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ABSTRACT Recent advancements in computer vision processing need potent tools to create realistic
deepfakes. A generative adversarial network (GAN) can fake the captured media streams, such as images,
audio, and video, and make them visually fit other environments. So, the dissemination of fake media
streams creates havoc in social communities and can destroy the reputation of a person or a community.
Moreover, it manipulates public sentiments and opinions toward the person or community. Recent studies
have suggested using the convolutional neural network (CNN) as an effective tool to detect deepfakes in the
network. But, most techniques cannot capture the inter-frame dissimilarities of the collected media streams.
Motivated by this, this paper presents a novel and improved deep-CNN (D-CNN) architecture for deepfake
detection with reasonable accuracy and high generalizability. Images from multiple sources are captured
to train the model, improving overall generalizability capabilities. The images are re-scaled and fed to the
D-CNN model. A binary-cross entropy and Adam optimizer are utilized to improve the learning rate of
the D-CNN model. We have considered seven different datasets from the reconstruction challenge with
5000 deepfake images and 10000 real images. The proposedmodel yields an accuracy of 98.33% inAttGAN,
[Facial Attribute Editing by Only Changing What You Want (AttGAN)] 99.33% in GDWCT,[Group-wise
deep whitening-and-coloring transformation (GDWCT)] 95.33% in StyleGAN, 94.67% in StyleGAN2, and
99.17% in StarGAN [A GAN capable of learning mappings among multiple domains (StarGAN)] real and
deepfake images, that indicates its viability in experimental setups.

INDEX TERMS Deepfake detection, CNN, convolutional neural network, GAN.

I. INTRODUCTION
Artificial intelligence (AI) has progressed in diverse domains,
including computer vision, speech generation and analysis,
and the design of multi-agent systems in the industry. In a
similar direction, generative deep learning (DL) techniques
have made a transformative shift in multimedia processing,
where recently, deepfakes (DF) have emerged, which allows
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the creation of synthetic content based on captured images
and videos of persons. In DF, a person’s eyes, lips, and face
movements are captured and superimposed on another exter-
nal environment that forms a realistic vision of that person
in a simulated fake environment. With the world becoming
more connected and networked through social media cir-
cles, DFs are increasingly used to create synthetic data of
politicians, communities, actors, and media that give rise to
fake news generation and dissemination. To generate DFs,
one effective algorithm is generative adversarial networks
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(GANs), initially proposed by Goodfellow et al. in 2014 [1],
[2]. GANs [3] make it easy to create a fake synthetic image,
audio, and video content presented as real.

Technically, the GAN model comprises two networks: a
generator network (which aims to generate synthetic content
out of the noise vector) and a discriminator network (which
aims to classify these generated synthetic images). An itera-
tive process is followed in the generator-discriminator net-
work, where the discriminator feedback is supplied to the
generator network. Over time, the generator learns to create
synthetic content, which looks extremely real and spoofs
the discriminator [4], [5]. Thus, the generator-discriminator
network in DF raises concerns about the authenticity of
the published content on social platforms, as it is tough to
differentiate between real and fake content. Some notable
examples of DF include tools like DFaker, DeepFaceLab,
Faceswap, Faceswap-GAN, STGAN, StarGAN, and Face
Swapping GAN (FSGAN), and many others [6]. In Deep-
FaceLab, it allows a user to swap a person’s face with another
person’s face, change the age of a person, and synchronize
the lip and eye movements in the video [7]. Face2Face [8]
allows a real-time face enactment based on the RGB video
output, and the emulation of input expressions is carried out.
DF tools are also used in generating pornographic content
that hurts the sentiments of the public [9], [10]. However,
hate speeches are other widely used propaganda in social
circles. For example, a video of former United States 44th

President Barack Hussein Obama II published by BuzzFeed
shows the former president cursing another former president
Donald Trump, which is done through the GAN technology.
It is massively distributed in social media circles as official
news, but the content is synthetic [11].

Thus, it raises a prime concern about the authenticity of
news content. To overcome the aforementioned issues of DF
GANs, a robust and highly generalizable DF detection system
is required. A good DF detection system can detect highly
accurate manipulated and synthetic content from authentic
content. Recent approaches published in the literature point
to the design of a robust DF detection scheme. Most of the
approaches in the literature lack robustness, effectiveness in
training the DF detection model, and integration of gener-
alizability and interpretability in the model [12], [13], [14].
As indicated by Yu et al. in [12], the robustness in the DF
detection means that the system should be able to detect
manipulation of high-quality and low-quality image/video
contents. The system’s effectiveness should not be dropped
based on the resolution of contents. Generally, the perfor-
mance of DF detection systems drops over low-quality con-
tent. Generalizability refers to the condition where each DF
generation tool utilizes different approaches to generate the
DF contents. Thus, the DF system should be able to detect
manipulations from these different tools in a single-shot [12].
Interpretability refers to the condition in the DT detection
ecosystem, where a model should be able to predict which
parts of the image (person’s face, for example) are real or fake

and label the bounding boxes with fake probabilities. Thus,
it is crucial as it enables a system to understand the dynamics
of generated synthetic content and presents a visual expla-
nation to understand the abnormalities in the images [15].
Current systems analyze DF detection on a sequential frame-
by-frame basis, which results in higher temporal inconsisten-
cies in the model. Thus, there is a stringent requirement for
effective DF detection models that can form an optimal mix
of the aforementioned conditions [16].

Recent approaches have suggested convolutional neural
networks (CNN) as an effective fit for DF detection mod-
els [17]. Usually, pre-trained CNNmodels are applied on sin-
gle frames, while other approaches have considered recurrent
convolutional networks where frames can be grouped to form
the decision. In addition, some approaches consider facial
expression patterns to capture fake content. Most CNN-based
approaches are black boxes, where the models are over-
fitting. In other cases, the validation, testing, and training
split are not uniformly distributed, which leads to different
interpretations of the same datasets under different operat-
ing conditions. For example, a DF detection model on the
Facebook DF detection challenge dataset is proposed [18].
The model scored an average precision of 82.56% on these
datasets, but the performance drastically drops to 65.18% on
the validation dataset, as it is collected from various sources.
Thus, a generalization through CNN on one dataset does
not hold a cross-performance on another dataset [19]. The
inconsistencies can be mitigated through an effective deep
CNN (D-CNN) model that can address the cross-domain
interpretability while maintaining the robustness and gener-
alizability of the DF detection scheme, which would yield a
high accuracy through an effective ensemble to the proposed
CNN approaches.

A. NOVELTY
Existing CNN-based DF detection models should conform
to the abilities of high generalizability, robustness, and inter-
pretability [12], [20]. The lack of the above-mentioned abil-
ities can be seen in the existing systems such as MesoNet,
MesoInceptionNet and many others. These are some well-
known CNN-based compact DF detection models focused
on detecting deepfake images for low-quality images. Even
though yielding promising results on the test set, thesemodels
lack generalizability capabilities which is a well-discussed
challenge in the domain of DF detection. Accuracy drops
by a huge margin whenever these DF detection methods are
tested against DF images generated using different meth-
ods. DF detection systems learn certain features particular
to the generation methods whose images were used to train
these models. For Example, if any DF detection model was
developed and trained over images from StarGAN and then
tested over reserved unseen test images will definitely yield
good results, but when tested against images from some
other DF generation method, say STYLEGAN, then accu-
racy will drop by a huge margin. Sometimes accuracy drops
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to the point that it becomes just a random guess from the
model. Hence indicating a lack of generalizability being
the challenge at large. Regardless, CNN approaches have
mostly treated DF detection as a binary classification prob-
lem, where cross-domain interoperability is required [18].
The proposed work presents an improvement over MesoNet
and MesoInceptionNet, a D-CNN model that extracts deep
features from input images through the convolution layer
to address the aforementioned challenges. It captures the
manipulation traces left behind as features and forms a classi-
fication model based on the similarities between real and fake
images. The similarities are projected to the closest match that
improves the model predictability, as it captures the complex
inconsistencies through the deep network. Furthermore, the
model is trained over synthetic and real images from different
sources, improving the generalizability and cross-learning
accuracy.

B. RESEARCH CONTRIBUTION
Following are the major contributions of the paper.

• We analyze various existing approaches to DF detection
using the CNNmodel and highlight their advantages and
potential pitfalls.

• We propose a novel D-CNN-based architecture to clas-
sify DF image and video contents. The proposed model
is trained over images from seven data sources to
increase its generalizability.

• We then evaluate the performance of the proposed archi-
tecture using accuracy, precision, recall and F1 score
metrics over the reserved test set.

C. ARTICLE LAYOUT
The layout of the article is as follows. Section II presents
the existing approaches of DF detection models. Section
III presents the problem formulation of the proposed DF
classification scheme. Section IV details the proposed model
approach and the systematic explanation of the model pro-
cessing. Section V discusses the performance evaluation of
the model based on various metrics. Section VI presents the
discussion and future challenges in the proposed scheme, and
finally, section IX presents the work’s conclusion and future
scope.

II. RELATED WORKS
From the literature, it can be seen that researchers have
already adopted different types of approaches to create an
efficient DF detection system. Even though the approaches
are there, their underlying principles in most approaches
remain consistent, focusing on the utilization of inconsisten-
cies and manipulation traces left behind by GAN tools during
the generation network [6]. Although nowadays, DF spans
multiple modalities such as audio, video, image, or hybrid
modality-based models. Among these, the image/video-
based DF is the most prominent; thus, most research is

directed toward identifying image and video DFs. Thus, the
image/video DF detection models are generally classified
into three domains: physical/physiological features, signal
level features, and data-driven models [21]. DF detection
approaches involve more than one modality, i.e., combined
audio and video is termed multi-modal approach, where the
classification rests on computing the disharmony (or entropy
difference) between two different modalities in DF manipu-
lations [22], [23]. Table 1 presents a comparative analysis of
the proposed D-CNN model against existing approaches in
terms of approach and the proposed method. The following
subsection presents the existing approaches in the classified
domains.

A. PHYSICAL/PHYSIOLOGICAL FEATURES
In physical and physiological feature-based approaches, visi-
ble discrepancies in the image or video content are exploited
to classify whether the submitted content is synthetic or
real. The visible discrepancies primarily include improper
shadows, irregular geometry, missing details in facial fea-
tures such as teeth or ears, inconsistent eye colors, head
movements, and other features. For example, Li et al. [24]
leveraged inconsistencies in the blinking eye patterns, which
the DF tools cannot mimic in a video stream. Authors in [28]
worked on the inconsistencies in the head pose movements
compared to the rest body movements in the DF image and
videos and identified the synthetic content in the data. The
authors identified 68 different landmarks in the whole body,
which includes 17 facial landmarks on the face. The direction
movement is considered from the center of the face, and if
the directions on two or more landmarks are the same, then
they are classified as authentic content or synthetic. Matern
et al. [29] tried to use inconsistencies in other visual artifacts
such as inconsistent geometry of teeth, shadow, lighting, and
eye colors. However, the considered approach is good, but
the latest DF generation tools have exploited and learned
about the geometry of faces, and thus the said models can
easily spoof the model. Thus, to overcome the feature-based
inconsistencies, the authors shifted to other representations,
including signal-level feature extraction.

B. SIGNAL-LEVEL FEATURES
In signal-level features, deep features are extracted using
either feature descriptors or feature extraction algorithms.
Thus, low-level features are extracted using steganalysis,
which the classification algorithm can use to classify whether
the input content is DF. Kharbat et al. [30] presented a
combination model of different signal-level feature descrip-
tions based on HOG, ORB, SURF, and others. The extracted
deep features are then fed as input to the SVM classifier
to find whether the image is DF. Authors in [34] utilized
a feature extraction approach known as scale-invariant fea-
ture transform (SIFT), which extracts key pixel features
and analyzed them. Similar to the study of [30], Akhtar
et al. [31] used local image descriptors such as LBP, LPQ,
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TABLE 1. A comparative analysis of the proposed model with the existing approaches.

PHOG, SURF, BSIF, and IQM. The results suggested that
IQMperformedmore accurately than othermodels. However,
as DF tools became more sophisticated, the GAN model
fooled signal-level feature descriptors. Thus, the research
shifted towards the data-driven DF detection models.

C. DATA-DRIVEN MODELS
In data-driven DF detection, we use deep neural networks
(DNN) instead of specific features to extract and learn about
the feature. Based on the learning, the model classifies the
submitted content as DF or real images/videos. However,
to train the DNN model, a sufficient amount of data must be
supplied to the model, and thus the approach is named data-
driven. Marra et al. [25] used networks such as InceptionNet,
DenseNet, and XceptionNet, with a large dataset of sam-
ples collected from different categories from image-to-image

translation, which were created using CycleGAN. The results
of their experiments suggested that XceptionNet outperforms
all the other networks considered in the study. However,
the issue of generalizability remains, which was addressed
by the authors in [26], where they proposed a deep forgery
discriminator network, which is essentially a five-layer CNN
architecture based on embedding the contrastive loss. The
results were promising, but lack of generalizability remains
the praoblem. Another CNN-based approach is proposed
by Afchar et al. [20], known as MesoNet, and it per-
formed well as it focused on the mesoscopic features of
the images. Nguyen et al. [32] proposed a capsule network
with features extracted from VGG-19. The model performed
as well as MesoNet, but XceptionNet still outperforms it.
Similar approaches are present, where the authors used the
temporal component of the video to identify DF videos.
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Guera et al. [27] proposed a recurrent neural network (RNN)
model, and Amerini et al. [33] used CNN with the concept of
using discrepancies across frames to identify DF videos.

As outlined in the literature review section, the data-driven
models normally outperformed the physiological and signal-
based approaches. Thus, we consider a data-driven approach
in the proposed scheme and propose a D-CNN model that
captures the deep features with improved generalization and
model predictability.

III. PROBLEM FORMULATION
This section presents the problem formulation of the pro-
posed approach. The proposedmodel is a data-driven D-CNN
model for DF detection that predicts the respective class
of input images based on their features. To formulate the
problem, we consider a certain amount of available images,
represented as Itotal = {I1, I2, . . . , In}. Itotal are sent for
training and are classified into real images, represented as Ir
or DF images, represented as Idf . Ir is constructed from p
different data sources of real images, where any image i ∈ Ir
is represented as follows:

Ir =
[
Nk=1
i=1 ,Nk=1

i=2 , . . . ,Nk=1
i=x ,Nk=2

i=1 , . . . ,Nk=2
i=x , . . . ,Nk=p

i=x

]
(1)

Considering, each data source consists of x real images, it can
be denoted as Nk . Thus, Ir is further denoted as follows:

Ir =
p∑

k=1

Nk (2)

Similarly, for DF images, Idf , there are q data sources of
deepfake images, and each source consists z images. The
same is illustrated as follows:

Idf =
[
Nj=1
i=1,N

j=1
i=2, . . . ,N

j=1
i=z ,N

j=2
i=1, . . . ,N

j=2
i=z , . . . ,N

j=q
i=z

]
(3)

Similar to equation (2), we assume that z images is denoted
as a set Nj. Thus, Idf is represented as:

Idf =
q∑

k=1

Nj (4)

Based on equation (2), and equation (4), Itotal is described as
follows:

Itotal = Ir + Idf =
p∑

k=1

Nk +
q∑

k=1

Nj (5)

The labels for the corresponding classes can be defined as:

Y = [y1, y2, . . . , ym] (6)

where m = total number of images in Itotal . The proposed
architecture comes under the binary classification problem,
where there are only two classes, i.e., y= 0 indicating Ir , and
y = 1 indicating Idf image.

Algorithm 1Working of the Proposed Approach
Input: I - RGB Images of Face, D - Destination address of
stored images, M - Destination address of pretrained model
Output: L - predicted likelihood, P - predicted label

procedure Deepfake_Detection( )
Ht (Height)← 160
Wt (Width)← 160
DataGen← ImageDataGenerator()
Generator← DataGen.flow_dir(D, Ht, Wt)
model← load_model(M)
i← 1
while i ≤ len(Generator.labels) do

I← Generator.next()
L← model.predict(I)
P ← round(L)
Display likelihood L
Display predicted label P
Display Image I
i← i+1

end while
end procedure

IV. PROPOSED APPROACH
As discussed in Section III, the proposed model is a binary
classification model, where the input Itotal is classified into Ir
or Idf classes from multiple data sources for each class. For
DF detection, CNN is a prominent choice. Thus, we augment
the CNN model with a deep layer and present the D-CNN
model to extract the deep features from input images using
convolutional layers. Convolution operations performed over
the images in the earlier stages allow us to extract much
deeper features that can be used to classify the input images
into DF. Figure 1 presents the details of our proposed model.

A. ALGORITHM
Algorithm 1 shows the proposed architecture’s flow. It takes
the facial image as input and its directory address (where
the image is stored). It outputs the predicted likelihood and
predicted label and prints the image that has been processed.
The procedure algorithm follows that it sets the Height and
Width to be 160. Then an object of ImageDataGenerator
will be created with all the necessary arguments for the
required data augmentation techniques. This created object is
called DataGen. Using this DataGen object, we can flow the
images one by one or in batches based upon the arguments
given to flow_from_directory(). This flow_from_directory()
accepts the destination address of the stored images, Height
and Width as arguments. It will resize the input image to a
given size and apply all the data augmentation techniques
when required. It returns an object calledGenerator. Now the
pretrained model must be loaded in an object called model.
Users can one by one read an image from the input directory
and give it as input to the model to predict the likelihood of
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FIGURE 1. The proposed D-CNN model.

the prediction. Rounding up the predicted likelihood gives the
predicted label of the class, and at the end, the image is also
printed along with these two outputs.

The predicted likelihood ranges from 0 to 1. The closer
it is to zero, the more confident mode is that the image is
real. Vice versa, the closer likelihood is to 1, the confident
model is about being the image deepfake. The closer it is
to 0.5, it is much like a random guess. And thus, rounding
of the predicted likelihood gives the predicted label. Real is
indicated by ‘0’, and Deepfake is by ‘1’. The image is also
printed alongside these results for the user.

B. PROPOSED ARCHITECTURE
This section discusses the proposed CNN-based architecture
(Figure 2). In General, CNN architecture consists of both con-
volutional and pooling layers. Convolutional layers extract
deep features from input images, whereas pooling layers
reduce the dimensionality of the input feature maps. After
convolutional layers, all these feature maps are made into a
one-dimensional array using a flattened layer and given as
input to the fully connected layer. After the fully connected
layer, the output layer predicts the subsequent class based on
the input image. Our proposed architecture also follows the
same approach where earlier layers consist of convolutional
layers. After the convolutional layers, a flattened layer is
used, followed by a series of fully connected layers. In the
end, the sigmoid function is used to predict the likelihood of
the predicted output. Batch Normalization has been used after
certain layers to stabilize the training process, whereas aver-
age pooling has decreased the dimensionality of the feature
maps over the proceeding layers. The black box diagram of
the proposed architecture can be seen in Figure 1.

The proposed architecture reads input images with a height
and width of 160 pixels each and a batch size of 64. Then the
various data augmentation techniques, such as rescaling the

input array, rotating the input image randomly between 0 to
360 degrees, horizontal and vertical flip, shear range, and a
zoom range of 0.2, are all applied using Keras preprocessing
library.

Thus, the proposed architecture accepts input images of
size (160,160,3) with all the data augmentation techniques
applied. The flow diagram of the proposed architecture can
be seen in Figure 2. For the input, at the first layer, 2D
convolution operations are performed using filter sizes of
(3,3) and 8 different filters. Leaky ReLU is also used at
this layer as an activation function. Since it is the first layer
extracting image features, it is going to be a high-level feature
of input images, and thus, the filter size is kept to be small,
i.e., (3,3) instead of a larger filter such as (5,5) or (7,7). With
this, we now have the initial feature maps extracted from the
input images, but the distributions of input batches can vary a
lot for different batches based on the types of images that are
included in them. Therefore, it can create problems with the
optimizer algorithm’s convergence, destabilizing the training
process. Thus it is helpful when the input to each layer is
unit gaussians. And to do that, these feature maps are batch
normalized, which results in a speeded-up training process
(faster convergence) and decreased dependency on the weight
initialization.

The batch normalized tensor of size (160,160,80) is then
passed on to the next block where two convolutional layers
are followed, which performs convolution operations with a
filter size of (3,3) and 16 different filters each, with Leaky
ReLU as activation. It allows us to extract deeper features
that could be more meaningful in detecting deepfake images.
With these extracted feature maps, they are once again batch
normalized. Generally, with deeper CNNs, a larger number of
filters will be used in deeper layers to extract deep features.
But due to this, the dimensions of the feature maps will keep
increasing, resulting in many computations needed as we
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FIGURE 2. Flow diagram of the proposed model.

proceed further. To tackle this issue, pooling layers are used
to decrease the dimensionality of the extracted feature maps.
With this goal in mind, we have used the average pooling
layer of size (2,2), which essentially decreases the dimensions
of feature maps by half.

The output from the previous block with Average Pooling
layers will be of size (80,80,16). This is accepted as input for
the next block, which has a similar structure to the previous
block. It differs only by having three convolutional layers
with a filter size of (3,3) and 32 different filters, with Leaky
ReLU as activation. And then again, batch normalization and
average pooling layers are followed. With this pooling layer
from the previous block, the dimension of the feature map
becomes (40,40,32). And then, it is taken as input for the
next block, which consists of 4 consecutive convolutional
layers with filter sizes (3,3) and 64 different filters, with
Leaky ReLU as activation. It is again followed by batch
normalization and average pooling layer.

With this, the next block receives an input size (20, 20, 64).
Because of the previous four blocks, we have extracted deep
image features, which could be used to classify images as a
deepfake or not. So for the next two blocks, we try to use
a large filter of size (5,5). For the current block, we use a
convolutional layer with (5,5) filter and 128 different filters,
with LeakyReLU as activation. Then followed by batch nor-
malization and max pooling layer. This reduces the output
dimensions to be (10,10,128). The next block accepts the
output from the previous block. It is followed by a convo-
lutional layer with (5,5) filter size and 256 different filters,
with LeakyReLU as activation. It is again followed by batch

normalization and the Max pooling layer, which gives the
dimension output (5,5,256).

The output from the previous block is transformed into a
one-dimensional array using the flattened layer.Followed by
the flatten layer, there is a dropout layer with value of 0.5,
which randomly sets half of the input units to zero. It helps
our model to avoid overfitting the training data. Being an
improvement over MesoNet, the value of dropout layer has
not been changed from it’s predecessor which experimentally
also yields best results in terms of avoiding overfitting. Fol-
lowing the previous block, there is a fully connected layer
with 32 neurons/units. It also utilizes LeakyReLU as an acti-
vation function. It is then followed by a dropout layer with
a value of 0.5. Similarly, there are two consecutive blocks
of the fully connected layer with 16 neurons/units with the
LeakyReLU activation function, followed by a dropout layer
with a value of 0.5. Finally, there is an output layer with a
single neuron and a sigmoid activation function. It predicts
whether the input image is a deepfake image or not. If the
value is less than 0.5, then the predicted output is real; else,
it is a deepfake image. The loss function used during training
is binary cross-entropy, and the optimizer used is ‘Adam’
with a learning rate of 0.01. The black box diagram of the
architecture can be seen in Figure 1 and Table 2 describes
the output dimensions of each layer along with the number of
parameters.

V. RESULTS AND DISCUSSION
This section discusses the performance delivered by the pro-
posed architecture and the results achieved.
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TABLE 2. Output dimensions and parameters for each layer.

A. SIMULATION SETUP
The Google collab pro has been used for training, which
usually assigns Tesla T4 or Tesla P100 GPU. Since Google
collab restricts the prolonged usage of GPUs, checkpointing
has been used during the training to save the best-performing
model based on the lowest validation loss value. If necessary,
the training could be resumed from the last best model saved,
but it has never been used.

B. DATASET DESCRIPTION
The dataset we decided to use was part of Deepfake
Images Detection and Reconstruction Challenge [35]. The
dataset consisted of real images from image datasets of
CelebA and FFHQ. Both contain 5000 images each. Whereas
1000 images each from GDWCT, AttGAN, STARGAN,
StyleGAN and StyleGAN2 datasets are included for deepfake

TABLE 3. Resolution of images from each Data Source.

detection. Since the image provided are taken from differ-
ent types of GAN architecture and datasets, images from
these different sources had different resolutions ranging from
1024 × 1024 being the largest to 178× 218 being the small-
est. The resolutions of images are discussed in Table 3.

Thus, there were 10000 real images and 5000 deepfake
images. To make a balanced set, we decided to use 5000 real
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images only. Thus, to make it completely balanced, we ran-
domly sampled 2500 images from CelebA and 2500 from
FFHQ. Thus, a total of 5000 randomly sampled real images
from these two sources, whereas we have taken 5000 deep-
fake images.

We divided the image dataset into a train, validation,
and test sets. 60% of images are used for training, 10%
for validation, and 30% for test sets (the images have
been properly balanced). Firstly, 70% of random sample
images are for training from the real dataset from both data
sources. We randomly sampled 1750 images from CelebA
and 1750 from FFHQ. It makes 3500 real images for train-
ing. Out of 3500, we selected every 10th image from this
training dataset to be kept as reserved for the validation
set. It ensured the ratio of real images from both data
sources. It thus gave 350 real images for the validation
set.

We then follow the same strategy with deepfakes as well.
We sampled 70% of each type of GAN image. That means
we sampled 700 images from GDWCT, AttGAN, STAR-
GAN, StyleGAN and StyleGAN2 each. Hence giving a
well-balanced set of 3500 deepfake images. And similarly,
we selected every 10th image from the training set to be
used as a validation set giving 350 deepfake images for the
validation set. Thus, now we have 3150 real images and
3150 deepfake images for training, along with 350 real and
350 deepfake images for validation. And the remaining 30%
images were used for testing the model for performance
after training. For the training purpose, Data Augmentation
has been applied to these images. These data augmentation
includes vertical flipping, horizontal flipping, zooming by
0.2, shear range by 0.2, width shift range and height shift
range by 0.2, as well as random rotation of 360 degrees.
These will help the model to learn detect deepfake images
while maintaining spatial and scale invariance properties.
Since training images consisted of only upright faces that too
positioned at the center of the image, there was a very high
possibility that the D-CNNmodel would learn to discriminate
between DF and real images based on the features of the
center of the images only, that too with upright faces only.
To ensure the dataset consisted facial images from different
angles, facial images with different spatial position within
images and of different scale; data augmentation techniques
were used. It helps model to learn spatial and scale invariant
features which are of utmost importance for a DF detection
system in the wild. The input image size was set to 160× 160.
Historically detecting low resolution and low quality deep-
fake images has been considered a difficult task since there is
much less information to work with. Adding more to that,
conventional social media sites downscale high resolution
images to avoid transmission and storage costs. Hence, CNN
network with input size of (160,160,3) is selected with the
hope to ensure usefulness of the model in real world use case.
Low resolution images also helps to keep the computational
costs to minimum. But there is scope for future work by either
moving to variable sized input NNwith Global Pooling layers

or experimenting with various efficient upscaling techniques
to see performance improvement.

C. TRAINING
During training, the Adam optimizer is used with a learning
rate of 0.01. The number of epochs used is 550. Due to the
limitations of hardware and time usage on Google Colab,
check pointing and CSVLogger have been used to note the
training accuracy and training loss as well as validation accu-
racy and validation loss during the training phase. The batch
size is set to 64, stabilising the training phase quite a lot.
We save the entire model instead of weights only.

From Figure 3, we can see that the training accuracy
steadily increases till the 200th epoch. After the 200th epoch,
change in accuracy slowly plateaus over preceding epochs.
The same can be seen with loss values during the training
phase. Even though not a huge change, performance slowly
increases over the epochs. The same trend is also seen in the
validation accuracy and loss values in Figure 4. There can be
seen fluctuations in the validation accuracy and loss; the most
probable reason is the usage of Batch Normalization along
with the Dropout layer, aggravating the situation even more.
But, apart from those fluctuations, it can be seen in Figure 4
that validation accuracy and validation loss closely follow the
same trend as that of Training accuracy and Training loss val-
ues. Although validation accuracy and validation loss values
fluctuate slightly, it closely follows the training loss value,
indicating no overfitting in themodel. It can be observed from
Figure 5 that there is not much numerical difference between
training loss and validation loss which is a good indication
for a generalized model and not an overfitting model.

D. EVALUATION METRICS
The proposed model yields 97.2% of accuracy on the Test
dataset, which consists of 1500 real and 1500 deepfake
images with all the data augmentations techniques applied.
As we have already seen during the training phase on the
validation set, the model’s performance is relatively good,
and there are no signs of overfitting in the model. In addition,
the Testing dataset’s accuracy proves that the model has been
trained properly and not overfitted to the training dataset. The
accuracy of training, validation and the testing dataset was
around 97%. Along with accuracy, the precision, recall, and
F1 score values are also used to evaluate the model’s perfor-
mance. Along with this, we present the confusion matrix to
understand the classification capabilities of the model.

• Precision: It refers to the ability of the model to classify
positive out of all positive predictions made correctly.
It is a metric that indicates how many images were
truly deepfake images out of all the images predicted
as deepfake by the proposed model. The truly deep-
fake images classified as deepfake will be considered
True Positive. In contrast, those predicted as deepfake
but truly were real images will be classified as false
positives. The precision formula will be when the true
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FIGURE 3. Training accuracy and Training Loss over the training epochs.

FIGURE 4. Validation accuracy and Validation Loss over the training epochs.

FIGURE 5. Validation accuracy and loss values over the training epochs.

positive is indicated as TP and false positive as FP.

Precision =
TP

TP+ FP
(7)

The precision that we get for our model on the test set
is 0.97 for Real images whereas precision for Deepfake
images is 0.98.

• Recall refers to the model’s ability to classify positive
positives correctly. So it is a metric which indicates how

many images were classified as deepfake out of all the
truly deepfake images submitted to the model. So the
images that were truly deepfake and classified as deep-
fake will be considered True Positive, and those which
were truly deepfake but misclassified as real images
will be considered false negative. The recall formula is
when TP indicates True Positives and FN indicates false
negatives.

Recall =
TP

TP+ FN
(8)

The recall we get for our model on the test set is 0.98 for
Real images, whereas the precision for Deepfake images
is 0.97.

• F1 score: It indicates the balance between precision and
recall. It is the harmonic mean of precision and recall of
the proposed approach. It takes into consideration false
positives and False Negatives both into consideration.
The F1 score is calculated as follows:

F1 = 2 ·
Precision · Recall
Precision + Recall

(9)

The F1 score for both classes is 0.97, indicating a good
balance between precision and recall values.
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TABLE 4. Classification report.

FIGURE 6. Confusion matrix.

The classification report of the performance of our model
over the test dataset can be seen in Table 4. Precision, recall,
f 1-score, macro average, and weighted average can be seen.
From all these results, the model’s precision, recall, and
f 1 score show promising results. To further understand the
classification capabilities of the proposed model, we have
also generated a confusion matrix, shown in Figure 6. Here
‘0’ indicates real, and ‘1’ indicates a deepfake label. True
label, which can be seen in the figure, means the real label
assigned to it, whereas predicted label means the predicted
label from our model. These create 4 categories: true positive,
true negative, false positive, and false negative. So category
with ‘0’ as a true label and ‘0’ as the predicted label will
be considered a true negative since both the labels (true as
well as predicted labels) suggest it to be a real image. So they
have been classified as negative for deepfake images, which
is true. Similarly, the category with true label and predicted
label as ‘1’ are true positive. The category with true label as
‘0’ and predicted label as ‘1’ are considered false positives
since they were real images misclassified as deepfake by
our proposed model. Similarly, the category with true label
as ‘1’ and the predicted label as ‘0’ is considered a false
negative. Since they were truly deepfake images but were
predicted as real. In simpler terms, the confusion matrix
shows that out of 1500 Real test images, our model has clas-
sified 1471 images correctly, whereas 29 Real images were
misclassified asDeepfake. And out of 1500Deepfake images,
our model classifies 1450 images correctly and misclassifies
50 images as Real. Figure 6.

TABLE 5. Performance of the proposed model on individual data source.

VI. DISCUSSION
To further understand the proposed model’s performance.
We extend our analysis by evaluating our model over images
of all these data sources separately. It will allow us to
understand more about the generalizability capabilities of the
proposed model. So, in the test set, we had 1500 deepfake
images from 5 GAN architectures. Thus, it means we had
300 deepfake images from each data source. When then
combined these images from different data sources with real
images separately. So we randomly sampled 300 real images,
150 fromCelebA and 150 from FFHQ.We then evaluate each
model individually. And our model yielded 98.83% accuracy
on AttGAN vs CelebA+FFHQ images. Whereas it gave
99.33% accuracy on GDWCT vs CelebA+FFHQ images.
It gave 95.33% accuracy on StyleGAN vs CelebA+FFHQ
and 94.67% on StyleGAN2 vs CelebA+FFHQ images.
Finally, our model yielded 99.17% accuracy on StarGAN vs
CelebA+FFHQ images.

We then evaluated the proposed model on the imbalanced
set. We already had 300 images for each data source stored
separately. We fed all 300 deepfake images separately for
each data source to see our model’s performance. Our model
gave complete 100% accuracy in classifying deepfake images
generated from AttGAN with a loss value of 0.0051, whereas
on GDWCT, it gave an accuracy of 99.33% with a loss value
of 0.0141. Our model performed well over StyleGAN and
StyleGAN2 with an accuracy of 95.66% and 93.99%. In con-
trast, our model gave 99.33% accuracy in classifying images
generated using StarGAN. Table 5 presents the performance
of the proposed model under different image databases with
real images.

The model indicates promising results over the reserved
Test set images. The model’s performance is balanced over
all the different image data sources. When we evaluated our
model over all the different data sources separately, we got
more insight into the model’s performance. It is essential to
understand that the accuracy of the combined data set might
look promising, but the model might lack performance over
certain kinds of images. When we look into it that way, it is
seen that our model shows extraordinary performance over
the images from AttGAN, GDWCT, and StarGAN. In con-
trast, performance drops a bit over images from StyleGAN
and StyleGAN2.
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FIGURE 7. Classification of deepfake, real, and misclassified images by the proposed model.

FIGURE 8. Experiment setup for comparing the performance capabilities of the proposed and the existing models.

When investigated further, it is found that StyleGAN and
StyleGAN2 images are very high-resolution images, whereas
images from AttGAN, GDWCT, and StarGAN are low-
resolution images. Thus, it suggests that our model performs
extraordinarily over low-resolution images but drops a bit
(not much) over high-resolution images. Although still, the
performance is quite promising and impressive, even for
high-resolution images. But the overall performance, consid-
ering the images with such different data sources and resolu-
tions, is still pretty impressive. Some of the results are shown
in Figure 7. As it can be seen in the figure, model outputs
it’s results in terms of confidence score which essentially
is probability of that image being a deepfake image or not.
If the model confidence score is closer to ‘0’, it is extremely
confident about the image being real and vice versa. When
the confidence score comes closer to ‘0.5’, it indicates that
the model is bit confused. And it can be seen in the figure
for misclassified Deepfake images and misclassified Real
images, the confidence score is closer to ‘0.5’. Initial analysis
has suggested that since there are manipulation traces and
little blurriness left behind for deepfake images, the neu-
rons activation suggests that background areas are activated
strongly than facial features such as eyes, nose and mouth.
This gets inverted completely for real images where eyes,
nose and mouth areas are strongly activated. It suggests that
eyes, nose and mouth are far detailed in real images and this
becomes the basis for discriminating capabilities of proposed
system.

VII. EXPERIMENT
To compare the performance and generalizability capabili-
ties of the proposed model with existing models, we per-
form a small experiment where we test our proposed model

TABLE 6. Experiment results.

with MesoNet and MesoInception network over the CelebDF
dataset. In literature, it is considered a challenging dataset
for deepfake detection. Since none of the models are trained
over this dataset, it will be an ideal condition to test the
generalizability capabilities of these three models. Figure 8
shows the experimental setup of the proposed model.

CelebDF dataset consists of 795 deepfake videos and
408 real videos. Real videos are divided into 158 real videos
provided by authors of celebrities and 250 YouTube videos.
We decided to work on 795 deepfake videos and 158 real
videos. To simulate deepfake detection in the wild, for both
the real and deepfake videos, we extracted every 50th frame
of all the videos. We performed face recognition using the
Haar Cascade algorithm. Haar cascade was selected for
its excellent capabilities of identifying faces irrespective of
scale and location within the image. These recognized faces
were cropped and stored. Hence, this resulted in a total of
4877 facial images, out of which 3816 were deepfake images
and 1061 were real images.

We also implemented MesoNet and MesoInception Net-
work within our local system. We imported pretrained
weights provided by the authors. The results for MesoNet,
MesoInception network, and the proposed model are 57%,
50.73%, and 77%, respectively. MesoNet delivers 89% accu-
racy on its native test set of Face2Face images, whereas
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MesoInception delivers accuracy of 91%, drops to 57% and
50.73%, respectively. Table 6 shows the experimental results
of the proposed model with the existing models. It reflects
how achieving generalizability capabilities is an arduous task
but, at the same time, of utmost importance for a real-world
use case. This drop in accuracy can also be seen in the
proposed model, but it still manages to hold its ground. There
still lies a scope for future works, which will be discussed in
the next section.

VIII. FUTURE SCOPE
As already discussed above, for real-world use of efficient
deepfake detection methods, it must be robust, generalizable,
computation efficient, and quick. Moreover, there is always
a trade-off between accuracy and time latency. As for the
proposed model, the future direction could involve experi-
mentation with variable input NN along with Global Pooling
so that the resolutions of the input images are not downscaled.
Furthermore, experimentation with various efficient image
upscaling algorithms and their effects on the performance
could also be analyzed for better insights.

IX. CONCLUSION
It has always been challenging to detect deepfake content,
as they are generated at a different level of abstraction. It has
always been treated as a binary classification problem, as real
or deepfake class labels. So, CNN is a prominent solution
to detect deepfake images. Motivated by this, we have pro-
posed a CNN-based architecture to detect deepfake images
in this paper. The proposed architecture offers 97.2% accu-
racy considering images from 5 different data sources for
deepfake images and 2 different data sources for real images.
Even though there is a huge difference between the resolu-
tions of these images, the proposed architecture provides a
well-balanced performance over all data sources. The work
can be further extended to classify video deepfake content.
This model can be used for video deepfake detection, where
each video frame is extracted, the face is detected, cropped,
and then fed to the model to identify deepfake manipulations.
This can be easily done by creating a pipeline to process this
video data. Thus, the proposed CNN-based model performs
well and has quite a balanced performance over the given
dataset with all the data augmentation techniques applied.
Furthermore, it shows good generalizability and performance
over unseen reserved test sets.
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