
Received 19 February 2023, accepted 26 February 2023, date of publication 2 March 2023, date of current version 24 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3251370

Data Secure De-Duplication and Recovery Based
on Public Key Encryption With Keyword Search
LE LI 1, DONG ZHENG 1,2, HAOYU ZHANG 1, AND BAODONG QIN 1
1School of Cyberspace Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
2School of Computer, Qinghai Normal University, Xining 810008, China

Corresponding author: Baodong Qin (qinbaodong@xupt.edu.cn)

This work was supported in part by the Basic Research Program of Qinghai Province under Grant 2020-ZJ-701, and in part by the National
Natural Science Foundation of China under Grant 62072207.

ABSTRACT In the current era of information explosion, users’ demand for data storage is increasing, and
data on the cloud has become the first choice of users and enterprises. Cloud storage facilitates users to
backup and share data, effectively reducing users’ storage expenses. As the duplicate data of different users
are stored multiple times, leading to a sudden decrease in storage utilization of cloud servers. Data stored in
plaintext form can directly remove duplicate data, while cloud servers are semi-trusted and usually need
to store data after encryption to protect user privacy. In this paper, we focus on how to achieve secure
de-duplication and recover data in ciphertext for different users, and determine whether the indexes of public
key searchable encryption and the matching relationship of trapdoor are equal in ciphertext to achieve secure
de-duplication. For the duplicate file, the data user’s re-encryption key about the file is appended to the
ciphertext chain table of the stored copy. The cloud server uses the re-encryption key to generate the specified
transformed ciphertext, and the data user decrypts the transformed ciphertext by its private key to recover
the file. The proposed scheme is secure and efficient through security analysis and experimental simulation
analysis.

INDEX TERMS PEKS, secure de-duplication, proxy re-encryption, data recovery.

I. INTRODUCTION
As a major service provided by cloud computing technology,
cloud storage enables users to backup and share data eas-
ily and quickly, which can efficiently reduce users’ storage
expenses and improve work efficiency. With the increasing
maturity of cloud computing technology. There are many
Cloud Service Providers (CSP) in the market, such as Baidu
Cloud, Amazon Cloud, and other famous CSPs. Users will
upload and store their confidential data to the data storage
center of the cloud server, which is managed and maintained
by the CSP, but with this comes the frequent occurrence
of cloud computing security issues. For enterprises or indi-
vidual users will be personal files, business contracts, user
transaction records, environmental geographic data, and other
susceptible data stored in the cloud server. However, user

The associate editor coordinating the review of this manuscript and

approving it for publication was Tyson Brooks .

privacy leaks and sensitive data leaks have emerged, and even
more, there are CSP through the sale of user data to achieve
corporate profits. The issue of data security in cloud storage
deserves widespread attention.

Big data and cloud computing are developing rapidly, with
an explosion of data from users around the world, resulting
in a dramatic increase in demand for cloud servers. An effec-
tive solution to the need for storage of massive amounts of
data will be deduplicate data. For plaintext data, the equality
test can be achieved by direct comparison, while user data
involves user’s personal privacy, and uploading or storing
it in plaintext form to cloud servers can cause user privacy
leakage. Encrypting data can protect user privacy effectively.
In practical scenarios, different users use different keys for
encrypting files, and there are random parameters in the
encryption, then the ciphertext generated from the same file
is different. By directly comparing ciphertexts, we cannot
determine the duplicity of files, and cloud servers will store

28688
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-3001-9349
https://orcid.org/0000-0002-3860-2037
https://orcid.org/0009-0008-4855-2329
https://orcid.org/0000-0001-7617-5462
https://orcid.org/0000-0001-8691-0141


L. Li et al.: Data Secure De-Duplication and Recovery Based on Public Key Encryption With Keyword Search

multiple encrypted copies of the same file, which will put
huge storage pressure on cloud servers. Therefore, there is
an urgent need to design a secure de-duplication scheme for
encrypted data with different keys in multi-user scenarios.

Currently, convergent encryption [1] is widely used to
construct secure data de-duplication systems, but convergent
encryption also faces various dangers such as data leakage,
faking attacks and chosen-plaintext attacks [2], [3], [4]. Since
the encryption key used in convergent encryption is generated
by the hash value of user’s data file, multiple files of the
same user will generate multiple different keys, thus causing
a key management problem [5]. The operations of encryption
and de-duplication of data affect each other. Encrypting data
with the same key by different users will generate the same
ciphertext. Secure data de-duplication is achieved by directly
comparing ciphertexts with each other, but this will cause the
problem of key management. If different users use different
keys to encrypt data, the key management problem can be
effectively reduced, but it is difficult to achieve equality test.
Therefore, how different users can encrypt data with the same
key without communicating with each other, thus producing
the same ciphertext after encrypting the same data, and how
users can recover their data are the main research directions
of this paper.

In this paper, Public Key Encryption with Keyword
Search (PEKS) is used to detect file duplicates by matching
keywords with trapdoors, and Proxy Re-encryption (PRE) is
used for data recovery [6]. The scheme is mainly divided
into data de-duplication and data recovery. For the data
de-duplication, the data owner needs to upload the file cipher-
text, file tag, and re-encryption key to the cloud server, the file
tag points to the file ciphertext, and the re-encryption key is
stored in the corresponding ciphertext chain table. When the
test result is True, it means that the file is already stored in the
server. The data user does not need to upload the ciphertext
again but only needs to upload the re-encryption key of the
specified file to the corresponding ciphertext chain, which
can effectively reduce the storage overhead of the cloud
server. When the test result is False, it means that the file is
not stored in the server, and the data owner needs to upload
the ciphertext, file tag, and re-encryption key. Regarding data
recovery, users only need to store the user key locally, not
the file key for each file. The user key can be generated only
locally without introducing a key generation center (KGC)
to avoid key substitution attacks, malicious KGC attacks [7].
The user initiates a request to the cloud server to obtain the
file, and the cloud server uses the re-encryption key of the
user in the ciphertext chain table to re-encrypt and generates
the transformed ciphertext. The transformed ciphertext is sent
to the user, and the user can decrypt the file using his private
key.

A. RELATED WORKS
The continuous development of cloud storage technology has
brought new opportunities to many industries, and data on
the cloud has become the immediate need for the digital

transformation of traditional industries. How to effectively
improve the space utilization of cloud storage is one of the
problems that cloud storage needs to solve urgently. A large
of duplicate data exists in the massive data being stored on the
cloud server many times. The main ideas to solve the problem
of deduplicated data storage are to improve the compression
rate of stored files and to secure data de-duplication. This
paper focuses on how to achieve secure data de-duplication
in a multi-user environment.

Secure data de-duplication can be classified into file-level
de-duplication and block-level de-duplication according to
the granularity of de-duplication, client de-duplication and
server de-duplication according to the de-duplication entity.
In this paper, we focus on file-level secure de-duplication
on the server. To protect the privacy of users, server
de-duplication requires users to encrypt data files before
uploading them to cloud servers. Doucear et al. [1] pro-
posed convergent encryption, which can effectively balance
data de-duplication and data encryption to achieve secure
de-duplication in the ciphertext. It computes the hash value of
files as the key of encrypted files.The same file will generate
the same key, and encrypting the same file with the same key
will generate the same ciphertext, thus realizing the direct
comparison of the duplicity of files in the ciphertext state.
Through this mechanism, we can see that the key generated
using the file does not have randomness, and each file will
generate a key, which will lead to the problem of key man-
agement. Bellare et al. [8] designed the variant algorithms
HCE1, HCE2, and HCE3 of convergent encryption by ana-
lyzing the security of convergent encryption [1] to improve
the security and efficiency of convergent encryption. Con-
vergent encryption uses the file hash value as the encryption
key and determines directly whether the file is duplicated
by the ciphertext. Message Locking Encryption (MLE) is a
further improvement to convergent encryption. MLE gener-
ates a tag for the file for de-duplication. MLE does not rely
exclusively on the file hash to generate the file encryption
key. The encryption key is generated after mapping the file
by a deterministic function, which is not resistant to brute
force attacks on predictable information. The encryption key
and the tag are independent and they are not related in any
way. To solve the problem, Keelveedh et al. [9] also pro-
posed DupLESS server-assisted secure data de-duplication
scheme, which effectively improves the randomness of deter-
ministic ciphertexts. Abadi et al. [10] constructed MLE2 for
lock-dependent messages based on MLE to improve the
security of data de-duplication. Liu et al. [11] constructed a
secure data de-duplication system based on a key exchange
protocol without relying on an additional server, but the
system has a large communication overhead and compu-
tational overhead and requires most users to be online
at the same time. Puzio et al. [12] proposed PerfectDedup
to perform secure de-duplication based on the popularity
of data, combined with the property of perfect hashing
to ensure the confidentiality of data. Li et al. [13] pro-
posed a rekeying-aware encrypted de-duplication storage

VOLUME 11, 2023 28689



L. Li et al.: Data Secure De-Duplication and Recovery Based on Public Key Encryption With Keyword Search

system, where the data owner only needs to re-encrypt
part of the message using convergent all-or-nothing trans-
form (CAONT) to achieve secure de-duplication and effec-
tively reduce the computational overhead of the system.
Li et al. [14] proposed CDStore, an enhanced secret shar-
ing scheme based on convergent encryption which takes
deterministic hash values as the input of secret sharing and
supports de-duplication. Tang et al. [15] proposed a secure
de-duplication scheme based on threshold re-encryption,
which can resist side-channel attacks while effectively reduc-
ing computational overhead. Gao et al. [16] proposed a
secure de-duplication scheme without trusted third par-
ties, with hierarchical encryption based on prevalence and
privacy. Kan et al. [17] proposed an identity-based proxy
re-encryption scheme to achieve secure data de-duplication
and recovery by combining data de-duplication and user
access privileges to achieve a complete de-duplication.
Yuan et al. [18] found that REED [14] has a stub-reserved
attack problem and constructed a new secure de-duplication
algorithm using CAONT and Bloom filter to resist stub-
reserved attack.

PRE was first proposed by Blaze et al. [19], PRE enables
data sharing without revealing the data owner’s key. Using
PRE, a proxy server can transform the ciphertext encrypted
using the data owner’s key to generate a transformed cipher-
text that can decrypt by the data user’s key, thus protecting
the data owner’s key while enabling data sharing. Lu and
Li [20] proposed a pairing-free proxy re-encryption scheme
that can meet the application requirements of devices with
limited computing power. According to the practical applica-
tion scenarios, the PRE scheme applicable to the IoT, cloud
computing, and other [21], [22], [23] scenarios is proposed.
The application of electronic medical records in medical
institutions has problems such as information leakage, and
Liu et al. [24]. used proxy re-encryption and sequential multi-
signature to solve the problem.

PEKS was first proposed by Boneh et al. [6] to support
the server to search the ciphertext without knowing the
plaintext message. Fang et al. [25] constructed PEKS based
on the standard security model to resist keyword guess-
ing attacks. Lu et al. [26] that certificate-based search-
able encryption not only resists keyword guessing attacks,
but also supports implicit authentication, no secure chan-
nel. Guo and Yau [27] proposed PEKS that can satisfy the
Indistinguishability of trapdoors. Qin et al. [28] introduced
an improved CI model that enables public key authenti-
cated encryption with keyword retrieval to resist fully cho-
sen keyword to ciphertext-keyword attacks in a multi-user
environment. Zhang et al. [29] first proposed public key
encryption with bidirectional keyword search, which has
practical applications in various scenarios such as email
systems. Chen et al. [30], inspired by the Diffie-Hellman
Exchange algorithm constructed a dual-server public-key
authenticated encryption with keyword search scheme based
on Chen et al. [31], where the system requires not only

dual-server public keys for the generation of keyword
ciphertexts and trapdoors but also the public keys between
users to ensure that only authenticated users can search the
ciphertext. Lu et al. [32] devise a lightweight public key
authenticated encryption with keyword search scheme, which
is suitable for the resource-constrained mobile devices.

B. OUR CONTRIBUTION
In this paper, we construct a secure data de-duplication and
recovery scheme based on public key searchable encryption
by combining public key searchable encryption and proxy
re-encryption. The contributions of this paper are specified
as follows:

1) A secure data de-duplication scheme based on pub-
lic encryption with keyword search is constructed
to realize secure data de-duplication in a multi-user
environment, which can effectively save the storage
space of cloud servers. The scheme in this paper
is a server de-duplication, which can achieve secure
de-duplication without users online, and its application
scenario is more flexible.

2) This paper uses proxy re-encryption to achieve user
data recovery. The server uses the re-encryption key
stored in the ciphertext chain table for re-encryption,
and the user can decrypt and recover the files using only
his private key, so that there is no need to save each file
key, which can effectively reduce the key management
problem.

3) The only entities involved in the interaction are users
and cloud servers, and no KGC is introduced, so that
key substitution attacks and malicious KGC attacks
can be effectively avoided. Meanwhile, for malicious
servers that can obtain file tags and file ciphertexts of
arbitrary files, it can achieve one-wayness under the
chosen file attack.

4) Massive data are storaged in the cloud server, so the
efficiency of equality test in the overall de-duplication
process is critical, through experimental simulation
analysis, for the storage of 5000 files in the database,
the realization of safe de-duplication takes 42.86s,
about one-third of the time consumed by the paper [17].

C. ORGANIZATION
The rest of the paper is organized as follows. Section II
presents the algorithm and specific design. Section III ana-
lyzes the security of the scheme. Section IV simulates the
scheme to analyze its performance. Finally, a conclusion is
presented in Section V.

II. ALGORITHM AND SCHEME DESIGN
A. SYSTEM MODEL
As shown in Fig 1, the entities involved in this scheme include
data user, CSP, and these entities are described below.

Data user: The data user encrypts the file and uploads it to
the CSP to ensure the user’s privacy. The user is distinguished

28690 VOLUME 11, 2023



L. Li et al.: Data Secure De-Duplication and Recovery Based on Public Key Encryption With Keyword Search

FIGURE 1. System model.

into data owner (DO) and data user (DU) according to the
status at the time of upload, and the DO needs to upload the
ciphertext, file tag, and re-encryption key, while the DU only
needs to upload the re-encryption key about the file. When
the data user recovers the file, the CSP uses the corresponding
re-encryption key in the ciphertext chain table to generate the
transformed ciphertext. The user can use his private key to
decrypt the transformed ciphertext to recover the file.

CSP: store the ciphertext and file tags uploaded by users,
and establish file tag index. When the user uploads a test tag,
a matching operation is performed to determine whether it
is a duplicate file. For non-duplicate files, the user needs to
store the ciphertext, file tags, and the user’s re-encryption
key about the file in the cloud server. For duplicate files,
users only need to store their re-encryption keys for the files
in the corresponding ciphertext chain table. When the user
sends a file recovery request, the CSP uses the corresponding
re-encryption key in the ciphertext chain table to generate a
transformed ciphertext to send to the user.

B. ALGORITHM DESIGN
The scheme in this paper involves only the user and the cloud
server. The overall workflow is divided into two phases of
data de-duplication and data recovery, containing a total of
10 algorithms, which are described as follows.
Setup (k) → params: Given a security parameter k , return

a public parameter params ={q, g, e,Z ,G1,G2,H1,H2,H3},
G1 and G2 are two cyclic groups with prime order q and g is
a generator G1. It defines a bilinear map e : G1 × G1 → G2

and let Z = e(g, g). In addition, the following defines three
hash functions H1 : {0, 1}∗ → Z∗

q ,H2 : {0, 1}∗ → G1,H3 :

G2 → Z∗
q .

FileKey (params,F) → (SKF ,PKF ): This algorithm is
run by user. Input a file F ,a user computes private key SKF =

f = H1 (F) and public key PKF = Z f = ZH1(F),then outputs
a file key pair (PKF , SKF ).
UserKey (params) → (SKu,PKu): This algorithm is run

by user. A user choices random element a from the set Z∗
q as

user private key SKu and computes user public key PKu =

ga,then outputs a user key pair (PKu, SKu).The user key pair
is generated by itself without the help of KGC, and the key
information is not involved in the process of interacting with
the server, but only kept by the user, thus ensuring the privacy
of the user key.
ReKey(SKF ,PKu) → RKF→u: This algorithm is run by

user. It inputs the file private key SKF and the user public
key PKu, then outputs file F about user’s re-encryption key
RKF→u = ga·f . The RKF→u is sent to the cloud server and
stored in the ciphertext chain table, which is used only for the
specified user to recover the specified file owned by itself.
FileTag(params,F, SKF ) → TagF : This algorithm is run

by user. It inputs the file, then choices random element r1
from the set Z∗

q and extract keyword w = H2 (F) by file
F . It outputs file tag TagF = (T1,T2) about file F , where
T1 = gr1 , T2 = H3

(
e
(
w, gr1·f

))
. The user sends TagF to

the cloud server, and the tag serves as a unique identifier
for the file. When the tag is stored in the server, it indicates
that the file already exists and does not need to be uploaded
repeatedly.

VOLUME 11, 2023 28691



L. Li et al.: Data Secure De-Duplication and Recovery Based on Public Key Encryption With Keyword Search

Enc(F,PKF ) → C : This algorithm is run by user. It inputs
the file F and user public key, then returns ciphertext C . This
algorithm runs as below:

1) Select random element r2 from the set Z∗
q and compute

C1 = gr2 .
2) Compute C2 = F · e (g, g)f ·r2 = F · Z f ·r2 .
This algorithm outputs ciphertext C2 = (C1,C2) =(
gr2 ,F · Z f ·r2

)
. For non-duplicate files, the user needs to

encrypt them using this algorithm and then upload to the
cloud server for storage.
TestTag(F) → TF : his algorithm is run by user. It inputs

the file F , then computes test tag TF = H2(F)H1(F). The test
tag is used to verify that the corresponding file already exists
in the cloud server.
Test(TF ,TagF ) → ⊥: This algorithm is run by cloud

server. It inputs test tag TF and file tag TagF , the cloud server
verifies whether H3(e(TF ,T1)) = T2 is valid. When the
equation holds, it indicates that the file is duplicated, so the
user doesn’t need to upload the ciphertext, but only needs
to generate the re-encryption key RKF→u of the duplicate
file about itself by the algorithm, and store the key in the
ciphertext chain table of the corresponding ciphertext.
ReEnc (C,RKF→u) → C ′: This algorithm is run by

cloud server. It inputs original ciphertext C and re-encryption
key RKF→u, then computes transformed ciphertext C ′

=(
C1

′,C2
′
)
. This algorithm runs as below:

C1
′

= e (C1,RKF→u) = Z r2·a·f , C2
′

= C2. When the
user needs to obtain the duplicate file, he only needs to send
a request to the server, which will find the corresponding
re-encryption key in the corresponding ciphertext chain table,
use the re-encryption key to generate the transformed cipher-
text and send it to the user.
ReDec

(
C ′, SKu

)
→ F : This algorithm is run by user.

When the user receives the transformed ciphertext C ′ from
the server, the user can simply use his private key SKu to
compute F = C2

′/
(
C1

′
)1/a.

C. CORRECTNESS ANALYSIS
1) CORRECTNESS OF DE-DUPLICATION
The user needs to perform de-duplication before uploading
files to the server, and when the files are duplicated, there is
no need to upload the files. The user computes the test tag TF ′ ,
and uses the test tag TF ′ and the file tag TagF ′ as input to the
algorithm Test to determine whether the file F ′ is duplicated.
The specific de-duplication process is as follows:

Using the bilinear pairing properties it follows that:

H3 (e (TF ′ ,T1)) = H3

(
e
(
H2

(
F ′

)
, g

)f ·r1)
T2 = H3

(
e
(
H2 (F) , gf r1

))
= H3

(
e(H2 (F) , g)f r1

)
The above equation shows that if the test tag corresponds

to the same file as the file tag, then H3(e(H2(F ′), g)f ·r1 ) =

H3(e(H2(F), g)f ·r1 ) show that the equation H3(e(TF ′ ,T1)) =

T2 holds. Since the hash function is collision-resistant, when

H2(F ′) ̸= H2(F) then it means F ′
̸= F . Therefore, the output

of the algorithm Test is true for the same file and false for a
different file, thus determining whether the file is a duplicate.

2) CORRECTNESS OF RE-DECRYPTION
For the user who owns the file, the ciphertext chain table cor-
responding to the ciphertext stored in the cloud server should
hold the re-encryption key of the user. This re-encryption key
is generated from the file encryption key and the user’s public
key, forming a one-to-one correspondence between the file
and the user’s identity. Therefore, the user can decrypt the
corresponding transformed ciphertext with his private key.
The specific decryption calculation process is as follows:

C2
′/

(
C1

′
)1/a

= F · e(g, g)f r2/e(C1,RKF→u)
1/a

= F · e(g, g)f r2/e
(
gr2 , ga·f

)1/a
= F · e(g, g)f r2/e(g, g)f r2

= F

The above equation shows that if and only if the user has
the file, he can use his private key to recover the file F
correctly, while for users who don’t have access to the file,
the generated transformed ciphertext cannot be decrypted.

D. WORK PROCESS
This program can realize secure data de-duplication and data
recovery. This subsection mainly describes the workflow of
this program, which is mainly divided into two phases: data
de-duplication and data recovery.
Phase 1. data de-duplication
The workflow of the data de-duplication phase is depicted

in Fig 2. The data user generates file tags TagF based on the
files F and uploads them to the cloud server to form the file
tag index. When the data user uploads a file, a test tag TF
is generated and sent to the CSP, which uses the matching
relationship between TagF and TF to determine whether there
is a file tag that matches the test tag uploaded by the user,
and sends the test result Test (TF ,TagF ) to the data user.
If there exist a matching file tag, return true, it means that
there is already a duplicate file in the CSP, and the user does
not need to encrypt the file, but only needs to upload the
file re-encryption key about the user to the ciphertext chain
table of the corresponding file in the cloud server. If there is
no matching file tag, return false, it means that there is no
duplicate file in CSP, then the user as the data owner needs to
generate file ciphertext, file tag, re-encryption key about the
user and upload it to the cloud server.
Phase 2. Data recovery
The workflow of the data recovery phase is depicted in

Fig 3. The data user sends a request to get the file, and the
CSP queries whether the re-encryption key RKF→u of the
user exists in the ciphertext chain table of the file F . When
the user’s re-encryption key exists in the ciphertext chain
table of the file F , the cloud server re-encrypts the original
ciphertext C of the file, generates the transformed ciphertext

28692 VOLUME 11, 2023



L. Li et al.: Data Secure De-Duplication and Recovery Based on Public Key Encryption With Keyword Search

FIGURE 2. File de-duplication process.

C ′, and sends it to the user. After receiving the transformed
ciphertext, the user can use private key SKu to decrypt the
file F . When the user’s re-encryption key doesn’t exist in the
ciphertext chain table of the file F , it means that the user
cannot access the file F .

III. SECURITY PROOF
A. SECURITY MODEL
In this paper, we consider an insider attacker malicious CSP
server. This type of attacker will comply with the execution
of the protocol, but can obtain the file tag and ciphertext of
any file. In addition, the attacker can obtain the test tag and
re-encryption key of the file. For the target file, the attacker
is not allowed to obtain the test tag of the file. If the attacker
knows the private key of user, the attacker is also not allowed
to obtain the re-encryption key of the target file to that user.
For this type of attacker, the formal definition of the security
model of the scheme is given below.
Setup. The challenger generates system parameters

params = {q, g, e,Z ,G1,G2,H1,H2,H3} from Setup and

generates the key pair of the challenger user from UserKey.
The challenger sends params and PKu to the attacker A.
Phase 1. A answers queries as follows.

• File key queries: Input file F , then returns the key pair
(PKF , SKF ) of the file F .

• File key queries: Input file F , then returns the file tag
TagF of the file F .

• ciphertext queries: Input file F , then returns the cipher-
text CF of the file F .

• Re-encryption key queries: Input file F and user public
key PKu, then returns the re-encryption key RKF→u.

• Test tag queries: Input file F , then returns the test tag TF
of the file F .

In the above queries, in addition to the challenge file F∗,
the attacker can complete various queries for other files based
on the relevant algorithms.
Challenge. The challenger randomly selects a challenge

file F∗ from the file space G2 computes the file tag TagF∗

and ciphertext CF∗ , and returns them to A.

VOLUME 11, 2023 28693



L. Li et al.: Data Secure De-Duplication and Recovery Based on Public Key Encryption With Keyword Search

FIGURE 3. File recovery processs.

Phase 2. A can ask for queries related to any file in the
same way as in phase1, but cannot ask for queries related to
a challenge file F∗ as follows:

• File private key of challenge file F∗.
• A can obtain the re-encryption key RKF∗→u from the
challenge fileF∗ to the challenge user, but cannot ask for
the re-encryption key from the challenge file to another
user whose private key is known.

• File test tag of challenge file F∗.
Guess. A returns a file F ∈ G2. If F = F∗, then the

attacker succeeds, otherwise the attacker fails.
For any Probabilistic Polynomial-Time (PPT) attacker,

a scheme is said to satisfy one-wayness under chosen file
attack if the probability of the attacker succeeding in the
above game is negligible.

B. SECURITY ANALYSIS
SBDH problem. Given a security parameter k , a group G
with the order q, a generator g of G, and randomly choose
a, b, c ∈ Z∗

q . On input a tuple
(
g, ga, gb, gc, g1/a, gbc/a

)
∈

G1
6 to compute e(g, g)abc. There is an PPT adversary A,

the advantage of

AdvSBDHA (k)
= Pr

[
A

(
g, ga, gb, gc, g1/a, gbc/a

)
→ e(g, g)abc

]
,

≤ ε

if ε is negligible, the SBDH problem is hard to solve
by A.
Theorem 1: If the SBDH problem is hard to solve, under

the random oracle model, the scheme satisfies one-wayness
security under the chosen file attack.

Specifically, If there exists an algorithm A that attacks the
one-wayness of the scheme with probability ε, then another
algorithm B can be constructed to solve one solution of the
SBDH problem instance with probability at least(

1
2

+
1
2q3

)
ε −

1
2q3q

,

where q3 denotes the number of times the attacker asks the
hash function H3.
ProofAssume thatA is a one-wayness PPT attacker of any

attack scheme. Given an instance
(
g, ga, gb, gc

)
∈ G1

4 of the
BDH problem and a bilinear pairing e : G1 × G1 → G2,
if the attacker can successfully attack the one-wayness of the
scheme with probability ε, then another simulator algorithm
B can be constructed to successfully solve the above BDH
problem with at least xxx probability. Algorithm B simulates
the execution of the game as follows.
Setup. Simulator B generates system parameter params =

{q, g, e,Z ,G1,G2,H1,H2,H3} based on the SBDH problem
instance, where Z = e(g, g). H1 : {0, 1}∗ → Z∗

q , H2 :

{0, 1}∗ → G1 andH3 : G2 → Z∗
q are the three hash functions

28694 VOLUME 11, 2023



L. Li et al.: Data Secure De-Duplication and Recovery Based on Public Key Encryption With Keyword Search

selected by the simulator. The simulator sets the public key of
the challenge user u∗ as PKu∗ = g1/a according to the BDH
problem instance and implicitly defines its private key as
SKu∗ = 1/a. In addition, the simulator randomly selects R ∈

G2 and k1 ∈ Z∗
q and implicitly defines F∗

= R · e(g, g)−k1abc

as the challenge file. Finally, the simulator sends params and
PKu∗ to the attacker.
Phase 1.When the attacker makes the following query, the

simulator responds as follows.
• Hash queries. The simulator builds three hash lists L1 =

{(∗, ∗)}, L2 = {(∗, ∗)} and L3 = {(∗, ∗)} with empty ini-
tial elements. When the attacker asks the hash function
H1 about the hash value of element x1,i, the simulator
first checks whether the binary (x1,i, h1,i) exists in list
L1 and returns h1,i if it does, otherwise, it randomly
selects h1,i ∈ Z∗

q and returns it to the attacker.
• File key queries. When the attacker asks for the key
of file F , the simulator returns the (PKF , SKF ) =

(ZH1(F),H1(F)) according to the FileKey. In particular,
when the attacker asks for the public key of the challenge
file F∗, the simulator computes PKF∗ = e(gb, gc) and
returns it to the attacker.

• File tag queries. When the attacker asks for the tag of
file F , the simulator computes the file tag TagF of F
according to FileTag and returns it to the attacker.

• File ciphertext queries. When the attacker asks for the
ciphertext of file F , the simulator computes the cipher-
text CF according to Enc and returns it to the attacker.

• Re-encryption key queries. When the attacker u ̸= u∗,
the simulator computes the re-encryption key RKF→u
according to ReKey and returns it to the attacker. If the
attacker asks for the re-encryption key from the chal-
lenge file to the challenge user, the simulator makes
RKF∗→u∗ = gbc/a and returns it to the attacker.

• Test tag queries.When the attacker asks for the test tag of
file F , the simulator computes the test tag TF according
to TestTag and returns it to the attacker.

Phase 2.The simulator answers the attacker’s queries as in
Phase 1, but the attacker cannot make the following queries.

• A asks for the private key SKF∗ of challenge file F∗.
• A asks for the re-encryption key of Challenge file F∗ to
other users.

• A asks for the test tag of challenge file F∗.
Guess. The attacker returns a guess file F ∈ G2. The

simulator randomly selects a bit b ∈ {0, 1}. If b = 0 the
simulator computes

T ∗
=

(
R
F

)1/k1
.

Otherwise, the simulator randomly selects an element
(x3,i, h3,i) from the hash list L3, computes T ∗

=
(
x3,i

)3/r2 ,
and uses T ∗ as the solution to the challenge SBDH problem.
Success probability analysis of the Simulator. If the

attacker selects file F ̸= F∗ in the query phase, then the
simulator’s hash queries, file key queries, file tag queries,
file ciphertext queries, re-encryption key queries, and test tag

queries to the attacker are answered in the same way as in the
original security model. Since challenge file F∗ is randomly
and independently selected by the simulator, the probability
that the attacker selects a file F equal to the challenge file in
each queries phase does not exceed 1/q. The correctness of
the challenge tag and challenge ciphertext is analyzed below.

Because of C∗

1 = (ga)k1 and F∗
= R · e(g, g)−k1abc,

it follows that C∗

2 = F∗
· e(g, g)f ·r2 = R · e(g, g)−k1abc ·

e(g, g)k1abc = R. The challenge file ciphertext in the simu-
lated game is consistent with the challenge ciphertext distri-
bution in the original model.

Because of T ∗

1 = gr1 and H2(F∗) = (ga)k2 , it follows that
e(H2(F), gr1bc) = e(g, g)abcr2 . If the attacker has never asked
H2 about the hash of e(g, g)abcr2 , then the simulator randomly
chooses T ∗

2 ∈ Z∗
q to be consistent with the challenge tag

distribution in the original model. If the attacker has asked
H2 about the hash of e(g, g)abcr2 , the simulator randomly
chooses x3,i, from the query list of H2. Then

(
x3,i

)1/r2 is
a solution to the SBDH problem with the probability of at
least 1/q3.

Let E denote the event ‘‘Attacker asks H2 about the hash
of e(g, g)abcr2 , and prove below that the probability of E
occurring is at least ε − 1/q. When E does not occur, Pr[F =

F∗
|¬E] = 1/q is completely independent of the challenge

file because the challenge tag and challenge ciphertext are
completely independent of the challenge file. Because

Pr[F = F∗] = Pr[F = F∗
|E] · Pr[E]

= +Pr[F = F∗
|¬E] · Pr[¬E]

≤ Pr[E] +
1
q
Pr[¬E]

Pr[E] ≥
Pr[F = F∗] − 1/q

1 − 1/q
≥ ε − 1/q

In summary, the analysis shows that if the attacker breaches
the security of the scheme with probability ε, the simulator
obtains at least one solution to the SBDH problem with
probability (

1
2

+
1
2q3

)
ε −

1
2q3q

.

IV. PERFORMANCE EVALUATION
A. THEORETICAL ANALYSIS
The proposed scheme in this paper involves entities such
as data users and cloud servers, and data users divide into
data owners and data users based on the order of uploading
files. For the entities involved in the paper [17] are data
owner, data user, cloud server, and KGC. The key gener-
ation involved in this scheme requires the participation of
KGC, while the key generation in the scheme of this paper
are generated by the user without the need of a third party
trusted institution. Although key generation increases the
computational overhead of the client, it is able to avoid KGC
attacks [7]. In Table 1, by comparing with paper [17], the
algorithms in paper [17] and this paper are grouped into

VOLUME 11, 2023 28695



L. Li et al.: Data Secure De-Duplication and Recovery Based on Public Key Encryption With Keyword Search

TABLE 1. Computational cost comparison.

the ten algorithms involved in Table 1 according to their
functions for the sake of comparative analysis. The corre-
spondence between the algorithms of the scheme in this paper
and the algorithms in the paper [17] is, where UserKey is
equivalent to the Key generation, FileTag algorithm is equiv-
alent to the Data tag generation, TestTag is equivalent to the
Ownership challenge and dedupliaction in the Test tag s gen-
eration algorithm, Test is equivalent to the process of equality
test by CSP in ownership challenge and dedupliaction, and
the rest of the algorithms not mentioned can be directly
corresponded to the algorithms in Table 1. E denotes a
exponentiation operation, H denotes a hash operation, and
P denotes a pairing operation, and ’-’ denotes the algorithm
does not exist. Since the paper [17] uses user keys for file
encryption, it doesn’t need to execute the FileKey algorithm,
while the scheme in this paper uses proxy re-decryption for
both data owner and data user decryption, so it doesn’t need to
execute Dec.
The computational overheads incurred in UserKey and

ReEnc are basically the same for both schemes. The com-
putational overhead of this paper’s scheme in generating
test tags increases by one exponential operation compared
to the paper [17], which will lead to an increase in com-
putational overhead. For each execution of Test algorithm,
our scheme needs to perform one bilinear pairing opera-
tion. In contrast, the paper [17] requires two bilinear pairing
operations, so there is a significant difference in efficiency
when the equality test is performed on a large number of
data. Moreover, the computational withholding overheads of
the encryption algorithm and the re-decryption algorithm in
this paper are smaller than those in the paper [17]. There-
fore, through theoretical analysis, the computational over-
head of the scheme in this paper is relatively smaller and can
save some computational resources in practical application
scenarios.

B. SIMULATION ANALYSIS
In order to analyze the efficiency, our scheme and the compar-
ison scheme are implemented by JPBC cryptographic library.
Regarding JPBC cryptographic library, uses type A pairing
parameters for simulation. Type A pairing is constructed
based on elliptic curve y2 = x3 + x mod p where p ≡

3mod4 the groupG1,G2,GT generated using type A bilinear
pairing in JPBC are 512bit symmetric group, and the set Zq
is 160bit. The testing environment is the desktop with AMD
R7 5700U@1.80 GHz and 8 GB RAM. The results of each
experiment are averaged over 100 runtimes because of the
uneven time consumption of the algorithm initialization.

Analyze the computational overhead of each algorithm
in the scheme. According to the function of the secure

de-duplication system, it is divided into ten algorithms in
Fig 4. As shown in Fig 4, the computational overhead of
each algorithm is derived from simulations in which the file
size used is 1MB. It can be seen that the computational
overhead generated by our scheme and the paper [17] in
generating user keys and re-encryption is basically the same.
Since the equality test in the de-duplication system requires
Test algorithm for each file in the cloud storage, in order to
improve the efficiency of equality test, our scheme increases
the computational overhead in FileTag compared to Test to
reduce the computational overhead of Test , and the computa-
tional overhead in Test is about 1/3 of that of the paper [17].
For TestTag,Enc,ReKey,ReDec algorithm, the simulation
results show that the scheme of our scheme is better than the
paper [17]. In terms of the overall execution efficiency of the
system, the time required in a single process is about 82.2 ms
in ours, while the paper [17] is about 137.65ms. It can be seen
that the computational overhead of the scheme in this paper
is lower than that in the paper [17].

FIGURE 4. Average operation time of each phase of the scheme.

Test the impact of different file sizes on the generated test
tags. In the process of equality test of encrypted data, the
cloud server determines whether the plaintexts correspond-
ing to the two ciphertexts are the same based on the test
tags uploaded by the user and the file tags stored in the
database using Test , to achieve equality test of the files. The
user performs subsequent operations based on the results of
equality test. In order to further analyze the performance of
test tag generation, we compare this paper with the selected
scheme by testing the test tag generation time for different
file sizes of 5MB, 10MB, 15MB, 20MB, and 25MB, and the
results are shown in Fig 5. With the increase of the upload
file size, the time consumed to generate the test tag also
increases, and the change of computational overhead of this
scheme is basically the same as that of the paper [17]. The
computational performance of this scheme in generating the
test tag is better than that of the paper [17] because this

28696 VOLUME 11, 2023



L. Li et al.: Data Secure De-Duplication and Recovery Based on Public Key Encryption With Keyword Search

scheme reduces one exponential operation when generating
the test tag compared with the paper [17].

FIGURE 5. Computational overhead of generating file tags for different
file size.

Test the impact of different numbers of files on the equality
test of the system. In the process of test, the cloud server
compares the uploaded test tags with all the file tags in the
database to determine whether there are duplicate files in
the database, and based on the judgment result, the user per-
forms the next operation. In order to analyze the performance
advantages and disadvantages of this paper’s scheme and
the comparison scheme in the process of equality test, the
implementation of storing 1000, 2000, 3000, 4000, 5000 file
tags in the database, size of each file is 1MB. Through simu-
lation analysis, the results obtained are shown in Fig 6. It can
be seen through Fig 6 that the time consumed for equality
test increases linearly with the increase of the number of
files in the database. Due to the large number of files in
the database, compared to the paper [17] ours scheme has
obvious advantages in practical applications.

FIGURE 6. Computational overhead of duplication test for different file
number.

V. CONCLUSION
Secure data de-duplication is of great value in cloud storage,
and it can effectively improve the space utilization of cloud
storage systems. In this paper, a Secure data de-duplication
and recovery scheme based on PEKS is constructed by using
the matching relationship between keyword and trapdoor of

searchable encryption to achieve file equality test in cipher-
text state and using proxy re-encryption to achieve data recov-
ery. Since the de-duplication process of a single file requires
the execution of multiple equality test algorithms depending
on the size of the database, this scheme is designed to avoid
the computational overhead of this algorithm as much as
possible. Through experimental simulation, the results show
that the scheme in this paper has good performance in a
cloud storage system. At present, scholars have made some
achievements in the study of Secure data de-duplication and
have applied it to practical scenarios. This paper conducts
in depth research based on the previous work, but there are
still some shortcomings, such as the current scheme of this
paper only supports equality test at the file level. In the future,
the main consideration is the de-duplication rate. When the
data user has two files with only minor differences, this paper
will determine them as different files, which will reduce the
de-duplication rate.

REFERENCES
[1] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer,

‘‘Reclaiming space from duplicate files in a serverless distributed file
system,’’ in Proc. 22nd Int. Conf. Distrib. Comput. Syst., Vienna, Austria,
2002, pp. 617–624.

[2] A. Agarwala, P. Singh, and P. K. Atrey, ‘‘DICE: A dual integrity convergent
encryption protocol for client side secure data deduplication,’’ in Proc.
IEEE Int. Conf. Syst., Man, Cybern. (SMC), Banff, AB, Canada, Oct. 2017,
pp. 2176–2181.

[3] P. Anderson and L. Zhang, ‘‘Fast and secure laptop backups with encrypted
deduplication,’’ in Proc. 24th Large Installation Syst. Admin. Conf., San
jose, CA, USA, 2010, pp. 1–12.

[4] D. Harnik, B. Pinkas, and A. Shulman-Peleg, ‘‘Side channels in cloud
services: Deduplication in cloud storage,’’ IEEE Security Privacy, vol. 8,
no. 6, pp. 40–47, Nov./Dec. 2010.

[5] J. Li, X. Chen, M. Li, J. Li, P. P. C. Lee, andW. Lou, ‘‘Secure deduplication
with efficient and reliable convergent key management,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 6, pp. 1615–1625, Jun. 2014.

[6] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, ‘‘Public key
encryption with keyword search,’’ in Proc. Int. Conf. Theory Appl. Crypto-
graph. Techn., C. Cachin and J. Camenisch, Eds. Interlaken, Switzerland,
2004, pp. 506–522.

[7] M. H. Au, J. Chen, J. K. Liu, Y. Mu, D. S. Wong, and G. Yang, ‘‘Malicious
KGC attacks in certificateless cryptography,’’ inProc. 2nd ACMSymp. Inf.,
Comput. Commun. Secur., New York, NY, USA, 2007, pp. 302–311.

[8] M. Bellare, S. Keelveedhi, and T. Ristenpart, ‘‘Message-locked encryption
and secure deduplication,’’ in Proc. 32nd Annu. Int. Conf. Theory Appl.
Cryptograph. Techn., T. Johansson and P. Q. Nguyen, Eds. Athens, Greece,
2013, pp. 296–312.

[9] S. Keelveedhi, M. Bellare, and T. Ristenpart, ‘‘DupLESS: Server-aided
encryption for deduplicated storage,’’ in Proc. 22th USENIX Secur. Symp.,
S. T. King, Ed. Washington, DC, USA, 2013, pp. 179–194.

[10] M. Abadi, D. Boneh, I. R. A. Mironov, and G. Segev, ‘‘Message-locked
encryption for lock-dependent messages,’’ in Proc. 33rd Annu. Cryptol.
Conf., Santa barbara, CA, USA, 2013, pp. 374–391.

[11] J. Liu, N. Asokan, and B. Pinkas, ‘‘Secure deduplication of encrypted
data without additional independent servers,’’ in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur., Denver, CO, USA, Oct. 2015,
pp. 874–885.

[12] P. Puzio, R. Molva, M. Önen, and S. Loureiro, ‘‘PerfectDedup: Secure data
deduplication,’’ in Proc. 10th Int. Workshop, 4th Int. Workshop, Vienna,
Austria, 2015, pp. 150–166.

[13] J. Li, C. Qin, P. P. C. Lee, and J. Li, ‘‘Rekeying for encrypted deduplication
storage,’’ inProc. 46th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw.,
Toulouse, France, Jun. 2016, pp. 618–629.

[14] M. Li, C. Qin, J. Li, and P. P. C. Lee, ‘‘CDStore: Toward reliable, secure,
and cost-efficient cloud storage via convergent dispersal,’’ IEEE Internet
Comput., vol. 20, no. 3, pp. 45–53, May 2016.

VOLUME 11, 2023 28697



L. Li et al.: Data Secure De-Duplication and Recovery Based on Public Key Encryption With Keyword Search

[15] X. Tang, L. Zhou, W. Shan, and D. Liu, ‘‘Threshold re-encryption based
secure deduplication method for cloud data with resistance against side
channel attack,’’ J. Commun., vol. 41, no. 6, p. 14, 2020.

[16] W.Gao, H.Xian, andR. Cheng, ‘‘ACloud data deduplicationmethod based
on double-layered encryption and key sharing,’’ Chin. J. Comput., vol. 44,
no. 11, pp. 2203–2215, 2021.

[17] G. Kan, C. Jin, H. Zhu, Y. Xu, and N. Liu, ‘‘An identity-based proxy
re-encryption for data deduplication in cloud,’’ J. Syst. Archit., vol. 121,
Dec. 2021, Art. no. 102332.

[18] H. Yuan, X. Chen, J. Li, T. Jiang, J. Wang, and R. H. Deng, ‘‘Secure cloud
data deduplication with efficient re-encryption,’’ IEEE Trans. Services
Comput., vol. 15, no. 1, pp. 442–456, Jan. 2022.

[19] M. Blaze, G. Bleumer, and M. Strauss, ‘‘Divertible protocols and atomic
proxy cryptography,’’ in Proc. Int. Conf. Theory Appl. Cryptograph.
Techn., Espoo, Finland, 1998, pp. 127–144.

[20] Y. Lu and J. Li, ‘‘A pairing-free certificate-based proxy re-encryption
scheme for secure data sharing in public clouds,’’ Future Gener. Comput.
Syst., vol. 62, pp. 140–147, Sep. 2016.

[21] K. O. Agyekum, Q. Xia, E. Sifah, J. Gao, H. Xia, X. Du, and M. Guizani,
‘‘A secured proxy-based data sharing module in IoT environments using
blockchain,’’ Sensors, vol. 19, no. 5, p. 1235, Mar. 2019.

[22] Q. Wang, W. Li, and Z. Qin, ‘‘Proxy re-encryption in access con-
trol framework of information-centric networks,’’ IEEE Access, vol. 7,
pp. 48417–48429, 2019.

[23] H. Hong and Z. Sun, ‘‘Sharing your privileges securely: A key-insulated
attribute based proxy re-encryption scheme for IoT,’’ World Wide Web,
vol. 21, no. 3, pp. 595–607, 2018.

[24] X. Liu, J. Yan, S. Shan, and R. Wu, ‘‘A blockchain-assisted electronic
medical records by using proxy reencryption and multisignature,’’ Secur.
Commun. Netw., vol. 2022, Feb. 2022, Art. no. 6737942.

[25] L. Fang, W. Susilo, C. Ge, and J. Wang, ‘‘Public key encryption with
keyword search secure against keyword guessing attacks without random
Oracle,’’ Inf. Sci., vol. 238, pp. 221–241, Jul. 2013.

[26] Y. Lu, J. Li, and Y. Zhang, ‘‘Secure channel free certificate-based
searchable encryption withstanding outside and inside keyword guessing
attacks,’’ IEEE Trans. Services Comput., vol. 14, no. 6, pp. 2041–2054,
Nov. 2021.

[27] L. F. Guo and W. C. Yau, ‘‘Efficient secure-channel free public key
encryption with keyword search for EMRs in cloud storage,’’ J. Med. Syst.,
vol. 39, p. 11, Feb. 2015.

[28] B. Qin, H. Cui, X. Zheng, and D. Zheng, ‘‘Improved security model for
public-key authenticated encryption with keyword search,’’ in Proc. 15th
Int. Conf., Q. Huang and Y. Yu, Eds. Guangzhou, China, 2021, pp. 19–38.

[29] W. Zhang, B. Qin, X. Dong, and A. Tian, ‘‘Public-key encryption with
bidirectional keyword search and its application to encrypted emails,’’
Comput. Standards Interfaces, vol. 78, Oct. 2021, Art. no. 103542.

[30] B. Chen, L. Wu, S. Zeadally, and D. He, ‘‘Dual-server public-key authen-
ticated encryption with keyword search,’’ IEEE Trans. Cloud Comput.,
vol. 10, no. 1, pp. 322–333, Jan. 2022.

[31] R. Chen, Y.Mu, G. Yang, F. Guo, and X.Wang, ‘‘A new general framework
for secure public key encryption with keyword search,’’ in Proc. 20th
Australas. Conf., E. Foo and D. Stebila, Eds. Brisbane, QLD, Australia,
2015, pp. 59–76.

[32] Y. Lu and J. Li, ‘‘Lightweight public key authenticated encryption with
keyword search against adaptively-chosen-targets adversaries for mobile
devices,’’ IEEE Trans. Mobile Comput., vol. 21, no. 12, pp. 4397–4409,
Dec. 2022.

LE LI received the B.S. degree from the Xi’an Uni-
versity of Posts and Telecommunications, Xi’an,
China, in 2020, where he is currently pursuing the
M.S. degree. His research interest includes cloud
storage security.

DONG ZHENG received the M.S. degree in math-
ematics from Shaanxi Normal University, Xi’an,
China, in 1988, and the Ph.D. degree in communi-
cation engineering from Xidian University, Xi’an,
in 1999. He was a Professor with the School of
Information Security Engineering, Shanghai Jiao
Tong University, Shanghai, China. He is currently
a Professor with the Xi’an University of Posts and
Telecommunications and is also connected with
the National Engineering Laboratory for Wireless

Security, Xi’an. His research interests include provable security and new
cryptographic technology.

HAOYU ZHANG is currently pursuing the
M.S. degree with the Xi’an University of Posts
and Telecommunications. Her research interests
include public key searchable encryption and the
SM9 algorithm.

BAODONG QIN is currently a Professor with the
Xi’an University of Post and Telecommunications.
His research interests include cryptography and
cloud computing security.

28698 VOLUME 11, 2023


