radius 3;
Step 4: Let the brightness of each traversal point be Icp.

If there are N consecutive points with Icp > Ip + T or
Icp < Ip − T , the point is considered to be a featured point,
and N is 12 in this study;

Step 5: performs the above operation for each pixel in the
image.
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2) Calculate the rotation angle of the FAST corner point
by using the gray scale center of mass method. Define the
moments of the image as:

mab =

∑
paqb · I (p, q) (1)

where I (p, q) is the gray value of the FAST corner point (p, q),
a, b are the order of the moments, and the image center of
mass coordinates are:

C = (m10/m00,m01/m00) (2)

The rotation angle is:

θ = arctan(m10,m00) (3)

3) Calculate the rotated BRIEF descriptor, choose the
windowW of S × S, and define:

τ (I ; p, q) =

{
1, if I (p) < I (q)

0, else
(4)

where:I (p) is the grayscale value at p. Randomly selected n
pairs of feature points, the Generate an n-dimensional BRIEF
description sub-vector:

fn(w) =

∑
1≤i≤2

2iτ (I ; p, q) (5)

C. EDGE DETECTION
Directly removing the rectangular area of dynamic objects
removes too much static scene, which is not conducive to
accurate camera positioning and map construction. In order
to extract edge of dynamic objects more accurately, this study
uses canny operator to detect the edges of the filtered dynamic
objects. Canny is a second-order differential operator [42],
which extracts the edges of the image by the zero point of
the second-order derivative at the edge of the given image.
The strong edges and weak edges are detected separately,
and the real weak edges can be detected. The detail steps are
described as follows:

1) Eliminate image noise. Firstly, the image is smoothed by
using Gaussian function. Define f (p, q) as the input image,
O(x, y) as the output image, and g(p, q) as the Gaussian
function, where the Gaussian function is defined as:

g(p, q) =
1

2πσ 2 exp(−
p2 + q2

2σ 2 ) (6)

O(p, q) = f (p, q) × g(p, q) (7)

2) The gradient magnitude and direction calculation. Using
the image processed by Gaussian filtering, a suitable gradient
operator is adopted for the gradient magnitude and direction
calculation of each pixel by calculating the difference of the
first-order bias between adjacent pixels. Where, Ap,Aq are
the Sobel gradient operator, Ep,Eq is the difference between
horizontal and vertical direction, respectively. The gradient
E(p, q) and direction θ (p, q) are written as following:

Ep(p, q) = Ap × O(p, q) (8)

Eq(p, q) = Aq × O(p, q) (9)

E(p, q) = (E2
p + E2

q )
1/2 (10)

θ (p, q) = arctan
Eq(p, q)
Ep(p, q)

(11)

3) Filtering non-extreme values. In the Gaussian filtering
process, the edges may be amplified, and the Non-Maximum
Suppression (NMS) is adopted to filter the points those are
not edges. If the current calculated gradient amplitude in the
field of the point is greater than along the gradient direction
of the point. If the current calculated gradient amplitude of
the other 2 neighboring points is greater than the gradient
amplitude along the direction of the point, the point belongs
to the possible edge point, otherwise it is not, and the
suppression means is taken to set the gray value to 0.

4) Double threshold detection and connected edges. After
the above steps of processing only get the candidate edge
points, and then use the upper and lower threshold detection
process to eliminate the pseudo-edge points. Points larger
than. Points with upper threshold are detected as edge points,
points smaller than lower threshold are detected as non-
edge points, points between the two values are detected as
weak edge points, and if they are adjacent to the pixel point
identified as an edge point, they are judged as edge points;
otherwise, they are non-edge points.

D. LOCATION ESTIMATION AND POINT CLOUD OVERLAY
After determining the exact contour of the dynamic objects,
the dynamic points distributed within the objects are
excluded, and only the stable feature points in the non-
dynamic region are used for a more accurate camera pose
solution. (uic, v

i
c) is set to be the pixel coordinates of the static

points in the current frame c, and the depth value zic is used to
obtain the 3D spatial point coordinates Pic(p

i
c, q

i
c, z

i
c).

Pic(p
i
c, q

i
c, z

i
c) = (zic

uic − cp
fp

, zic
vic − cq
fq

, zic) (12)

where (fp,fq), is the focal length of camera, (cp, cq, ) is the
principal point coordinates of camera.

Building 3D point cloud maps of the environment can
provide better visualization of the environment. The semantic
information carried by the point cloud can provide the basis
for robot navigation and obstacle avoidance [22], [23]. When
constructing point clouds, if there are large errors in the poses,
the maps will be overlapped with obvious interlocks, which
is not good for navigation. This problem can be effectively
solved by overlaying the point clouds with the dynamic
objects removed. The ORB_SLAM2 algorithm is used to
obtain key-frames, and the point clouds of all key-frames
are superimposed, which is too complicated and redundant
[35], [43], [44]. In the process of key-frame screening, the
following two strategies are considered: 1) key-frame validity
judgment. If the area of the rejected point cloud is more
than half of the current key-frame area, the key-frame is
considered to contain insufficient valid information and is not
involved in the overlay. 2) key-frame redundancy judgment.
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TABLE 1. Display of segment performance results obtained by different methods.

TABLE 2. Display of running efficiency results obtained by different methods.

FIGURE 4. Display of segment performance results obtained by different
methods.

The feature points that can be observed by multiple key-
frames are called co-visual landmark points of multiple key-
frames. To detect the co-viewing landmark points observed
in the current key-frame, assume that the set of identified
drawing key-frames is F , the set of observed landmark points
is L, and the set of landmark points observed in the current
key-frame is Lc, If the number of L ∩ Lc exceeds half of Lc,
the current key-frame is considered to contain too many co-
viewing landmarks and the information is redundant, so it
does not participate in the superposition. If the above two
conditions are satisfied, F and Lc are updated, which ensures
that new point cloud information is introduced and there is
enough static environment information.

III. EXPERIMENTS AND ANALYSIS
In order to evaluate the actual performance and effectiveness
of the proposed ORB_SLAM2_transformer system in this
paper, the system is tested in three aspects: the performance
segmentation performance of the transformer network, the

performance of dynamic feature point rejection, and the
performance of localization in dynamic scenes.

A. EXPERIMENTAL DATA AND SETTINGS
The ‘‘Freiburg2_desk_with _person’’ dataset from the Vision
Group of the Technical University of Munich (TUM),
Germany, was selected as the open-source dataset, which
contains a total of 4067 frames with static tables and chairs
and multiple slow moving human targets [45]. This dataset
is designed to check the robustness of the SLAM system to
dynamic objects and people, to distinguish the map and to
check the changes in the scene, which meets the requirements
of the experiments in this paper.In order to test the robustness
of the proposed method, an additional ‘‘DataSet_Factory’’
data set based on real scenes is constructed [36]. The data
set is obtained by fixing a camera on a mobile experimental
platform equipped with LIDAR, which has a static industrial
assembly line and several slow-moving human targets in a
total of 1715 frames, in exactly the same format as the TUM
data set.

For the analysis of semantic segmentation results, this
paper selects the mainstream statistical pixel accuracy (Pixel
accuracy), class Mean accuracy, Mean IoU and Frequency
weight IoU are the four mainstream semantic segmentation
evaluation criteria used to evaluate pixel accuracy and region
overlap [31]. The specific definitions are as follows:

Pixelacc =

∑
nii∑
ti

(13)

Meanacc =

∑ nii
ti

ncl
(14)

MeanIoU =

∑ nii
ti +

∑
j nji − nii

/
ncl (15)

FreqweightIoU =

∑
i

tinii
ti +

∑
j nji − nii

/∑
k
tk (16)

In this paper, we calculate the relative pose error (RPE)
and Absolute Pose Eror (APE) to evaluate the difference
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FIGURE 5. Typical examples for the results of dynamic points projection on TUM data set.

FIGURE 6. Typical examples for the results of dynamic points projection on DataSet_Factory data set.

in SLAM performance between the ORB_SLAM2 and
the ORB_SLAM2-transformer in a dynamic environment.
The relative pose error is calculated based the difference
between the estimated SLAM pose and the truth value of
the camera pose at the same time, and mainly describes the
accuracy of the pose difference between two key frames
between a fixed time 1t. The RPE for the i-th key frame is
defined as:

Ei: = (Q−1
i Qi+1t )−1(P−1

i Pi+1t ) (17)

where Qi is the real trajectory pose; Pi is the key frame pose
estimated by the system. Root Mean Squared Error (RMSE)
is used to evaluate the error and is defined as follows:

RMSE(Ei:n, 1t) = (
1
m

∑m

i=1
∥trans(Ei)∥2)1/2 (18)

In addition, one typical image segmentation method is
introduced as the baseline. As this work manages to explore
image segmentation-based method to enhance SLAM man-
ufacturing process. The fully convolutional networks [46],
named as FCN for short, is a most typical image segmentation
method in this area. Thus, the proposal in this paper is
compared with the FCN-based backbone network to measure
performance appearance.

B. NUMERICAL RESULTS AND ANALYSIS
First, the transformer network based segmentation model
used in this paper was analyzed. The detail performance is
shown as in Table 1, and its pixel accuracy, category average
accuracy and average region overlap reached 71.101%,
89.512% and 58. 157%, respectively. The performance com-
parison of Figure 4 indicating that this model is significantly
better than other network models, and the feature map can
retain more detailed features.

This is evaluated because the introduction of the trans-
former network semantic segmentation model increases the
complexity of the system, and the consequent problem is
that the feature point extraction takes longer computation
time, which affects the real-time performance. In Table 2,
the average feature point extraction time per image reaches
0.21757 seconds due to the addition of semantic segmentation
and dynamic feature point projection algorithms to the sys-
tem. Although the extraction time is significantly increased
compared to the ORB_SLAM2 system, the system is still able
to achieve an average rate of about 5 frames per second, which
basically ensures the real-time performance.

Figure 5 shows the comparison of ORB feature point
extraction results of the two systems under the TUM dataset:
The feature point area contains the dynamic portrait target
area; the points in the dynamic portrait target area are
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TABLE 3. Comparison among experimental methods with respect to RPE
performance results.

TABLE 4. Comparison among experimental methods with respect to APE
performance results.

FIGURE 7. Main results about the RPE performances of experimental
methods on TUM data set.

completely eliminated, and the number of eliminated feature
points increases gradually as all the portrait targets enter the
picture, which achieves the expected goal. Figure 6 shows
the comparison of the ORB feature point extraction results
of the two systems in the real scene, the feature points in
the dynamic target region are completely eliminated, and the
same target is achieved as the dataset, which shows that the
method is still applicable in the real scene. Table 3 shows the
RMSE, maximum error(MAX), mean absolute error(MAE),
and standard deviation of the relative and absolute positional
errors, respectively. Absolute error, and standard deviation
of the relative and absolute positional errors are presented
in Table 4:
As shown in Figure 7, compared with the ORB_SLAM2,

the proposed ORB_ SLAM2_Transformer has a higher
maximum error than the ORB_SLAM2, but the RMSE, the
MAE and the standard deviation are reduced by 11.038%,
15.257% and 2. 309%, respectively; From the Figure 8, for
the absolute trajectory error, the ORB_SLAM2_Transformer
has a higher maximum error than the ORB_SLAM2. The
ORB_SLAM2_Transformer has a smaller error compared to

FIGURE 8. Main results about the APE performances of experimental
methods on DataSet_Factory data set.

the ORB_SLAM2, and the four error parameters are reduced
by 18.450% 27.%, 18.177%, and 19.492%, respectively.
Therefore, it is proved that the ORB_SLAM2_Transformer
has an overall smaller positioning error and better rela-
tive and absolute positional errors. We believe that the
ORB_SLAM2_Transformer achieves the goal of removing
the dynamic feature point fraction to reduce the camera
tracking localization error, thus optimizing the problem of
camera tracking drift under dynamic targets.

C. DISCUSSION
In this work, the deep learning-based image segmentation is
employed to enhance the SLAM manufacturing process in
terms of automobile parts. In our proposal, the Transformer is
employed as backbone network for use. The performance of
image segmentation methods directly determines efficiency
of following additive manufacturing operations. Hence, the
proposal is compared with a typical image segmentation
method FCN for performance evaluation.

To better verify performance of the proposal, four aspects
of evaluation metrics are introduced to visualize algorithm
performance in the format of numerical values. The four
aspects of metrics include: segmentation effect, time com-
plexity, RPE performance, and APE performance. After
simulative experiments on real-world scenes of SLAM-based
additive manufacturing, the obtained results show that the
proposal can have proper performance in terms of segmen-
tation effect. The good image segmentation performance can
well promote the following manufacturing operations.

Although the proposal can have proper performance
in SLAM-based additive manufacturing process, there is
still some distance to practical industrial application. The
deep learning has received great development in recent
years and brought much insight into many computer vision
tasks. However, deep learning algorithms are mostly facing
the problem of computational complexity, which requires
relatively high hardware conditions [47]. Generalized into our
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proposal, how to improve the running efficiency and reduce
computational complexity is the future direction of our work.

IV. CONCLUSION
In this paper, in order to achieve robust SLAM in dynamic
scenes, a transformer based visual SLAM method is pro-
posed. The method combines the segmentation technique
with the motion-consistency detection algorithm. First, the
transformer network is used to semantically segment the
image to establish the a prior semantic information of
dynamic objects, then the feature points belonging to
dynamic objects are rejected by the motion-consistency
detection algorithm. Finally, the static feature points are
utilized for pose estimation and point cloud overlay. Sim-
ulation experiments are conducted to test function of the
proposed method. The obtained results show that the absolute
trajectory error and relative estimation error can be reduced
additive manufacturing of vehicular parts compared with the
traditional ORB_SLAM2 system.
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