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ABSTRACT Self-driving systems have a hard real-time nature, and the control commands of the vehicle
must be output before the end-to-end deadline using sufficiently new data. It must also have the functionality
to quickly shift to a safe state in the event of a deadline miss. However, the current self-driving system can
only detect a deadline miss at the end of the process. To further improve safety, a method for detecting the
possibility of a deadlinemiss in themiddle of the process is required. Therefore, we represent such a real-time
system as amixed timer-driven and event-driven directed acyclic graph (DAG) and propose an early detection
method for deadline misses by deriving a time constraint for each node. The experimental evaluation shows
that the proposed method can detect deadline misses early for various scheduling algorithms. It also shows
that the deadline miss ratio can be reduced by prioritizing the scheduling of jobs with a small margin to the
time constraint determined using the proposed method for each job.

INDEX TERMS DAG, deadline miss early detection, event-driven task, self-driving system, timer-driven
task.

I. INTRODUCTION
Autonomous vehicles have recently attracted significant
attention worldwide. The widespread use of autonomous
vehicles should bring many benefits to society, such as road
capacity, fuel efficiency, emissions, and accident risk [1].
According to the standards defined by the society of auto-
motive engineers [2], there are six levels of self-driving, from
zero to five. The higher the level of self-driving, the more
safety is required of the self-driving system. In levels three
and above, the self-driving system must operate to guarantee
safety, even in emergencies. Therefore, to achieve level five
(i.e., full driving automation), research and the development
of self-driving systems are underway worldwide.

Self-driving systems require hard real-time performance.
If critical processes, such as automatic braking and collision
warning, are not processed in time, fatal accidents with loss
of life can occur. Therefore, during the development phase,
the behavior and processing must be determined statically,
and processes must run from the acquisition of sensor data at
the entry of the system exit by the deadline [3]. The system
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can be statically analyzed to meet the real-time requirements
by representing the self-driving system as a directed acyclic
graph (DAG) with an end-to-end deadline [4], [5].

For meeting an end-to-end deadline of a DAG, efficient
scheduling algorithms have been actively studied [6], [7].
Since finding the optimal scheduling of a DAG is an
NP-complete problem [8], the focus of studies is on designing
heuristic solutions. An efficient heuristic scheduling algo-
rithm that considers deadlines can reduce the possibility
of deadline misses in the DAG [6], [7], [8], [9]. However,
multi-/many-core processors (such as Kalray MPPA [10]
and Intel Xeon [11]), which are used to execute self-driving
systems, may miss deadlines due to contention for machine
resources such as memory and buses [12]. Therefore, self-
driving systems must have the functionality to quickly tran-
sition to a safe state in the event of a deadline miss.

To guarantee safety in emergencies, a minimum risk
maneuver (MRM) mode is implemented in self-driving sys-
tems [13], [14]. In the self-driving industry, the risk avoidance
state in the event of a deadline miss is called a minimum
risk condition (MRC), and the steering wheel operation and
brake control until the vehicle moves toMRC is calledMRM.
For example, when MRC is to park on the shoulder, MRM

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 22187

https://orcid.org/0000-0003-2420-3622
https://orcid.org/0000-0003-4725-8634


A. Yano, T. Azumi: Deadline Miss Early Detection Method for Mixed Timer-Driven and Event-Driven DAG Tasks

is to move to a safe place and stop in the shortest possible
time. If the self-driving system detects a deadline miss, the
possibility of a fatal accident can be reduced by promptly
shifting to MRM mode. However, the current self-driving
system can only detect a deadline miss at the end of the
processing flow.

To improve the safety of self-driving systems, the possi-
bility of a deadline miss must be detected in the middle of
the processing flow. Therefore, this paper proposes a method
for early detection of a deadline miss in a self-driving system
modeled as a DAG by appropriately allocating time con-
straints to each process in the middle based on the deadline
given at the end of the processing flow (i.e., the output of the
system).

A. CONTRIBUTIONS
The main contributions of this paper are as follows.

• First, we propose the concept of dividing a DAG con-
sisting of nodes triggered by different periods and con-
ditions into a set of nodes with a single period.

• Then, we statically analyze the dependencies between
nodes with different startup rates and provide each node
in the DAG model with reasonable time constraints for
early detection of deadline misses.

• Furthermore, we experimentally show that the validity
of the time constraints allocated to each node and the
scheduling algorithm that prioritizes the margin until the
time constraint can reduce deadline misses.

The remainder of the paper is organized as follows.
Section II describes a system model. Section III defines the
problemmodel addressed in this paper. Section IV introduces
the proposed method. Section V evaluates the performance of
the proposed method. Existing methods relevant to this study
are discussed in Section VI. Finally, Section VII presents the
conclusions and future work.

II. SYSTEM MODEL
This section describes the system model of this paper. This
section first explains the overview of this paper as shown in
Fig. 1. The target application is a self-driving system with
an end-to-end deadline. This paper accurately models the
constraints that a self-driving system must satisfy and the
parallelism/dependencies among tasks as a DAG. To achieve
early detection of deadline misses in a self-driving system,
a threshold called laxity is calculated for each node based on
the end-to-end deadline of such DAG.

A self-driving system in which processes are statically
determined at the development stage can be represented as a
DAG by representing each process as a node and the data flow
to or from the processes as directed edges. Different types
of sensor data, such as the point-cloud sensor (i.e., LiDAR),
the global navigation satellite system (GNSS), and camera
data, are acquired at different periods in self-driving systems.
Using these sensor data, the self-driving system performs
self-localization, object detection, and route planning, and

FIGURE 1. Overview of this paper.

TABLE 1. DAG notations.

finally outputs a single vehicle control command. Therefore,
the DAG considered in this paper has a single exit node.
Because the timing of the output of vehicle self-localization
information and vehicle control commands are critical to a
self-driving system’s real-time performance, the nodes that
output this information have a defined operating period.

A DAG consists of node and directed edge sets. Fig. 2
shows an example of the DAG considered in this paper,
denoted as EG. The DAG notations in this paper are listed
in Table 1. Here, a DAG is denoted as G = (V ,E), where
V is the set of all nodes, expressed as V = {τ1, . . . , τ|V |},
where |V | is the total number of nodes. Here, there are two
types of nodes: (i) timer-driven nodes that are triggered at
predetermined periods, denoted by τ tdi , and (ii) event-driven
nodes that are triggered by receiving data from predecessor
nodes, denoted by τ edi . The set of all timer-driven nodes in the
DAG is denoted by V td . Each timer-driven node τ tdi ∈ V

td is
described by the tuple (Ti, φi), where Ti is the period of τ tdi ,

22188 VOLUME 11, 2023



A. Yano, T. Azumi: Deadline Miss Early Detection Method for Mixed Timer-Driven and Event-Driven DAG Tasks

FIGURE 2. Example of DAG (EG).

and φi is the start time of the first execution of τ tdi (i.e., offset).
Each node has a worst-case execution time (WCET), denoted
as ωi. The k-th execution of τi is denoted by ⟨τi, k⟩ (i.e., job).
The WCET of the job is the same as that of the nodes.
E is the set of all edges in a DAG. Each edge ei,j ∈ E is

the implicit communication [15] between τi and τj, and the
data written by a job of τi are read by a job of τj. Since the
buffer size for inter-node communication is one, old data are
overwritten when the latest data arrive. There are two types
of edges: (i) trigger edges, which indicate that subsequent
event-driven nodes are triggered when data arrives from the
predecessor node, and are denoted by etri,j, and (ii) update
edges, which show that the data from the predecessor nodes
are stored in memory and read when the subsequent nodes are
triggered by a timer or trigger edge, and are denoted by eupi,j .
commi,j is the worst-case communication time for each edge.
The static analysis must be used to determine the execution
time of each node and the communication time of each edge.
Although the worst-case value is used in this paper, other
values (e.g., an average value or a best-case value) can be
used depending on the user’s objective.

In EG, the nodes {τ td1 , τ td2 , τ td5 , τ td6 } are timer-driven

nodes, the nodes {τ ed3 , τ ed4 , τ ed7 } are event-driven nodes,

the edges {etr1,3, e
tr
2,4, e

tr
6,7} are trigger edges, and the edges

{eup3,6, e
up
4,6, e

up
5,7} are update edges. τ td6 uses data acquired

from multiple predecessor nodes in different periods and
outputs data in a fixed period. A real-world example of
such a node is self-localization [16]. The self-localization
module uses various data from LiDAR, cameras, GNSS, and
IMU operating at different periods to estimate the position of
the autonomous vehicle. The autonomous vehicle position is
important information used by multiple subsequent modules
(e.g., object detection and route planning) and must be output
at a defined period to meet the requirements of subsequent
modules. Thus, such nodes that need to output data indepen-
dent of the timing of data arrival from their predecessor nodes
are represented as timer-driven nodes in this paper.

III. PROBLEM MODEL
This section defines the constraints that must be satisfied
by a self-driving system with a mix of timer-driven and

TABLE 2. Problem model notations.

event-driven nodes that are triggered at different periods.
In a self-driving system, the timing of the generation of the
data used to process the node (i.e., the timestamps of those
data) must be considered in order to reduce the error in
the output commands. Such timing analysis, however, is a
complex problem because oversampling and undersampling
occur when each node is triggered at a different period [17].
Therefore, Section III-A divides a single DAG into a set of
DAGs that execute at the same period to define the com-
plex constraints of the self-driving system and to facilitate
analysis.

Section III-B then defines the constraints required for a
self-driving system. The notations for the problem model are
presented in Table 2.

A. DIVIDING DAG INTO SUB DAGs
A set of nodes divided into a single-period is called a subDAG
and is denoted by sgi = {τ tdx , τ edy , . . . , τ edz }. Each sub DAG
consists of one timer-driven node and zero or more event-
driven nodes. The head timer-driven node of a sub DAG can
have edges to multiple subsequent event-driven nodes. The
sub DAG period is the same as the head timer-driven node.
The period of sgi is denoted by Tsgi and is given by Eq. (1).

Tsgi = TgetTimer(sgi) (1)

getTimer(sgi) is a function that returns the index of the head
timer-driven node of sgi.

The result of dividing EG into a set of sub DAGs is shown
in Fig. 3. Join nodes are nodes that receive data frommultiple
sub DAGs; it is denoted by jτi (jτ6 and jτ7 in Fig. 3). The set of
all join nodes in DAG is denoted by Join.Tail nodes are nodes
with at least one edge to a join node in other sub DAGs; it is
denoted by tτi (tτ3, tτ4, and tτ5 in Fig. 3). Note that there are
nodes that are both join nodes and tail nodes. For example,
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FIGURE 3. Dividing EG into a set of sub DAGs.

Algorithm 1 Dividing DAG Into Sub DAGs
Input: DAG, Join
Output: SG: Set of sub DAGs with no missing nodes and no

duplicate nodes
1: SG← ∅
2: for all τ tdi ∈ V

td do
3: sg← {τ tdi } ▷ sg is a global variable
4: Search_succs(τ tdi )
5: SG← SG ∪ sg
6: end for

Algorithm 2 Search_succs(τi)
Input: τi
1: succs← succtr (τi)
2: if succs = ∅ then
3: return 0
4: end if
5: sg← sg ∪ succs
6: for all τj ∈ succs do
7: Search_succs(τj)
8: end for

if jτ7 in Fig. 3 has an edge to a successor timer-driven node,
jτ7 is both a join node and a tail node.

The procedure of dividing DAG into sub DAGs is shown
in Algorithm 1. The set of all sub DAGs in DAG is defined
as SG. When Algorithm 1 finishes, SG contains all nodes in
a DAG without duplication. Algorithm 1 calls the function
Search_succs() shown in Algorithm 2 for all timer-driven
nodes in DAG. Function Search_succs() is called recursively
and adds successor nodes until there are no more trigger
edges to successor nodes (Algorithm 2, lines 2–4).We assume
that when jτi is an event-driven node, then there is only
one trigger edge to jτi. This is because more than 80% of
the event-driven nodes in the target system, Autoware [16],
have this specification. Therefore, when jτi is an event-driven
node, jτi is included in only one sub DAG with a trigger edge
to jτi.

1) COMPLEXITY ANALYSIS
Algorithms 1 and 2 start at all timer-driven nodes and
recursively search for subsequent nodes connected by
trigger edges. From the assumption that there is only
one trigger edge to each event-driven node, all nodes
are searched exactly once. Thus, the time complexity
of Algorithms 1 and 2 is O(|V |). Similarly, the function
Search_succs() is called only once for each node. Therefore,
the number of call stacks of the function Search_succs()
is maximized in the case of a linear DAG with a single
timer-driven node, and the space complexity is O(|V |).

B. PROBLEM DEFINITION
A self-driving systemmust satisfy the following constraints at
runtime. Here, we assume that the system has a global clock.

1) DATA FRESHNESS CONSTRAINT
The data freshness constraint is an upper bound of the accept-
able data freshness used in each join node. The older data
used in each node in a self-driving system, the lower the
accuracy of locating the vehicle and detecting obstacles [4],
[18]. Therefore, sufficient new data must be used in each
node. The data freshness is the amount of time elapsed since
the timestamp associated with the data until the data are used.
The timestamp of the data output by each entry node (i.e.,
sensor) is the execution start time of that entry node. The
timestamp is carried over until the data are used by the join
node. Meanwhile, the timestamp of the data output by a join
node is updated to the execution start time of that join node,
and the timestamp is carried over until the data are used by
another join node. The data freshness constraint of the data
output from tτi is denoted as DFC[tτi]. Let us suppose that
α ∈ R+ and that sgi is the sub DAG containing tτi, DFC[tτi]
is defined by Eq. (2).

DFC[tτi] = α × Tsgi (2)

DFC[tτi] is determined according to Tsgi. The smaller the
value of α, the stricter the data freshness constraint, and the
larger value of α, the older data are acceptable. The user
can flexibly change the value of α according to the system
requirements. A join node can be executed if there are data
that meets the data freshness constraints from all predecessor
nodes at the time the join node is triggered.

An example of data freshness constraint for tτ ed4 and jτ tr6 in
EG when α = 1, as shown in Fig. 4. The data output from
the tail node job ⟨tτi, k⟩ is denoted as data(tτi, k), and the
timestamp of data(tτi, k) is denoted as stamp[data(tτi, k)].
Using Eq. (2), we obtain that DFC[tτ4] is 100 ms. Since
stamp[data(tτ4, 1)] is 0 ms, the job of jτ6 that starts execution
by 100 ms (stamp[data(tτ4, 1)]+DFC[tτ4]) can use the data
output from ⟨tτ4, 1⟩. Therefore, data(tτ4, 1) can be used for
⟨jτ6, 2⟩ which starts at 50 ms and ⟨jτ6, 3⟩ which starts at
100 ms. In contrast, ⟨jτ6, 4⟩ cannot use data(tτ4, 1) because it
starts at 150 ms. Instead, it uses data(tτ4, 2), which is newer
data.
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FIGURE 4. Data transmission and reception between sg2 and sg4 in EG.

TABLE 3. Notations in Section IV.

2) END-TO-END DEADLINE
An end-to-end deadline is defined as the time it takes from
the system’s input (i.e., sensor) to the system’s final output
(i.e., control command).D represents the end-to-end deadline
assigned to the exit node. For example, in EG, the exit node is
τ ed7 , and the end-to-end deadline is determined to be 100 ms.
dk represents the deadline given to the k-th job of the exit
node. Because the execution of the exit node is dependent
on the period of the sub DAG that includes the exit node, let
Tsgexit be the period of the sub DAG that includes the exit
node and dk is calculated as follows using Eq. (3):

dk = D+ (k − 1)× Tsgexit . (3)

The self-driving systemmust complete the execution of the
exit node job through the end-to-end deadlinewhile satisfying
the data freshness constraints in each job. Therefore, this
paper analyzes the relationship in which a predecessor node
job supplies data satisfying the data freshness constraint to
a subsequent node job (called job-level dependencies here-
after). Then, based on the obtained job-level dependencies,
a reasonable time constraint is given to each job to satisfy the
end-to-end deadline.

IV. PROPOSED METHOD
This paper proposes a static analysis method to compute
reasonable time constraints for detecting the deadline miss
at each node for an end-to-end deadline of the exit node. The

proposed method consists of three main steps: (i) calculating
the reference values of the start and finish time of each job,
(ii) determining job-level dependencies, and (iii) allocating
the time constraint to each job. The subsequent sections
describe the steps of the proposed method in detail. The
notations used in this section are presented in Table 3.

A. CALCULATING REFERENCE VALUES OF START AND
FINISH TIME OF EACH JOB
In the first step, calculate the reference values of the start and
finish times of all jobs to analyze the job-level dependencies.
This step allows finding the write/read relationship of data
between jobs and determining whether the data meets the
data freshness constraint.

To cover all job-level dependencies during the running of
the system, the least common multiple (LCM) of the period
of timer-driven nodes (i.e., hyper-period) in a DAG [18] must
be considered. The hyper-period of a DAG is denoted by HP
and calculated using Eq. (4).

HP = LCM
∀τ tdi ∈V

td (Ti) (4)

Job-level dependencies can be determined by calculating
the reference values of start and finish times of all jobs inHP.
The reference start time of a timer-driven node job ⟨τ tdi , k⟩ is
calculated using Eq. (5), given as follows:

RST (τ tdi , k) = k × Ti + φi. (5)

When ⟨τi, k⟩ is a timer-driven node, RST (τ tdi , k) coincides
with the release time. The reference finish time of each timer-
driven node job ⟨τ tdi , k⟩ is the sum of the reference start time
and WCET. It is calculated using Eq. (6), given as follows:

RFT (τ tdi , k) = RST (τ tdi , k)+ ωi. (6)

The reference start time of an event-driven node job
⟨τ edi , k⟩ is calculated using Eq. (7), given by

RST (τ edi , k) = max
τa∈pred tr (τ edi )

(
RFT (τa, k)+ comma,i

)
. (7)

When ⟨τi, k⟩ is an event-driven node, RST (τ edi , k) is the time
when the data were received from the predecessor job with
the trigger edge to ⟨τi, k⟩. Similarly, the reference finish time
of each event-driven node job ⟨τ edi , k⟩ is calculated using
Eq. (8), which is given as follows:

RFT (τ edi , k) = RST (τ edi , k)+ ωi. (8)

Note that the reference start and reference finish times
calculated using the above equations may be delayed if the
core is not idle when each job is triggered. Whether the
proposed method correctly detects deadline misses early is
evaluated in Section V.

B. DETERMINING JOB-LEVEL DEPENDENCIES
In the second step, job-level dependencies are defined in
detail, and job-level dependencies of each job are analyzed.
The data flow to each exit node job with an end-to-end
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Algorithm 3 Determine Job-Level Dependencies
Input: SG, HP, Join ▷ SG: Set of all sub DAGs
Output: JLD: All the job-level dependencies during HP
1: JLD← ∅ ▷ Store Job-level dependencies
2: RSTset ← ∅ ▷ Store the reference start time of each job
3: RFTset ← ∅ ▷ Store the reference finish time of each

job
4: for all sgi ∈ SG do
5: n← Nsgi (Eq. (9))
6: JLD← JLD ∪ job-level dependencies within the sgi
7: for k ← 1 . . . n do
8: for all τa ∈ sgi do
9: RSTset ← RSTset ∪ RST (τa, k) (Eqs. (5)

or (7))
10: RFTset ← RFTset ∪ RFT (τa, k) (Eqs. (6)

or (8))
11: end for
12: end for
13: end for
14: for all Pairs of tail node job ⟨tτi, k⟩ and join node job
⟨jτj, s⟩ with edges included in different sub DAGs do

15: if RFT (tτi, k) ∈ RFTset and RST (jτj, s) ∈ RSTset
satisfy conditions of Definition 1 then

16: JLD← JLD ∪ (⟨tτi, k⟩ → ⟨jτj, s⟩)
17: end if
18: end for

deadline can be clarified by determining all job-level depen-
dencies in HP. Due to the involvement of jobs on the data
flow in the execution of exit node jobs, deadline misses can
be detected early based on the execution timing of these jobs
at runtime.

First, determine the job-level dependencies within each
sub DAG. The set that stores the job-level dependencies in
HP is denoted by JLD, and the job-level dependency from
⟨τi, k⟩ to ⟨τj, s⟩ is denoted by (⟨τi, k⟩ → ⟨τj, s⟩). Within a
single sub DAG, the node-level dependencies (i.e., edges) are
directly job-level dependencies. This procedure is illustrated

by sg2 = {τ td2 , τ ed4 } of EG. Here, HP of EG is 300 ms
according to Eq. (4). The number of executions during HP
for sgi is denoted as Nsgi and calculated using Eq. (9).

Nsgi =
HP
Tsgi

(9)

As a result, Nsg2 = 300
100 = 3, and {(⟨τ2, 1⟩ → ⟨τ4, 1⟩),

(⟨τ2, 2⟩ → ⟨τ4, 2⟩), and (⟨τ2, 3⟩ → ⟨τ4, 3⟩)} are added
to JLD. Because Nsgi is always an integer by definition,
no floor/ceil-operators are required.

For the model considered in this paper, the key problem
is the job-level dependency from tail node jobs to join node
jobs. Therefore, job-level dependencies are defined based
on the reference start time, reference finish time, and data
freshness constraints. The job-level dependency from tail
node jobs to join node jobs is defined as follows:

FIGURE 5. Job-level dependencies in EG when α = 1.7 in Eq. (2) for all
join nodes.

Definition 1: Suppose that eτi,τj ∈ E and tτi is a tail node,
and jτj is a join node. There exists a job-level dependency
from ⟨tτi, k⟩ to ⟨jτj, s⟩ that is if

1) RFT (tτi, k)+ commi,j ≤ RST (jτj, s) and
2) RST (jτj, s)− stamp[data(tτi, k)] ≤ DFC[tτi].

Here, suppose that ⟨tτi, k⟩ ∈ sgi, stamp[data(tτi, k)] is given
by Eq. (10).

stamp[data(tτi, k)] = RSTgetTimer(sgi) (10)

RSTgetTimer(sgi) is the reference start time of the head
timer-driven node of the sgi containing ⟨tτi, k⟩. The join node
job can use data that arrive from tail node jobs before the
reference start time (condition 1 of Definition 1) and satisfy
the data freshness constraint (condition 2 of Definition 1).

The job-level dependencies between tail node jobs and
join node jobs can be determined using Definition 1 and
Eqs. (5), (6), (7), and (8). This procedure is shown in
Algorithm 3. First, reference start and finish times are cal-
culated for all jobs that occur within HP (Algorithm 3,
lines 4–13). Next, job-level dependencies within a single sub
DAG, (i.e., other than dependencies between tail node jobs
and join node jobs), are stored in JLD (Algorithm 3, line 6).
Finally, the dependencies between the tail node job and the
join node job are determined based on the calculated refer-
ence start and finish times (Algorithm 3, lines 14–18).

1) COMPLEXITY ANALYSIS
The total number of edges in the input DAG and the max-
imum number of jobs in one node are denoted as |E| and
|J |, respectively. Here, let SG be the set of all sub DAGs,
|J | = maxsgi∈SG Nsgi. The time complexity of lines 4–13 in
Algorithm 3 is O(|V | × |J |), and since the maximum number
of pairs of tail node and join node is |E|, the time complexity
of lines 14–18 in Algorithm 3 isO(|E|×|J |2). Since the input
graph is a multi-period DAG, |E| ≥ |V | − 2 and |J | ≥ 2.
Therefore, O(|E|× |J |2) > O(|V |× |J |), and the overall time
complexity of Algorithm 3 is O(|E| × |J |2). The space com-
plexity of Algorithm 3 depends on the number of job-level
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dependencies stored in JLD; thus, the space complexity is
O(|E| × |J |2).
The job level dependencies in EG after applying

Algorithm 3 to EG when α = 1.7 in Eq. (2) for all join
nodes are shown in Fig. 5.1 Note that there are jobs that have
dependencies with multiple subsequent jobs (e.g., ⟨τ ed4 , 1⟩),
and jobs that do not have dependencies with subsequent
jobs (e.g., ⟨τ ed3 , 2⟩). Having no dependency with successor
jobs indicates that the job’s sent data do not satisfy the data
freshness constraint for any successor jobs.

C. ALLOCATING TIME CONSTRAINT TO EACH JOB
In the third step, a reasonable time constraint (i.e., laxity) is
given to each job based on JLD and the end-to-end dead-
line. The laxity value represents the margin to the end-to-
end deadline for each job [9], [19] and can be calculated by
recursively subtracting the communication time between jobs
and the job execution time from the data flow’s exit node
job deadline. Therefore, the laxity value of any job is the
start time threshold to meet the end-to-end deadline for the
exit node job at the end of the data flow connected by job-
level dependencies. At runtime, if a job’s start time exceeds
the statically computed laxity value, it can be predicted that
successor jobs will not be supplied with data to satisfy the
data freshness constraint, resulting in a deadline miss.

Eq. (11) defines the laxity of the k-th exit node job.

laxity(τi, k) = dk − ωi (11)

laxity(τi, k) indicates the latest time at which ⟨τi, k⟩ must be
started. If laxity is calculated using WCET, a deadline miss
invariably occurs for a given dk when the execution start of
⟨τi, k⟩ is later than laxity(τi, k).
The laxity of the k-th job except for the exit node is defined

in Eq. (12).

laxity(τi, k)= min
⟨τa,b⟩∈succ(τi,k)

(
laxity(τa, b)− comma,i

)
− ωi

(12)

When there are multiple successor jobs, the laxity is calcu-
lated based on the successor job with the minimum margin.
This is to ensure that all successor jobs are started before
the laxity. Note that if there are no subsequent jobs (i.e.,
no dependencies are determined for the job), the laxity cannot
be calculated and NULL is returned.
From the features of laxity andDefinition 1, the laxity value

for each job can be used as a reasonable time constraint for
early detection of deadline misses. When the actual start time
of job execution exceeds the statically calculated laxity value
at runtime, the proposed method provides early detection and
notification of future deadline misses. The behavior of the
system following notification of deadlinemiss early detection
is beyond the scope of this paper and is not discussed.

Letm be the remainder of dividing the index of each job by
Nsgi. The calculation results of laxity for the example in Fig. 5

1We assume that the first job of join nodes is also supplied with data that
satisfy the data freshness constraint.

TABLE 4. Calculation results of Laxity for each job of EG.

are presented in Table 4. Jobs that do not have dependencies
with subsequent jobs do not have the laxity. As shown in
Fig. 5, the dependencies of each job are repeated in HP.
Therefore, Table 4 can be used to calculate the laxity value of
all jobs after HP (e.g., laxity(τ2, 4) = 84+ 300 = 384 ms).

Early detection of deadline misses is possible by having
information on the number of executions and laxity for each
node in the system. From a practical perspective, when HP
becomes huge or the number of nodes in a DAG is large, it is
difficult to keep these values in each node due to overhead
and memory constraints. After implementing the proposed
method, only the entry node of each path needs to have a lax-
ity value. Each node subtracts the communication time (i.e.,
the time between a current time and the transmission time of
the predecessor node) from the received laxity, and detects
a deadline miss if the current time exceeds the laxity value.
After each node finishes executing, each node subtracts the
execution time from the value of laxity it holds and transfers
the laxity value and transmission time to successor nodes.
Therefore, the proposed method can be easily implemented
even in large-scale systems.

D. THE WAY TO USE THE PROPOSAL LAXITY VALUE
This section describes two possible uses of the laxity val-
ues calculated in the three steps of the proposed method
(Sections IV-A, IV-B, and IV-C). The first use is a start
time threshold of each job at runtime for early detection of
deadline misses, as described in Section IV-C. For the DAG
that represents the system, the proposed method calculates
laxity statically for all jobs with job-level dependency in HP,
as shown in Table 4. When the actual start time of the job
execution exceeds the value of its laxity, early detection of a
deadline miss is performed at runtime.
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The priority of each job in scheduling is the second appli-
cation. The laxity is a metric that represents the margin
to the end-to-end deadline for each job, and heuristic task
scheduling algorithms that prioritize the laxity have been
proposed [9], [19]. Prioritizing jobs with lower margins, i.e.,
jobs with lower laxity values, lower the deadline miss ratio.
The scheduling algorithm for prioritizing jobs with small
laxity values calculated by the proposed method is called the
proposed least laxity first (LLF).

V. EVALUATION
This section experimentally demonstrates the performance of
early detection of deadline misses and proposed LLF using
laxity calculated by the proposed method. In the experiment,
proposed LLF and the following three scheduling algorithms
are used: (a) earliest deadline first (EDF) [20], i.e., higher pri-
ority for jobs with shorter time to implicit deadline, (b) LLF
algorithm when calculating the laxity at each node of a
single-period DAG transformed using the method proposed
by Saidi et al. [21], and (c) laxity-based heuristic scheduling
algorithm for multi-period DAGs proposed by Igarashi et al.
[9]. In the algorithms (a) and (c), which do not consider event-
driven nodes, the event-driven nodes are assumed to be timer-
driven nodes that execute in the period of the sub DAG to
which they belong. Here, all jobs are dynamically scheduled
and executed non-preemptively2 [22], [23].

A. EXPERIMENTAL SETUP
The performance evaluation is conducted using the reference
system ofAutoware.Auto3 [24], which is an open-source self-
driving system and DAGs randomly generated by task graphs
for free (TGFF) [25] converted to themodel considered in this
paper.

The reference system converted to the DAGmodel consid-
ered in this paper is shown in Fig. 6. One node in ROS is
converted to one node in a DAG, and nodes that output data
periodically (i.e., nodes with timer callbacks) are represented
as timer-driven nodes, while other nodes are represented as
event-driven nodes. All data inputs to the timer-driven node
are considered update edges, and if the event-driven node has
only one data input, it is considered a trigger edge. When
an event-driven node has multiple inputs, the edge from the
predecessor node with the longest period is represented as a
trigger edge and the remaining edges are update edges. The
period of the timer-driven nodes is set to a default value, and
the WCET of each node and the worst-case communication
time are set by referring to the value measured by CARET.4

All numerical values in Fig. 6 are in milliseconds.
The experimental parameters and their values are presented

in Table 5. In all experiments, the first end-to-end deadline
of each DAG is set to be the maximum period of the timer-
driven nodes in that DAG. The simulation framework is

2The proposed method is applicable regardless of preemptive or
non-preemptive.

3https://github.com/ros-realtime/reference-system
4https://github.com/tier4/caret

FIGURE 6. Reference system converted to DAG.

TABLE 5. Experimental parameters.

written in Python and executed on a systemwith the following
configuration: (i) Intel® Core i7-10875H CPU @2.30 GHz,
(ii) 16 GiB memory, and (iii) Ubuntu 20.04 LTS OS (64-bit).

B. PERFORMANCE METRICS
This section presents the metrics used in the evaluation. First,
four terms used in the calculation of metrics are listed.

• True Positive (TP): The TP is the case in which a dead-
line miss is detected early because the actual execution
start time of the job exceeded its laxity value at runtime,
and the deadline miss actually occurred when the pro-
cess was continued. The TP shows that the proposed
method accurately and early detects that a deadline miss
occurs.

• False Positive (FP): The FP is the case in which a dead-
line miss is detected early, but no deadline miss occurred
when the process was continued. The FP indicates that
early detection of deadline misses is wrong. In self-
driving systems, a large FP ratio harms normal driving
because it increases the number of safety functionalities
(e.g., MRM mode) that are mistakenly activated even
though no deadline miss has occurred.
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FIGURE 7. TP, FP, FN, and TN ratios with increasing utilization.

• False Negative (FN): The FN is the case in which a
deadline miss is not detected early, but a deadline miss
occurred in subsequent processing. The FN indicates the
failure of the proposed method to detect deadline misses
early.

• True Negative (TN): The TN is the case in which a
deadline miss is not detected early and did not occur in
subsequent processing.

The proposed method’s performance is measured using the
metrics listed below.
• Accuracy: The Accuracy is the ratio of accurate classi-
fications to all predictions made by the proposal laxity
and is defined as follows.

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(13)

The Accuracy is 1.0 if a deadline miss occurs in all
cases where a deadline miss is detected early and if no
deadline miss occurs in all cases where no deadline miss
is detected early (0 ≤ Accuracy ≤ 1.0).

• Precision: The Precision is the ratio of actual deadline
misses to cases where deadline misses are detected early
by the proposal laxity. The Precision is calculated by
Eq. (14).

Precision =
TP

TP+ FP
(14)

• Recall: The Recall is the ratio of cases where a deadline
miss is detected early in the proposal laxity to cases
where a deadline miss occurs. Eq. (15) describes the
Recall.

Recall =
TP

TP+ FN
(15)

• F-measure: The F-measure is the harmonic mean of the
Precision and the Recall and is derived in Eq. (16).

F−measure =
2× Recall × Precision
Recall + Precision

(16)

Since the Recall and the Precision are in a trade-off
relationship, the balance between the Recall and the
Precision is evaluated by the F-measure.

• Deadline Miss Ratio: The deadline miss ratio is the
percentage of actual deadline misses at runtime.

• Earlier Time: The earlier time is the time of earlier
detection of a deadline miss in the TP case.

• Run Time: The run time is the time taken by the
proposed method.

• Memory Usage: The memory usage the peak memory
usage of the proposed method. The peak memory usage
is measured using memory_profiler5 library in Python.

C. EXPERIMENT USING REFERENCE SYSTEM OF
AUTOWARE.AUTO
This section quantitatively evaluates whether the proposed
laxity, regardless of the scheduling algorithm, allows for the
early detection of deadline misses. The laxity value of each
job in HP used as a threshold for early detection is calculated
based onWCET.During scheduling simulation, the execution
time of each job is varied between the best-case execution
time and WCET using measured data from the reference
system’s actual operation.
Experiment 1: The changes in the TP, FP, FN, and TN

ratios for 15,000 runs when α in Eq. (2) is set to a random
value in the range of 2.0 to 2.5 and the CPU utilization is
randomly increased with eight processor cores are shown
in Fig. 7. The ‘‘(with proposed threshold)’’ suffix in the
figures indicates that the proposed laxity value is used as a
threshold for early detection of deadline misses. As can be
seen, deadline misses starts to occur at the utilization of 65%,
and the more utilization increases, the more deadline misses
occur. The Accuracy, Precision, Recall and F-measure are
calculated from the values of TP, FP, FN, and TN at each
utilization in Fig. 7.

First, Accuracy results as utilization increases are shown
in Fig. 8. The Accuracy decreases from 65% utilization to its
lowest value at 75%, after which it increases as utilization
increases. The proposed laxity is calculated using WCET,
which accounts for this result. The proposed laxity is pes-
simistic because most jobs are executed in less execution time

5https://github.com/pythonprofilers/memory_profiler
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FIGURE 8. Accuracy result with increasing utilization.

FIGURE 9. Precision result with increasing utilization.

thanWCET at runtime. As a result, 65% to 75% of utilization,
FP cases occur frequently and Accuracy declines. At 80% or
higher utilization, the Accuracy increases because more cases
of deadline miss occur and FP becomes TP. The Accuracy is
approximately 100% for any scheduling algorithm with the
utilization of 90%. Thus, themore stressed the CPU resources
are, the more accurate the prediction based on the proposed
laxity will be.
The Precision results as utilization increases are shown in

Fig. 9. The Precision increases almost monotonically with
increasing utilization in all algorithms. This is also due to
the proposed laxity being calculated using the pessimistic
WCET. The mean values of the Precision for all utilization in
algorithms (a), (b), (c), and (d) are 0.55, 0.54, 0.55, and 0.54,
respectively, indicating that the early detection of deadline
misses is correct more than 50% on average.

The Recall results as utilization increases are shown in
Fig. 10. As can be seen, the Recall is greater than 0.8 at all
utilizations and nearly equal to 1.0 at 75% and above. In other
words, there are few cases in which an actual deadline miss
cannot be detected early as it occurs (i.e., the FN cases). In the
FN case, the self-driving system detects the deadline misses
only at the end of the process, increasing the risk that the

FIGURE 10. Recall result with increasing utilization.

FIGURE 11. F-measure result with increasing utilization.

TABLE 6. Earlier time result.

vehicle will not be transferred to a safe state in time, resulting
in an accident. As a result, the proposed method’s high Recall
is critical for improving the safety of self-driving systems.
The few FN cases that exist here are caused by differences
between reference and actual start/finish times. Because of
these errors, which are caused by CPU resource status at
runtime, the job-level dependencies statically analyzed by
the proposed method are not satisfied, resulting in deadline
misses.

Finally, the F-measure results as utilization increases are
shown in Fig. 11. The F-measure, as well as the Precision and
the Recall, increases monotonically with increasing utiliza-
tion. Thus, the proposed laxity’s classification performance
improves with increased utilization.
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FIGURE 12. Deadline miss ratio with different values of α in Eq. (2) for all
join nodes.

Experiment 2: The earlier time results of each algorithm
for 15,000 runs are presented in Table 6. The average earlier
time for algorithms (a), (b), (c), and (d) is approximately 71,
54, 42, and 50 ms, respectively. Here, when an autonomous
vehicle travels at 50 mph,6 it moves forward more than 3.0 ft7

in 42 ms. Therefore, early detection of a deadline miss is an
essential factor in preventing accidents.

D. EXPERIMENT USING RANDOM DAGs
This section compares the deadline miss ratio of the proposed
LLF, which prioritizes jobs with a smaller proposed laxity,
with the existing algorithm using random DAGs.
Experiment 3: The deadline miss ratio results of each algo-

rithm for 1,000 random DAGs with four processor cores and
varying the value of α in Eq. (2) for all join nodes are shown
in Fig. 12. As can be seen, for any value of α, the proposed
LLF achieves the lowest deadline miss ratio. As the value of α
increases, i.e., the data freshness constraint becomes looser,
the deadline miss ratio becomes smaller for all algorithms.
When α is 2, the deadline miss ratio for algorithms other than
EDF is less than 10%. Meanwhile, if the value of α increases
further, the data freshness constraint is met in any scheduling
order. Therefore, if the user does not want to allow nodes in
the system to use old data, the value of α should be at most 2.
Experiment 4: The deadline miss ratios for each algorithm

when the value of α in Eq. (2) for all join nodes are set
to 2, and the number of processor cores is varied from 2 to
8 in 1,000 random DAGs are shown in Fig. 13. As can be
seen, the proposed algorithm achieves the lowest deadline
miss ratio on any number of cores. EDF shows a significantly
higher deadline miss ratio than other algorithms. This is
because EDF executes jobs that output data that are not used
in the execution of subsequent jobs (i.e., overwritten data).
Algorithms except for EDF can lower the deadline miss ratio
because they statically analyze the job-level dependency and

6approximately 80 kph.
7approximately 0.96 m.

FIGURE 13. Deadline miss ratio with the different number of cores.

FIGURE 14. Run time results of algorithms.

TABLE 7. Overall run time result.

prioritize jobs that output data necessary for subsequent job
execution.
Experiment 5: The run time results of each algorithm

for 10,000 random DAGs are shown in Fig. 14. As can
be seen, the run time in Algorithms 1 and 2 increases lin-
early with the number of nodes in the DAG. Even with
500 nodes, Algorithms 1 and 2 complete processing in
approximately 10 ms. The run time of Algorithm 3 is shown
to be proportional to the number of pairs of tail node jobs
and join node jobs. This value is the number of loops in
line 14 of Algorithm 3. Algorithm 3 can be computed in
approximately 8,000 ms at a maximum. The run time result
for the overall proposed method is shown in Table 7. The
average run time and maximum run times are approximately
2,560 and 20,214 ms, respectively, to compute the laxity
value for all jobs in HP. Since this calculation is performed
statically, a maximum run time of 20,214 ms is acceptable.
Therefore, the proposed method can be applied to systems
with hundreds of nodes.
Experiment 6: The memory usage results of each algo-

rithm for 10,000 random DAGs are shown in Fig. 15.
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FIGURE 15. Memory usage results of algorithms.

TABLE 8. Overall memory usage result.

Similar to run time, memory usage for Algorithms 1 and 2
is proportional to the number of nodes, and memory usage
for Algorithm 3 is proportional to the number of pairs of
tail node jobs and join node jobs. Algorithms 1 and 2 use at
most approximately 283 MiB of memory, and Algorithm 3
uses at most 338 MiB. The memory usage result for the
overall proposed method is shown in Table 8. The average
memory usage and maximum memory usage are approxi-
mately 312 and 410 MiB, respectively. 410 MiB is suffi-
ciently acceptable, and all of the proposed laxity is calculated
statically, with only a reference to its value at runtime. Thus,
the proposed method is applicable to systems with 500 nodes
in terms of memory usage.

The experimental results demonstrate that the laxity value
calculated by the proposed method can be used for the early
detection of deadline misses in arbitrary scheduling algo-
rithms. Additionally, scheduling jobs with smaller laxity val-
ues more preferentially is shown to reduce the deadline miss
ratio more than existing algorithms for both the reference
system of Autoware.Auto and random DAGs.

VI. RELATED WORK
This section introduces existing methods related to the pro-
posed method and compares them. Table 9 compares the
proposed method with existing methods.

A. DETERMINATION OF JOB-LEVEL DEPENDENCIES IN
MULTI-PERIOD DAG
In a DAG consisting of multiple dependent periodic tasks,
determining job-level dependencies allows the worst-case
end-to-end latency and task prioritization to be derived.
Determining job-level dependencies in HP is synonymous
with converting a multi-period DAG to a single-period DAG,
and various methods have been proposed.

The conversion of multi-period DAGs to single-period
DAGs is based on the period of the task that transmits
and receives the data [4], [17], [18], [21]. Becker et al. [17]

TABLE 9. Proposed method vs. existing methods.

proposed a heuristic solution to determine job-level depen-
dencies to meet the end-to-end timing requirements of the
system. They calculate all possible job-level dependencies
using the earliest/latest data read times and earliest/latest
data output times for each periodic task. Saidi et al. [21]
proposed a method to convert a multi-period DAG into a
single-period DAG for correct data exchange between tasks
operating at different periods. They proposed the equations
that derive the number of edges to be added between two
nodes based on the period of the predecessor and successor
nodes. By traversing all node pairs in a multi-period DAG and
applying these equations, the conversion to a single-period
DAG is achieved. Verucchi et al. [18] proposed a method
to convert one multi-period DAG into multiple single-period
DAGs and obtained the DAG that optimizes the schedulabil-
ity, the age latency, and the reaction latency. Their method
generates a set of single-period DAGs in the following four
steps: (i) generate all jobs triggered in HP, (ii) add syn-
chronization nodes that guarantee job periods and deadlines,
(iii) compute permutations of all possible combinations of
dependencies between jobs and map each pattern to one
single-period DAG, (iv) remove redundant edges. Kordon
and Tang [4] proved that the maximum age latency could be
calculated by replicating each job of a multi-period DAG a
fixed number ofK times. They first proved that themaximum
age latency can be computed by extending all nodes of the
original DAG inHP. To reduce the computational complexity,
they proved that the maximum age latency can be computed
by only partially extending the original DAG, and proposed
an algorithm to minimize this extension number K .

Although these methods properly determine job-level
dependencies for multi-period DAGs, they consider DAGs
consisting only of periodic tasks. Therefore, these studies
cannot be directly applied to the model with a mixture of
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timer-driven and event-driven nodes, which is considered in
this paper.

B. SCHEDULING FOR MULTI-PERIOD DAG
In a system consisting of multiple periodic tasks, scheduling
while preserving all job-level dependencies in multi-core
platforms is a complex problem. Klaus et al. [15] argued for
a tradeoff between tight data age guarantees, synchroniza-
tion overhead, and schedulability in multi-core environments.
They also proposed a solution to protect the job-level depen-
dencies without explicit synchronization. Their method is the
first to consider a cross-chain; however, the chain consists
of only periodic tasks. In the RTSS 2021 Industry Chal-
lenge [22], scheduling strategies and analysis techniques for
multi-period DAGs with various timing constraints have been
proposed. The model of the presented self-driving system
has the following constraints, including the data freshness
and end-to-end deadline constraints considered in this paper:
(i) control commands must be output within a defined time
from the input of sensor data, (ii) control commands must
be generated using sufficiently fresh data (iii) the difference
in the timestamps of the data must not exceed a predefined
threshold in components that merge different sensor data.

The above studies consider models in which all tasks in
the DAG execute periodically. However, in reality, the mod-
ule considered as one task in RTSS 2021 Industry Challenge
consists of multiple tasks [16]. Since these tasks can be
regarded as a chain of event-driven nodes triggered by
timer-driven nodes, the model targeted by this paper must be
considered.

C. METHODS CONSIDERING CHAINS CONSISTING OF
TIMER-DRIVEN AND EVENT-DRIVEN NODES
Research on processing chains with a mixture of timer-driven
and event-driven nodes has been conducted in the field of the
robot operating system (ROS) [29], which is widely used as
a robot development support framework. Casini et al. [5] first
proposed a response time analysis of the ROS 2 processing
chain. They also proposed a real-time scheduling model for
ROS 2. Blaß et al. [28] extended existing work [5] to include
a response time analysis that considered both execution time
variance and scheduler starvation. They incorporated into
the analysis execution time showing the cumulative execution
time of n consecutive instances of the task to address execu-
tion time variance. In addition, the pessimism of the existing
analysis was reduced by utilizing the feature that ROS 2
Executor is starvation-free. Tang et al. [3] also identified
flaws in existing work [5] and improved the accuracy of the
response time analysis by taking into account the behavior of
the ROS 2 executor. They further demonstrated experimen-
tally that raising the priority of the last task in the processing
chain can reduce not only the upper bound of response time
but also the actual response time. Choi et al. [23] proposed
a priority-driven chain-aware scheduler (PiCAS) for ROS 2
in a multi-core environment. PiCAS traverses all chains in
ascending priority order, and each task in a chain is assigned

a higher priority the closer it is to the tail of the chain.
Experimental results demonstrate that PiCAS can reduce end-
to-end latency better than the ROS default scheduler.

These studies provide accurate timing analysis and sched-
ulers that reduce end-to-end latency in ROS environments.
However, these studies have not determined the job-level
dependencies. Therefore, their methods cannot be used
directly for the early detection of deadline misses.

D. FIXED PRIORITY HEURISTIC SCHEDULING
ALGORITHMS
The laxity is also used as a priority in heuristic list-based
scheduling. Igarashi et al. [9] proposed a heuristic schedul-
ing algorithm on a clustered many-core platform that avoids
contentions using the logical execution time model. Their
target model is a mixture of timer-driven and event-driven
nodes. However, their algorithm cannot strictly consider the
job-level dependencies because they consider event-driven
nodes to be timer-driven nodes triggered by the largest period
of the predecessor nodes.

A similar concept to laxity is rank [30], and many authors
have proposed scheduling algorithms that use rank values
as priorities. Zhao et al. [26] proposed QL-HEFT that uses
reinforcement learning to compute rank values in a cloud
computing environment. Since reinforcement learning is
difficult to fall into locally optimal solutions due to its policy
of maximizing the sum of long-term rewards, QL-HEFT
performed better than existing studies, especially for large-
scale DAGs. Senapati et al. [8] proposed a low-overhead
heuristic scheduling algorithm called HMDS on heteroge-
neous platforms. HDMS determines priority using a metric
called the predicted finish time, which estimates the total cost
required to complete the execution of all dependent nodes
of a given task. In addition, HMDS incorporates four prun-
ing mechanisms and outperforms existing algorithms with
low computational complexity. QL-HEFT and HMDS are
designed for single-period DAGs and do not apply to multi-
period DAGs.

Co-scheduling of multiple independent DAGs has been
studied to increase the efficiency of resource use in
cyber-physical systems consisting of multiple distributed
subsystems. Roy et al. [27] first proposed a co-scheduling
method for multiple independent single-period DAGs on a
heterogeneous platform called SAFLA. SAFLA generates
a static schedule that minimizes energy consumption while
avoiding shared bus contention and guaranteeing deadlines
for all DAG instances during an HP. Evaluation using bench-
marks demonstrated that deadline miss ratios and energy
consumption of SAFLA were lower than existing methods
under various scenarios. However, SAFLA does not consider
intermediate timer-driven nodes such as τ td6 in EG.

VII. CONCLUSION
In this paper, we have proposed a static analysis method
for early detection of deadline misses for real-time systems
with data freshness constraints and end-to-end deadlines. The
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proposed method can reasonably allocate the laxity to each
job in a DAG with such constraints, which is a mixture of
timer-driven and event-driven nodes. The experimental eval-
uation showed that the proposed method could detect dead-
line misses accurately and early. Additionally, the scheduling
algorithm with the laxity as priority calculated using the pro-
posed method could reduce the deadline miss ratio compared
to existing algorithms.

In future work, we will develop a method for early detec-
tion of deadline misses that considers the effects of the ref-
erence start time and finish time delays for each job. We will
also consider the difference in timestamps of the data from
the predecessor job at the join node job [22], [31]. Dealing
with the increased computational complexity of the proposed
method due to extremely long HP is also part of our plan.
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