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ABSTRACT The design of countermeasures against integrated circuit counterfeit recycling requires the
ability to simulate aging in CMOS devices. Electronic design automation tools commonly provide this
ability; however, their models must be tuned for use with a specific target technology. This requires data
which is ideally provided by a fab. It may also be collected from a set of purpose-built test devices, a costly
and time-consuming process. Here we describe a novel, low-cost, and rapid approach to tuning such models.
Our iterative method leverages public domain data sourced from published studies to fit an aging model.
Results are statistically validated against the target technology’s specification. We demonstrate our approach
by fitting a compact hot carrier injection degradation model for use with both core and I/O nMOSFETs from
a specific 65 nm technology. Our resulting model parameter values are validated with a maximum error of
0.5% with a 99% confidence bound.

INDEX TERMS Aging, circuit simulation, degradation, hot carrier injection stress effect, integrated circuit
modeling, iterative methods, semiconductor device reliability.

I. INTRODUCTION
The modern electronic industry relies on globally distributed
supply chains of a size and complexity that it is difficult,
if not impossible, for a company to fully control its supplier
network. This has made the industry a tempting target for
counterfeiters. Beyond the economic impact, on the scale of
$100 billion annually [1], counterfeit electronic components
can severely impact the safety and reliability of critical sys-
tems in areas such as health care, defense, and transporta-
tion [2]. Recycled components, where used components are
recovered from waste and resold as new, are a particularly
vexing class of counterfeits which have been identified by
the U.S. Department of Defense as the greatest threat to the
reliability of its systems [3].

Combatting counterfeiting through recycling requires
identifying circuits which have begun to age but still operate
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within specifications. CMOS integrated circuits (ICs) are all
affected by aging mechanisms which degrade their perfor-
mance with use [4]. Eventually this degradation is significant
enough that an aged circuit can no longer operate within
specifications.

Electronic design automation (EDA) tools are equipped
with facilities to simulate the effects of CMOS degradation
mechanisms so that system lifetimes may be predicted. Since
these modeling facilities can be used to predict performance
degradation over time, they can be used in the design of
recycling countermeasures. The degradation models are not
generic and must be tuned to a target CMOS technology if
they are to produce accurate results. Fabs are the authoritative
source of degradation models and the data required to tune
EDA models to their technologies, but this is sensitive infor-
mation which they tightly control and do not always share
with academic researchers. An alternative would be to build
and characterize one’s own test devices, a process which can
be costly and time-consuming.
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As academics engaged in early-stage design exploration of
recycling countermeasures we required the ability to tune a
CMOS degradation model without relying on fab data nor
the fabrication of test devices. In this work we propose a
search based method for identifying aging model parameters
that leverages public domain data. Results are validated by
estimating lifetime statistics through Monte Carlo simulation
for comparison against a target technology’s specifications.

Though we demonstrate out method with a hot carrier
injection (HCI) degradation model, it is not model specific.
HCI is attractive for recycling countermeasures because it
causes irreversible degradation in the form of a permanent
shift in threshold voltage [5]. Charge carriers in a MOSFET’s
channel can gain substantial energy near the drain. These
energetic carriers, traditionally called hot carriers, may end
up being injected into the gate oxide. When this occurs the
interface between the oxide and channel is damaged, causing
a permanent shift in the threshold voltage. This has tradition-
ally been described in longer channel devices by the lucky
electron model where the driving force is the lateral electric
field. Under this model peak HCI degradation is correlated
with peak substrate current, which roughly occurs when
VGS =

1
2VDS. In devices with channel lengths shorter than

about 250 nm hot carriers are better described by an energy
driven model where the effect depends on the total available
energy rather than the lateral electric field. Under this regime
peak HCI degradation occurs when VGS = VDS [5]. We focus
on fitting the model to nMOSFETs since pMOSFETs are not
seriously affected by HCI [5].

Our target technology is a 65 nm process from Taiwan
Semiconductor Manufacturing Co., LTD (TSMC) [6].
Though this technology is now far from cutting edge it is
still relevant. Mature CMOS technologies, which are defined
as 40 nm and older, represent 54% of currently installed
fab capacity [7]. They are reliable and dominate applica-
tions where safety is paramount, such as the automotive
industry [7].

We also validated our results at the circuit level by match-
ing the accuracy of a previously reported model [8] when
simulating HCI degradation in an inverter.

Our contributions through this work are threefold.
1) We propose a general method for fitting a MOSFET

degradation model to a target technology by leverag-
ing public domain data. The solution produces results
which are statistically validated against the target tech-
nology’s specifications.

2) We demonstrate the application of our method by fit-
ting an HCI model to TSMC’s 65 nm core and I/O
nMOSFETs.

3) We validate our result at the circuit level.
This paper is organized as follows. The model parameter

searchmethod, including validation, is presented in section II.
Section III details the public domain data used. Our model
fitting results are presented in section IV. In section V we
validate our results at the circuit level by simulating HCI
aging in an inverter. Finally, section VI gives our conclusions.

II. MODEL PARAMETER SEARCH PROCESS
We begin with a general, technology and degradation mech-
anism agnostic description of our process. We then discuss
its use in tuning a HCI model for use with TSMC’s 65 nm
technology. There are two requirements for implementing
our process. First is access to a target technology design
kit, including SPICE model files and associated documen-
tation. Second is that the degradation model of interest be
of a compact parametric form, i.e. that it be a function of
externally observable quantities such as terminal voltages and
temperature.

Our parameter search process is iterative and consists of
three steps. First, a free search parameter, which controls the
search process, is adjusted. Second, a candidate solution is
determined through a least-squares fit. Third, the candidate
solution is validated. A new iteration is performed if the
validation fails.

A. GENERAL DESCRIPTION
In order for a degradation model to accurately predict perfor-
mance degradation in a target technology, the model needs to
be tuned to the technology. This means identifying appropri-
ate values for the model’s parameters. This can be done by a
least-squares fit if sufficient relevant data is available either
directly from a fab or from measurements of test devices.
Faced with a lack of such data, we developed the parameter
search process depicted in Fig. 1.

The process is initialized by gathering data for use in a
least squares fit to the degradation model (Fig. 1, step 1).
We relied on two sources: the target technology’s reliability
rules which are a part of the technology’s specifications, and
public domain data sourced from peer-reviewed studies.

The reliability rules describe the device time to fail-
ure (TTF) statistical distribution under an operating condition
selected to accentuate a given degradation mechanism. The
specified operating condition and the TTF information are
used to create a synthetic data point3which serves as the free
search parameter. As will be explained shortly, 3 introduces
an extra degree of freedom into the fitting process.

This synthetic point is intended to be a plausible degra-
dation measurement of a target technology device. If the
reliability rules provide the average TTF, 3 would represent
a measurement from a typical device. If the average is not
provided, other available TTF information such as a distribu-
tion quantile must be used. In such a case, 3 would represent
a measurement from a realistic, though atypical device. Only
one such point can be constructed because the reliability rules
do not specify multiple operating conditions. Being a single
data point, 3 cannot be used on its own to perform a least-
squares fit.

Additional data which covers multiple operating con-
ditions spanning the degradation model’s dimensions is
required to perform a least-squares fit. This was sourced
from publicly available peer-reviewed studies. Unfortunately
a single study is unlikely to provide sufficient data to span

21418 VOLUME 11, 2023



A. Dimopoulos et al.: Leveraging Public Information to Fit a Compact Hot Carrier Injection Model to a Target Technology

FIGURE 1. Illustration of the degradation model parameter search process. The degradation mechanism causes a reduction in the quantity 0

over time. 1. Data is aggregated from the public domain and 3 is constructed from the target technology reliability rules. In this illustration the
reliability rules specify the TTF quantile QREF, the time by which a portion θ of devices fail. 2. A least squares fit is performed to determine
candidate model parameters. 3. The candidate model parameters are used to simulate aging in a population of devices generated through a
Monte Carlo process. 4. A time to failure distribution is computed from the simulation results and used to estimate Q̂, the time by which θ of the
population failed. 5. The validation checks the estimate Q̂ against the reference QREF. 6. If the validation fails 3 is adjusted and a new iteration
is performed.

all of a degradation model’s dimensions. Thus we aggre-
gated data from multiple studies. A complicating factor is
that few studies explicitly identify the precise CMOS tech-
nology involved. In response we made the assumption that
the effects of a degradation mechanism generalize across
similar CMOS technologies. Since materials and device
geometries are similar across such technologies, we sur-
mised that degradation effects are also similar. Under this
assumption, degradation model parameters for similar tech-
nologies fall into a near-neighborhood of the parameter space.
Model parameters found through a least-squares fit to data
aggregated from several similar technologies will also fall
into this near-neighborhood. By iteratively adjusting 3 this
near-neighborhood is searched until a solution for a specific
target technology can be validated.

A least squares fit to the aggregated data is performed to
determine a set of candidate degradation model parameters
(Fig. 1, step 2). Because most or even all of the public domain
data may not be from the target technology, the role of 3

is to bias the fit towards the target technology. The param-
eter near-neighborhood is searched by adjusting 3. Differ-
ent adjustments are possible depending on the information

provided by the reliability rules. One possibility may be
to change 3’s weight relative to the rest of the data. This
strategy may be a good choice if the average TTF is used in
constructing 3. If only a TTF quantile is available, adjusting
the time value of 3 may be an option. In this way, 3 may be
moved towards a more typical measurement.

Validation of a candidate parameter set consists of gener-
ating estimated lifetime statistics for comparison against the
reliability rules. A population of devices is first generated in
a Monte Carlo simulation using a process, voltage, and tem-
perature (PVT) variation device model provided by the target
technology’s design kit. This population is then aged accord-
ing to the degradation model using the candidate parameter
set (Fig. 1, step 3) and the same operating conditions as in
the reliability rules. An estimate of the TTF distribution is
then calculated from this simulation data (Fig. 1, step 4) and
compared to the reference distribution from the reliability
rules (Fig. 1, step 5). If the validation fails, a new search
iteration begins with an adjustment to 3 (Fig. 1, step 6).

In summary, our model parameter search process is initial-
ized with the construction of 3 from the target technology’s
reliability rules, and the collection of relevant public domain
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data. The iterative search begins with the adjustment of the
free search parameter. Thismay be theweight of3 and/or3’s
degradation time. Next, a least-squares fit of the degradation
model to the public domain data along with 3 is performed.
Finally, the candidate model parameters are validated by their
use in aging a simulated population of devices for comparison
against the reliability rules. A new iteration is begun if the
validation fails.

B. APPLICATION EXAMPLE
We now describe the application of our parameter search
process to fitting an HCI model from Synopsys HSPICE [9]
for use with TSMC’s 65 nm technology. We first describe
the HCI model as well as pertinent information from the
reliability rules. We then describe the construction of 3,
including its initialization. Finally we describe the iterative
search steps.

HSPICE is used to generate and age the simulated device
population. Results are then pre-processed with a custom
Python script and imported into MATLAB [10] where the
rest of the steps are performed. These different tools are
coordinated through a custom shell script.

1) HCI MODEL
Synopsys HSPICE includes the MOSFET Reliability Analy-
sis (MOSRA) facility which provides the ability to perform
circuit reliability analysis under the influence of HCI as well
as another degradation mechanism, bias temperature insta-
bility (BTI). MOSRA allows the effects of BTI and HCI
to be considered either in combination or in isolation of
each other and provides three modeling approaches for each
mechanism. The most straightforward to work with are the
level 3 models which are parameterized compact models. For
HCI, degradation is expressed as a percentage change in the
drain current:

1ID(%) = Ap · e(G·VGS) · e(D·VDS) · e

(
−Ea
kT

)
· e(−m·L)

· tn. (1)

The stresses giving rise to this degradation are described by
the variables listed in Table 1. It should be noted that the
model depends on the polysilicon length (i.e. gate length)
rather than the actual channel length. Table 2 lists the model’s
parameters, the values of which are target technology depen-
dent. Synopsys suggests default values for several parameters
which are claimed to be sufficient for many situations [9]. For
brevity, (1) will be referred to as theMOSRAmodel in the rest
of this work.

TABLE 1. MOSRA HCI Compact Model Variables [9].

TABLE 2. MOSRA HCI Compact Model Parameters [9].

When describing a set of measurements, the MOSRA
model can be logarithmically scaled and expressed in matrix
form as

1ID,log = S · v, (2)

where the vectorized MOSRA model variables are grouped
as the matrix

S =
[
1 VGS VDS (kT)−1 L ln (t)

]
and the MOSRA model parameters form the vector

v =
[
ln

(
Ap

)
G D −Ea −m n

]T
.

For d data points, 1ID,log ∈ Rd , S ∈ Rd×6, and v ∈ R6. This
system has a unique least squares solution v while the matrix
S is full column rank [11].

2) RELIABILITY RULES
The TSMC 65 nm reliability rules pertaining to HCI [6]
define a failure as a 10% reduction in drain current in the
saturation region (ID,sat) relative to initial conditions. For each
device type (e.g. core and I/O), a constant voltage and tem-
perature operating condition selected to accentuate HCI stress
are prescribed and the resulting 10−3 TTF quantile, Q0.001

REF ,
is given. This is the time by which one out of a thousand
devices is expected to have failed under to the prescribed
operating conditions. Validation consists of comparingQ0.001

REF
to Q̂0.001, the estimated the 10−3 TTF quantile which results
from a candidate set of model parameters v.

3) FREE SEARCH PARAMETER INITIALIZATION
3, which corresponds to a row in

[
1ID,log|S

]
, is con-

structed from the reliability rules. Its 1ID,log is set to
ln(10) since a failure is a 10% degradation. The variables
VGS,VDS,T , and L are as specified in the reliability rules.

Because the reliability rules only provide Q0.001
REF , we use

the degradation time t3 as the free search parameter. It is
initialized to Q0.001

REF and adjusted in each search iteration.
Adjustments to t3 are informed by the mapping t3 → Q̂0.001,
the exact form of which is unknown. However, so long as the
adjustments are kept small, the mapping can be approximated
as linear and calculated iteratively.

Setting the weight of 3 relative to the rest of the data
during fitting is done at this point. A desirable weight for 3
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should allow Q̂0.001 to quickly reach Q0.001
REF with a few small

adjustments to t3. As its weight increases, 3 becomes more
influential in the fitting step. This causes Q̂0.001 to be more
sensitive to t3. Too large a weight however risks causing3 to
completely overshadow the rest of the data. To determine an
appropriate weight value, the dependence of t3 → Q̂0.001 on
3’s weight was estimated for several weight values. To avoid
performing the great number of Monte Carlo simulations
which would be required to calculate Q̂0.001, t3 → Q̂0.001

wass approximated as t3 → tFAIL, where tFAIL is the time
at which the MOSRA model predicts a 10% degradation in
a typical device under the reliability rules’ operating con-
ditions. Effectively, tFAIL is the mean TTF resulting from a
given v. We assumed that the TTF distribution had a small
variance, resulting in Q̂0.001 to be close to tFAIL. Fig. 2 shows
the result of sweeping t3 by ±10% from its initial value for
various weights of 3. The weight was adjusted by adding
extra copies of 3 to the fitting data. A weight of 100%
corresponds to as many copies as there are public domain data
points. Here a weight of 50% is a good choice as this allows
tFAIL to reach Q0.001

REF with only a small adjustment to t3.
Increasing the weight past this does not offer any significant
advantage.

FIGURE 2. Dependence of tFAIL on t3 for various weights of 3 relative to
the number of public domain data points. A weight of 100% means 3 has
as much weight as all public domain points combined. A weight of single
means 3 has a weight equal to a single public domain point.

4) FREE SEARCH PARAMETER ADJUSTMENT
Adjusting t3 depends on the current search iteration. In the
ith iteration t3 and Q̂0.001 are labelled as t3,i and Q̂0.001

i
respectively. We also introduce 1Q̂0.001

i−1 = Q0.001
REF − Q̂0.001

i−1 .

1) For i = 1 : t3,i = Q0.001
REF .

2) For i = 2: t3,i = t3,i−1 +
∂t3

∂tFAIL
1Q̂0.001

i−1 .

3) For i > 2: t3,i = t3,i−1 +
∂t3

∂Q̂0.001 1Q̂
0.001
i−1 .

∂t3
∂tFAIL

was found when determining 3’s weight (see Fig. 2).
∂t3

∂Q̂0.001 is derived from a linear regression to the set of pairs

{〈
t3,j, Q̂0.001

j

〉
| j = 1 . . . i

}
. A new v is computed based on

the updated value of t3.

5) LEAST SQUARES FIT
S, which is composed of public domain data and multiple
copies of 3, remains largely unchanged between search iter-
ations. Only t3 is updated. Once this is done, a new least
squares solution v to (2) is computed.

6) VALIDATION

If
∣∣∣Q̂0.001

− Q0.001
REF

∣∣∣ > ϵ the validation fails and a new

search iteration begins. To compute Q̂0.001 we need a TTF
sample population. The TSMC 65 nm design kit includes
support for Monte Carlo simulations across process, voltage,
and temperature (PVT) variations. This is used to generate
a sample population of devices which are then individually
aged using the MOSRA model with the current value of v.
When estimating a quantile Qθ from a Monte Carlo sim-
ulation, the sample population should be larger than θ−1

[12], hence to estimate the 10−3 quantile we used a sample
population of 104. The voltages and temperature are those
specified by the reliability rules. This is all carried out in
HSPICE.We then compute an estimate of the TTF cumulative
distribution function (CDF) with the Kaplan-Meier estimator,
a maximum likelihood estimator often used in failure analysis
[13]. Once the CDF is estimated, Q̂0.001 is found by a simple
lookup operation.We also calculate the confidence bounds on
Q̂0.001 by estimating the confidence bounds on the TTF CDF
using Greenwood’s formula [13].

III. DATA SOURCES
The public domain data needed to satisfy three criteria:

1) express HCI degradation as a decrease in ID,sat;
2) have been measured from devices from a 65 nm

technology;
3) fully span S, meaning that the recorded HCI degrada-

tion was in response to variations in all of the dimen-
sions of S.

Identifying peer-reviewed studies which met these criteria
was challenging. To increase the pool of data we assumed
that the MOSRA model generalizes across technologies of
comparable node size. This allowed us to combine data from
different studies so long as they recorded HCI degradation as
a shift in drain current in a 65 nm technology device. Even
so, we were unable to identify enough data to entirely span
S. To resolve this we employed the default values suggested
by Synopsys for the parameters Ea (temperature accelera-
tion) and m (polysilicon length dependence) (see Table 2),
reducing the dimensionality of the problem by two. We iden-
tified the 5 studies described below which met our needs.
These studies are not all recent since 65 nm technologies are
now several generations old, although still in common use.
We used WebPlotDigitizer [14] to extract data from the plots
reproduced below.
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Fig. 3 is drawn from Fakhruddin et al., which examined the
RF performance degradation of nMOSFETs from an unspec-
ified 65 nm technology with test devices whose dimensions
were W/L = 1.2 µm/0.06µm [15]. Fig. 3(a) and Fig. 3(c)
reproduce the relevant HCI degradation measurements. All
stress voltages were DC and are specified on the plots.
Fig. 3(a) shows degradation in response to constant voltage

FIGURE 3. HCI measurements from Fakhruddin et al. [15]. (a) ID − VDS
scans performed after 0 s (Fresh), 600 s (Stress_1), 1800 s (Stress_2), and
3600 s (Stress_3) of constant VGS = 1V and VDS = 2V stress [15]. (b) Our
conversion of (a) to relative ID,sat degradation over time. (c) Relative
ID,sat degradation after 600 s of various DC voltage stresses (open
symbols) [15].

stress as a series of ID − VDS scans performed over time.
We used a subset of the depicted measurements. We used
data measured under VGS = 0.5V since these values are
consistent with Fig. 3(c). Of these values, we only wanted
ID,sat measurements so we limited the VDS measurement
range to ≥ 0.6V. Fig. 3(b) shows our remapping of this

data to relative ID,sat degradation. Fig. 3(c) shows the relative
change in ID,sat after being subjected to various DC voltage
stresses for 600 s. It should be noted that the degradation
for a VDS stress of 2.3V was 1ID,sat ≤ −100%, which is
physically meaningless. These points were treated as outliers
and excluded. The temperature was not reported and assumed
to be 25°C.

Fig. 4 is drawn from Yuan et al., which reported on the
performance degradation of a low noise amplifier when
subjected to HCI stress [16]. This work was carried out
using minimum size devices in TSMC’s 65 nm technology.
nMOSFET ID degradation over time was measured as the six
ID − VDS scans reproduced in Fig. 4. The applied VDS

FIGURE 4. HCI measurements from Yuan et al. [16].

stress was 2V and the over voltage (VOV) stress was 0.35V.
We were able to calculate the stress VGS from the provided
VOV by making use of the threshold voltage, which we knew
from the design kit [6]. To limit the data to ID,sat we excluded
points scanned at VDS < 0.6V. The temperature was not
reported and assumed to be 25°C. We converted these mea-
surements to relative ID,sat degradation over time using the
same process which yielded Fig. 3(b).

Fig. 5 is drawn from Huard et al. [8]. This work describes
a quantitative assessment methodology for HCI and NBTI
degradation effects in an unspecified technology of a node
size in the 90 nm to 65 nm range. Fig. 5(a) shows HCI
dependence on stress VGS for both core (empty triangles)
and I/O nMOSFETs (filled triangles). The MOSRA model,
which has an exponential dependence on VGS, is a poor
match for the I/O device data. Two workarounds are possible.
First, we can assume that HCI degradation is independent of
VGS in I/O devices. This may be justified by observing that
the data suggests HCI dependence on VGS is far weaker in
I/O devices than in core devices. Second, we can limit the
VGS range to values larger than 1

2VDS. The data suggests
that HCI degradation peaks when VGS ≈

1
2VDS, which is

expected in longer channel devices [5]. This would limit the
applicable voltage range for the MOSRA model to VGS ≥
1
2VDS. Fig. 5(b) shows HCI degradation in an I/O nMOSFET
with W/L = 10 µm/0.2µm as a change in ID,sat relative
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magnitude over time when subjected to various voltage
stresses. The temperature was assumed to be 25°C in all cases.

FIGURE 5. HCI measurements from both core and I/O nMOSFETs [8].
(a) HCI dependence on stress VGS for core ( empty triangles) and I/O
(filled triangles) nMOSFETs. (b) HCI degradation in an I/O nMOSFET when
subjected to VDS ranging from 2 V to 2.8 V and VGS equal to either VDS
(circles) or 1

2 VDS (triangles).

Fig. 6 is drawn from Xie et al., which examined HCI in
annular gate devices intended for radiation hardened circuits
[17]. Shown are relative ID,sat degradations over time under
the three bias conditions listed in the figure for a conventional
planar geometry nMOSFET with W/L = 6.6 µm/0.06µm
fabricated in an unspecified 65 nm technology. The tempera-
ture was not reported and assumed to be 25°C.

Fig. 7 is drawn from Ren et al. and depicts HCI degrada-
tion in irradiated and unirradiated devices in response to the
bias condition described on the figure [18]. The test devices
had a W/L = 0.2 µm/0.06 µm and were fabricated in an
unspecified 65 nm technology. We only used measurements
from unirradiated devices. The temperature was not reported
and assumed to be 25°C.

IV. MODEL FITTING RESULTS
We obtained a total of five sets of MOSRA model param-
eters for TSMC 65 nm standard threshold voltage (STDVT)
nMOSFETs: three for core devices and two for I/O devices.

FIGURE 6. HCI measurements from Xie et al. [17].

FIGURE 7. HCI measurements from Ren et al. [18]. Only ID measurements
from the unirradiated device (open triangles) were used.

The different parameter sets were obtained using different
subsets of the public domain data as detailed in Table 3.

TABLE 3. Public domain data used for determining the parameter sets.
vcore are for core nMOSFETs and vIO are for I/O nMOSFETs.

The parameters sets for I/O devices resulted from two
approaches to using the I/O-relevant data in Fig. 5(a), which
cannot be easily modelled by an exponential function. vIO1
resulted from assuming HCI degradation is independent of
VGS. It was obtained without the use of Fig. 5(a). vIO2, which
assumes dependence on VGS, was obtained by incorporating
Fig. 5(a) data for which VGS ≥

1
2VDS. Consequently vIO2 is

only valid over this voltage range.
The parameter sets for core devices were obtained from

three groupings of the public domain data. We split the
data into two groups based on their geographic origins:
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a Western group (vcore1) and a Chinese group (vcore2). These
two groupswere amalgamated into a third group (vcore3). This
was done to judge our underlying assumption that HCI effects
are similar in similar technologies. Under the same condi-
tions, devices from different but similar technologies should
exhibit similar degradations. To examine this, we simulated
the public domain data using a TSMCmodel and the different
MOSRA model parameter sets. If all three vcore sets were
to result in comparable simulation errors, then HCI effects
would be virtually technology-independent. Otherwise pro-
cess parameters other than node size would play a role.

Table 4 lists the values for our different parameter sets, and
Table 5 summarizes the search settings. The number of data
points is for the combined number of public domain points
used. 3 weight is defined relative to this number. A weight
of w relative to d data points means that wd copies of 3 were
used. The search process was fast, reaching convergence in
no more than three iterations.

TABLE 4. Derived MOSRA HCI parameter values. Parameters Ea and m
assume their default values (see Table 2) in all cases.

TABLE 5. MOSRA model parameter search process settings.

All of our parameter sets passed the validation test with a
high degree of confidence, as summarized in Table 6. Q0.001

REF
falls within the 99% confidence bounds on Q̂0.001 in all cases.
From the sizes of the confidence bounds, we can conclude
that Q̂0.001 differs from Q0.001

REF by at most 0.2% (5.5 days)
99 times out of 100 for vcore, and by at most 0.5% (1.2 days)
99 times out of 100 for vIO.

TABLE 6. MOSRA model parameter validation. All values have units of
years.

Table 7 summarizes the root mean square (RMS) relative
errors of the public domain data simulations using TSMC
device models. The average error for vcore1 taken over the
data used in its derivation is 34%. The equivalent figure for
vcore2 is 40%. These results suggest that vcore1 and vcore2 rep-
resent technology groupings which are comparably related to
the target technology. This seems to support our assumption
that HCI effects depend on little more than the node size.
However, the average error for vcore3 is much larger, 63%.
This apparent contradiction can be clarified by noticing that
vcore1 and vcore2 both performed very poorly when simulat-
ing data used in each other’s derivation. This suggests that
vcore1 and vcore2 represent mutually exclusive technology
groupings; consequently, HCI effects depend upon process
parameters in addition to node size. Care must therefore be
taken when selecting appropriate data. The average error
results suggest that the vcore1 parameters are more closely
related to the target technology than the vcore2 parameters.
Hence we favor the vcore1 parameter set. The vIO parameter
sets led to near identical simulation errors and cannot be
clearly differentiated.

TABLE 7. RMS relative error for data set simulations using the MOSRA
model and TSMC 65 nm device models.

V. CIRCUIT LEVEL VALIDATION
Ultimately, our interest lay in using the MOSRA model to
predict circuit-level performance degradation. We therefore
wanted to validate our derived parameter sets against circuit-
level measurements. Ideally, we wanted to find a published
report of HCI degradation in a simple circuit like an inverter.
Fortunately, Huard et al. provided just such information [8].
They reported on a custom HCI model’s ability to replicate
the HCI degradation measured in an inverter’s nMOSFET.
They accelerated HCI degradation by operating their inverter
at an elevated temperature of 125°C and driving it with
specialized pulses. These pulses, specified in Table 8, had
long rise and fall times in order to lengthen the time dur-
ing which the nMOSFET conducted current. For each pulse
type a single physical measurement and a single simulation
result were reported without a corresponding age. These are
reproduced in Table 9. For discussion clarity, the set of their
simulation results will be referred as SH, the set of their
physical measurements as DH, and their model asMH.

We could not directly compare our own simulation results
againsDH since the degradation values were reported without
the corresponding ages. However, through educated guessing
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TABLE 8. Inverter stimuli [8].

TABLE 9. Reported inverter nMOSFET ID,sat percentage degradation from
measurement (DH) and simulation (SH) [8].

we were able to test whether we could match the accuracy of
the MH model.
We began by assuming that the different reported inverter

degradations were all measured at the same age. We then
ran our own simulations and tested whether our results all
occurred within overlapping windows of uncertainty. The
windows represent bounds on the accuracy of our model.
The upper bound being perfect accuracy and the lower being
equal to the accuracy of the MH model. Fig. 8 illustrates
the principle. Each curve corresponds to our own simula-
tion results of the inverter driven by a different pulse. Onto
each curve we map the physical measurement (DH) for the
same pulse type. Each point has vertical error bars equal to
|DH − SH| representing the accuracy of theMH model. These
vertical error bars are then mapped onto our curves to create
a corresponding error in time. If the time error bars overlap,
then the lower bound on the accuracy of our simulations is
equal to the accuracy of the MH model. The upper bound is
perfect replication and coincides with the DH points aligning
in time.

FIGURE 8. Demonstration of testing the bounds on the accuracy of our
HCI model (blue curves). Measured data (DH) is mapped onto our
simulation curves and the horizontal error bars are checked for overlap.
The DH points are assumed to have occurred at the same age. If their
time error bars overlap then the lower bound on the accuracy of our
model is equal to the accuracy of the MH model.

In addition to the aging time, the device dimensions,
inverter load, and VDD were unspecified. We assumed min-
imum channel length core devices were used and setW/L =

1 µm/0.06µm for our nMOSFET andW/L = 2 µm/0.06µm
for our pMOSFET. We added two inverters in series to act as

a load. These were each scaled 10× larger than the driving
inverter.We considered three candidate values forVDD: 1.0V,
the nominal voltage for TSMC 65 nm core devices; 1.1V,
their maximum rated voltage; and 1.5V, which was used
elsewhere by Huard et al. [8]. We used 1.5V since it was the
only VDD value which would lead to the required degradation
within one year for all input pulses.

Our simulations were carried out in HSPICE using typical
corner device models from the TSMC 65 nm design kit.
HCI degradation was simulated in all nMOSFETs using the
MOSRA model with parameter set vcore1. Fig. 9 shows the
degradation of our driving inverter’s nMOSFET along with
the DH points. The error bars in time all overlap, confirming
that the accuracy of our HCI model is bounded by that of the
previously-reportedMH model. Doubling the size of the load
inverters did not change this result.

FIGURE 9. Inverter degradation according to MOSRA with vcore. VDD is
1.5 V. Also shown are the DH points, each mapped onto its corresponding
curve.

VI. CONCLUSION
In this work we have developed an iterative method to fit a
compact MOSFET degradation model for use with a specific
target technology. Data used to fit a model is aggregated
from multiple public domain sources. This is made pos-
sible through an assumption that HCI degradation effects
generalize across similar technologies. Results are validated
against time to failure statistics from the target technology’s
reliability rules. We have demonstrated our method by fitting
Synopsys’ compact HCI model for use with both core and
I/O nMOSFETs from TSMC’s 65 nm technology with a high
degree of confidence.We have also shown that our results can
match the accuracy of a previously published model when
simulating HCI degradation in an inverter. Our method for
validating the fit to a deterministic model against a statistical
specification is general and can easily be adapted for use with
other EDA tools and CMOS technologies.

There are several limitations associated with our method.
We have found that node size alone is an insufficient measure
of similarity between technologies for our purposes. Some
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care is therefore required when selecting the most appropriate
data sources. Ultimately the accuracy of of any predictions
born from our results is limited in two ways. First, the error
in our model parameter values cannot be measured without
access to a golden reference data set. This would have to be
provided by a fab, or measured from a set of test devices.
Second, the MOSRA model lacks the saturation mechanisms
necessary to produce accurate long time or extreme operating
condition degradation estimates. Regardless, we believe our
results, listed in Table 4, to be adequate for generating circuit
performance predictions particularly at initial design phases.
This is of particular interest to anyone seeking to minimize
the cost of exploratory design work, such as academics.
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