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ABSTRACT High-fidelity information, such as 4K quality videos and photographs, is increasing as
high-speed internet access becomes more widespread and less expensive. Even though camera sensors’ per-
formance is constantly improving, artificially enhanced photos and videos created by intelligent image pro-
cessing algorithms have significantly improved image fidelity in recent years. Single image super-resolution
is a class of algorithms that produces a high-resolution image from a given low-resolution image. Since
the advent of deep learning a decade ago, this field has made significant strides. This paper presents
a comprehensive review of the deep learning assisted single image super-resolution domain including
generative adversarial network (GAN) models that discusses the prominent architectures, models used,
and their merits and demerits. The reason behind covering the GAN models is that it is been known to
perform better than the conventional deep learning methods given the resources and the time. For real-world
applications with noise and other issues that can cause low-fidelity super resolution (SR) images, we examine
another solution based on GAN model. This GAN model-based technique popularly known as blind super
resolution is more resilient. We examined the various super-resolution techniques by varying image scaling
factors (i.e., 2x, 3x, 4x) to measure PSNR and SSIM metrics for the different datasets. PSNR across the
different datasets covered in the experimental section shows an average of 14-17 % decrease in the score as
we move up the image resolution scale from 2x to 4x. This is observed across all the datasets and for every
model mentioned in the experimental section of the paper. The results also show that blind super-resolution
outperforms the conventional deep learning methods and the more complex GAN models. GAN models are
complex and preferred when the upscale factor is high, while residual and densemodels are recommended for
smaller upscaling factors. This paper also discusses the applications of image super-resolution, and finally,
the paper is concluded with challenges and future directions.

INDEX TERMS Image super-resolution, deep learning, convolutional neural network, generative adversarial
network.

I. INTRODUCTION
Single Image Super-Resolution is an image processing algo-
rithm that focuses on recovering a high-resolution image
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from a single low-resolution image. Various techniques that
have been developed in the past have produced notable
outcomes. In this section, a few of those techniques are
covered. These techniques include regularisation techniques,
neighbourhood embedding-based algorithms, and the use of
similar patches that are redundant in low-resolution images
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in their counterparts with higher resolution. Different meth-
ods can achieve super-resolution of images. One approach
involves fixed mapping methods in which a fixed rela-
tion is obtained from some a priori information. Few other
approaches are leaned towards machine learning (ML) based
methods that use a dictionary and aim at learning the map-
ping from low-resolution to high-resolution images. There
also exist some low-complexity algorithms that aim at better
results without utilizing a lot of resources. A neighborhood-
embedding-based set of algorithms exists in which the
high-resolution counterpart of the image is learned from the
apriori HR patches, which are stored in the dictionary. These
patches can be combined in the same way they correspond to
low-resolution images. This method is made better by using
euclidean distance to perform a neighbour search, followed
by optimizing a least squares problem. However, these pro-
cesses are not optimal and fail at the task when the scale of the
image in question is comparatively higher [1], [2], [3]. Thus
deep learning-based techniques are evolved.

Further recently, there has been a paradigm shift from
the traditional algorithms to deep-learning-based approaches,
beginning with the first CNN-based algorithm proposed by
Dong et al. [4] to the recently proposed Generative Adversar-
ial Network (GAN) based algorithms. Recently, some meth-
ods of GAN-based or learning super-resolution space can
generate simulated textures but do not promise the accuracy
of the textures which have low quantitative performance.
Rethinking both, there is a model that learns the distribution
of underlying high-frequency details in a discrete form and
proposing a two-stage pipeline i.e., divergence stage to con-
vergence stage [5].

Deep learning methods have been the dominant performer
in image processing in recent years. Image segmentation has
largely benefited from the introduction of deep learning in
terms of accuracy, label classes, and inference time [6], [7].
Gatys et al. [8] used convolutional neural networks in their
work on neural style transfer to fuse the artistic qualities of
one image into the other. Xie et al. [9] have proposed a neural
network to reconstruct images with missing patches, such
as old torn images. Apart from this, the machine learning
pipeline has seen a rise in automation [10]. Similarly, in the
domain of Single Image Super-Resolution, the use of deep
neural networks has shown a phenomenal increase in the
perceptual quality of the generated image. Dong et al. have
already shown in their work that the previous traditional
state-of-the-art methods, such as sparse representation, are
a special case of their three-layer convolutional neural net-
work. Their work also showed how traditional methods are
sub-optimal for image super-resolution [11].

Image super-resolution attempts to extract the visual fea-
tures from a given image to create a higher-resolution version
of the same image. These features include low-complexity
ones such as outlines, shapes, and shades to highly abstract
the features like textures and luminance. By taking these fea-
tures and extrapolating the details across a higher resolution,
Image super-resolution aims to generate images with better

resolution without needing any change in the capturing hard-
ware. This intrinsic property of learning to extrapolate fea-
tures motivates us to adopt deep learning as a perfect match
for such a computational problem. It is possible to represent
higher-order abstract features using the deep network.

It is imperative to frame the super-resolution process as a
mathematical model to understand it better. For remaining of
the literature, we will be defining ILR as a low resolution
image with Width W , Height H , and channels C (For a
normal RGB image, C = 3). We also define IHR, which is the
high-resolution counterpart of ILR and has an upscaling factor
of S. Since IHR has a higher resolution, it has a width of S∗W ,
Height S ∗H , and channels C . In practice, to create a dataset
of IHR and ILR pairs, we downgrade a given image to generate
ILR whereas the original image is taken as the IHR. The degra-
dation process to generate ILR is performed by downsizing the
IHR by a scale of S and optionally introducing noise in the ILR.
Mathematically, we can define the degradation process ϑ as
follow.

ILR = ϑS (IHR) (1)

considering the Eq. 1 we can frame the super-resolution
process as its inverse, ϑ−1. Therefore,

ISR = ϑ−1
S (ILR) (2)

where, ISR is the super-resolution version of the ILR and has
the exact dimensions as that of IHR. In an ideal scenario,
ISR should be the same as IHR, i.e., the inverse operation
inverse perfectly maps the ILR to IHR. However, this is not
true in practice because ϑ is a one-to-many function, i.e., the
same ILR can be generated by degrading multiple different
IHR. This is because when we downsize a high-resolution
image, we are mapping multiple pixel values to a single pixel
value. For brevity’s sake, consider the mapping operation an
average function that takesmultiple pixel values from IHR and
maps them to a single pixel value in ILR. Since multiple input
values can correspond to the same averaged output value, the
mapping operation is not an injective function. Due to this,
a single low-resolution image can be generated from mul-
tiple high-resolution images with minor variations amongst
them. Therefore, Eq. 2 is a one-to-many function, i.e., it is
surjective. In other words, single-image super-resolution is
an under-determined inverse problem, of which the solution
is not unique. Figure 1 shows this problem with an example.

This multi-solution problem is usually addressed by con-
straining the solution space by extracting prior information.
The preliminary information in the case of a deep learning-
based super-resolution model usually refers to the original
high-resolution image used to generate its low-resolution
counterpart. These high-resolution images are taken as the
target output of the convolutional networks that learns the
mapping operation between the ILR and IHR through back-
propagation. Most deep-learning models are exemplar-based,
where the low-resolution images and their corresponding
high-resolution images are given during training. Some mod-
els exploit self-similarity within the image to find low
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FIGURE 1. Multiple IHR generating the same ILR assuming average
mapping operator for downscaling.

and high-resolution patch pairs and thus are self-supervised
[12], [13]. However, the success of such models is limited;
hence, we will not discuss them in depth in this paper.
The primary motivation behind the review is the increasing
research focus on the domain that demands an extensive
review of the ongoing research work to provide the right
direction to the community. In addition, due to the rising
use of high-resolution content on the web, the applicability
of image super-resolution is expanding rapidly. While there
have been some reviews [14], [15], [16], [17], [18] in the
past on the same, there was a distinct lack in exploring
newer models mainly GANS and Blind SR which have a
more meaningful impact on real life applications. The main
contributions of this review are:

1) We present the single-image super-resolution
approaches, specifically deep learning.

2) We provide a study of the accuracy of various algo-
rithms and the evaluation criteria.

3) We cover a in depth review of GAN models. Com-
pare them with conventional deep learning models and
explore how they are able to perform better.

4) We also cover a section on blind super resolution tech-
niquewhichmore closely resembles the real life images
that contains various noises and unpredictable down
sampling kernels.

5) Finally, We discuss the current challenges and sug-
gested future directions.

We also discuss how deep learning can be utilized to
address the issue of image super-resolution after it has
been mathematically defined. The remainder of the paper
is organized into sections resembling how most supervised
deep-learning models are laid out. Section II discusses
the related work as per taxonomy depicted in Figure 2.
The detailed challenges and research directions are dis-
cussed in section III based on the review of the current
research. Section IV discusses the applications of image
super-resolution. Finally, section V concludes the reviewwith
the various outcomes explored in this paper. All the acronyms

used in this article are listed in the Appendix A along with
their meaning.

II. RELATED WORK
Different upscaling methods, architectures, loss functions,
and performance metrics are the focus of this study on image
super-resolution. The detailed taxonomy of this related work
is shown in Figure 2.

A. UPSCALING METHODS
Upscaling the input image to generate the super-resolution is
the core component of image super-resolution. This section
will discuss the upscaling mechanism used by various pro-
posed works. Predominantly, either the low-resolution image
can be upscaled to the desired dimensions before feeding it to
the deep-learning model, or upscaling can be performed as a
final layer of the deep-learning model. Section II-A1 belongs
to the former whereas section II-A2 and section II-A3 fall
under the latter category.

1) BICUBIC INTERPOLATION
Bicubic interpolation performs interpolation on the original
pixel values to generate the ISR. It is the successor to tech-
niques like the nearest neighbor and bilinear interpolation,
which were used previously. As it performs a cubic spline
interpolation on both the image axis pixels in the enlarged
image, it is denoted as bicubic interpolation.

Bicubic interpolation upscaling method was employed by
a number of models as a preprocessing step on the ILR prior
to passing it through the network. The model has to learn the
filters that fill in the missing details in the interpolated ILR to
produce its upscaled ISR as shown in figure 3. Themodels dis-
cussing the usage of Bicubic Interpolation techniques for the
task of enhancing the resolution of the image are discussed.
Bicubic interpolation is fast, but since it performs a polyno-
mial (cubic) fit on the pixels, it does not generate meaningful
contextual details in the image. Apart from this, since the
model now has to perform convolutions on a bigger image,
the overall execution time of the model increases, which
gets more prominent as the models get deeper. This makes
the model heavy and computationally intensive, rendering it
useless for production usage or video super-resolution.

Wang et al. [19] presented a sparse coding-based network
to enhance the resolution of the image taken as an input.
The advantage of this technique is its ability to learn a more
complex regression function and thus can not be converted
into an equivalent sparse coding model. On top of this,
the network discussed in this work is also a CNN model
used for patch extraction and reconstruction to give the best
possible resolution. The CNN uses a LISTA sub-network
specifically designed to enforce the sparse representation
prior. This results in a lower training speed and performs
better than a vanilla CNN. Kim et al. [20] proposed a very
deep convolutional network inspired by a VGG-net image
model used for ImageNet Classification. An increase in the
network depth shows an improvement in the accuracy by
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FIGURE 2. Taxonomy of related work.

FIGURE 3. Bicubic interpolation.

using 20 weight layers. Only the residuals are learned during
the training of this model, and the learning rates are very
high compared to the SRCNN model. Tai et al. [21] discuss a
memory-based approach for Image Restoration. The benefit
of this network is that they explicitly propose a deep memory
network (MemNet) that introduces a memory block to mine
persistent memory through an adaptive learning process. The
features are first extracted from the low-quality image. Then
following the residual architecture, several memory blocks
are stacked in a densely connected structure to solve the
image restoration task.

2) DECONVOLUTION LAYER
The deconvolution layer is essentially a backward pass of the
convolution layer, i.e., it produces the input which generates
a given feature map [22]. In a deep-learning model, deconvo-
lution layers can be positioned at the end to upscale the ILR
without increasing the convolutions needed to be performed,

as discussed in bicubic interpolation. Deconvolution uses
learnable filters, which are computed during backpropaga-
tion. This gives superior performance over the bicubic inter-
polation, which is rigid. Due to this, better performance can
be seen in multiple models [23], [24], [25] which adopted it.
Dong et al. [4] also updated their SRCNN model to benefit
from the transpose convolution layer for faster execution
in their work [26]. While deconvolution has some superi-
ority over bicubic interpolation, it generates checkerboard
artifacts in the resulting image. Checkerboard artifacts are
netted block-like anomalies in images frequently seen in
image super-resolution, as shown in figure 5. This is caused
when the strides are not a factor of the filter size, causing
overlapping in the output as shown in figure 4.

3) SUB-PIXEL CONVOLUTION LAYER
Transpose convolutions boosts the network effectiveness, but
the checkerboard artifacts reduces the output fidelity. Shi
et al. [29] developed a new technique for upscaling that
addressed this issue by generating the ISR by randomly rear-
ranging the network’s output features. They combined their
method into a layer known as the sub-pixel convolution, also
known as the pixel shuffler [30]. As can be seen in the figure
6, the layer produces S2 feature maps by using a convolu-
tional layer which are then reshuffled into the dimensions
SH ∗ SW ∗C which is the required ISR. Since no overlapping
of the outputs occurs in the shuffle operation, the blocky
checkerboard artifacts are no longer present. Many subse-
quent models utilized this approach for upscaling the feature
maps into ISR. For example, Shi, et al. [29] discuss about the

21814 VOLUME 11, 2023



K. Chauhan et al.: Deep Learning-Based Single-Image Super-Resolution: A Comprehensive Review

FIGURE 4. Checkerboard artifacts due to the stride=2 not being a multiple of
kernel size=3 [27].

FIGURE 5. An example of checkerboard artifacts from dumoulin,
et al. [28].

task of increasing the resolution of the image from LR to HR
is performed at the very end of the network and super-resolve
the HR data from LR feature maps. Subpixel convolution is
used to achieve this at the last layer of the CNN. This HR
image is then improved by deriving information from the
feature maps which were learnt from the LR images in the
previous layers. Zafeirouli et al. [31] proposed an efficient,
lightweight framework that is built upon the recursive archi-
tecture. The structure is based on progressive reconstruction
that strengthens the information flow by taking advantage
of dense and residual connections. A coordinate convolution
layer exploits the coordinate information allowing the net-
work to learn the translation dependency required by the SR
task. A sub-pixel convolution layer is put in place to convert
the image from an LR to HR.

Zhang et al. [32] proposed a model in which each
layer has direct access to the original LR input leading
to deep supervision. This model uses a GRL approach to
achieve image super-resolution. The upscaling technique in
the second last layer comprises subpixel convolution layers.
Shamsolmoali et al. [33] introduce a new approach to achieve
the complex task of image super-resolution. The proposed
approach is based on a progressive dilated convolution net-
work for image super-resolution. A subpixel convolution
layer is put in place to convert the LR to HR. The model
also builds upon an efficient feature extraction and a feature
reuse mechanism. The dense connections in place facilitate
the reuse required to improve the model’s performance.

B. NETWORK ARCHITECTURES
Network architecture decides how the feature maps interact
with each other and hence plays a critical role in image

processing as a whole. Multiple approaches have been pro-
posed during the past half a decade which can be catego-
rized based on some common strategy or principle followed.
This section discusses the broad categories of these network
architectures.

1) LINEAR NETWORKS
This type of architecture represents a rudimentary network
model in which convolutional neural networks are stacked on
top of one another. With their work in SRCNN [4] as shown
in figure 7, Dong et al. [4] presented the pioneering work
of deep-learning assisted image super-resolution. It proposes
a three-layer convolutional neural network architecture that
establishes an end-to-end mapping between low-resolution
and high-resolution images.

There are other works such as SCN [19] and ESPCN [29]
which are built upon Linear architecture. Wang et al. [19]
improved the conventional SRCNN [4], where they have
argued that human expertise in the field of super-resolution
can be leveraged to improve the performance of neural net-
works. They improved the performance of the SRCNN net-
work by initializing the parameters of the network based on
their expertise. Their work introduces a Learned Iterative
Shrinkage and Thresholding Algorithm (LISTA) network in
addition to the neural network described in SRCNN. LISTA
mimics the various stages of Sparse-coding and is used to
enforce sparse representation within the network. Due to
the simplicity of such networks, a deeper model is deemed
impractical due to vanishing/exploding gradients. Apart from
this, the model’s convergence time also increases, making it
hard to train intense models.

2) RESIDUAL NETWORKS
He et al. [34] introduced their work based on deep residual
learning for image recognition. The deep learning commu-
nity has widely adopted residual learning for creating deep
models that can be trained easily. Residual learning consists
of learning the difference between the input and the desired
output rather than learning the desired output directly. In the
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FIGURE 6. Working of sub-pixel convolution for an upscaling factor of 2 (s=2).

FIGURE 7. SRCNN architecture [4].

FIGURE 8. Global residual learning in VDSR [20].

context of image super-resolution, it consists of learning just
the features in IHR and combining those with the already
available features from the input ILR. Therefore, the residual
between LR and HR can be represented as follows:

Residual = {IHR − ILR} (3)

We relieve the network from learning the redundant informa-
tion already in the ILR by using residual learning. Since the
network no longer has to carry the current information of the
low-resolution image, which remains unchanged mainly dur-
ing various convolutions, the network can focus on learning
the residual details as denoted in Eq. 3. Residual learning has
two primary types:

• Global Residual Learning (GRL) GRL performs an
element-wise addition between the input ILR and the fea-
ture maps of the final layer of the model. This provides a

direct path for the existing ILR features to be available at
the end of the network without having to go through the
actual model and perform futile computations. An exam-
ple of this is Very Deep Super Resolution (VDSR) as
shown in figure 8.

• Local Residual Learning (LRL) LRL performs
element-wise addition of the feature maps between the
various layers of the model. It differs from GRL in that
the LRL connections exist within the various layers of
the network, whereas GRL originates from the input
image and ends in the final layer of the network. As a
result, earlier feature maps of the model have higher
activations than the latter part of the model. LRL keeps
these activations alive by adding them to the latter
feature maps. An example of this is shown in figure 9.
Note that unlike GRL in figure 8, the skip connection
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FIGURE 9. Local residual learning in EDSR [35].

passes into the next convolution block and not to the
network’s end.

Residual learning is also critical for training deep models
since it mitigates the issues of vanishing/exploding gradients.
Due to these reasons, it has been broadly used by many mod-
els such as SRGAN [30] and EDSR as shown in figure 9 [35].
EDSR improved over SRGAN and argued that the batch nor-
malization layer reduces the range of the pixel values, which
prohibits the network from learning textures accurately. It is
also argued that batch normalization increases the model’s
memory usage since it consumes as much as its preceding
convolutional layers.

3) RECURSIVE NETWORKS
Recursive networks emphasize an environment with reduced
compute availability by introducing shared weights. Other
networks emphasize increased perceptual quality at the
expense of memory and processing. While this does come
with an increase in image quality, such models are not fea-
sible for mobile computing due to computation and memory
constraints.

Kim et al. [37] approached this issue by making use of
weight sharing amongst convolution layers in their model,
DRCN. These layers, which share the weights amongst them,
are arranged in blocks called recursive blocks that can be
repeated any number of times; the more the block is, the
better. This weight sharing decreases the size of the model
and the flexibility in the number of blocks, which can be used
as a trade-off between quality and performance. DRRN [36]
improved on this by introducing more shared weights and
using LRL within its network.

FIGURE 10. Two-tier recursive block in DRRN [36].

In figure 11, the dotted black line represents the global
residual learning which carries the input to the end of the
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FIGURE 11. Linearly repetitive recursive block in DRCN [37].

network. The green box represents the recursive blocks
repeated N times within the network. In figure 10, the black
line represents the local residual learning which carries the
feature maps between the convolution layers. The red line
represents the global residual learning which carries the input
to the end of the network. The layers with the same color share
the same weights within a recursive block. For Example,
the four convolution layers demonstrated in green color in a
recursive block in DRCN have the same weights. Similarly,
for DRRN, the two convolution layers represented by yellow
color share the exact weights, and the same goes for the other
two convolution layers in green. Reducing the parameter
count also allows us to increase the depth of the network
without worrying about the model size. A deeper network can
learn high-level features, which ultimately improves network
performance.

4) DENSE NETWORKS
Huang et al. [38] proposed the first dense structure in their
DenseNet model. In Dense networks, the output of every
convolution layer is concatenated with the output of all
subsequent convolution layers. The final layer in a dense
network outputs a feature map with reduced channels(3 in
the case of RGB images), which curbs the channel growth.
The above fundamental differences drastically change model
retention and parameter count. The increased skip connec-
tions increase the network’s bandwidth to retainmore features
across the convolutions,Which allows the network to perform
inter-feature convolutions across the depth of the network.
The reduced channel growth creates a substantially compact

FIGURE 12. Dense connections in RDN [32].

model from a performance perspective, allowing usagewithin
memory-critical systems.

The fundamentals of DenseNet were implemented
in single-image super-resolution by Tong et al. [24].
Zhang et al. [32] improved on dense connections by increas-
ing the channel growth rate as seen in figure 12. Instead of
adding the feature maps as is usually done in residual learn-
ing, the feature maps in dense connections are concatenated.
Wang et al. [39] proposed a variant of dense connections that
combined residual and dense connections inside a block in
their work in ESRGAN. They coined this block as Residual-
in-Residual Dense blocks (RRDB).

5) GENERATIVE ADVERSARIAL NETWORKS (GAN)
In general, a GAN model consists of 2 components. Gen-
erator and a Discriminator model. The Discriminator model
aims to classify the output given by the Generator model as
real or fake. The Generator gets feedback on loss from the
Discriminator model and aims to minimize the loss. This
repetitive cycle stops when a desired level of accuracy is
achieved by the Generator model based on the feedback given
by the Discriminator model. A review of several research
work is already done that employed GAN-based techniques
to bring out newmethods to perform the crucial task of image
resolution. Some of the methods are discussed below.

Dong et al. [40] discuss the image recovery problem
in which the image is simultaneously corrupted by blur
and impulse noise. The proposed model contains 3 terms:
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FIGURE 13. Glean architecture [42].

FIGURE 14. Resnet architecture for SRGAN generator [30].

sparse representation prior, total variation regularization, and
data fidelity. To recover the original image, 2 steps pro-
cess needs to be followed. The first step involves identi-
fying the possible impulse noise positions, and the second
is recovering the image via the patch-based model. He and
Siu [41] presents an approach to image super-resolution with-
out using any external training set. The proposed framework
performs the magnification and de-blurring using only the
original low-resolution image and its blurred version. In this
method, each pixel is predicted by its neighbours through
the Gaussian process regression. Discussed below are some
GAN models commonly used to perform the task of Image
Super-Resolution for varied scales.

• GLEAN - (Generative Latent Bank for Large-Factor
Image Super-Resolution) [42] image super-resolution
involves upscaling a low-resolution image to a desired
high-resolution counterpart. While most GANs can
effectively produce high-fidelity outputs for a smaller
scale (2x, 3x, 4x), it fails to give a high-fidelity output
when the scale factor increases beyond a particular scale.
As a result, in higher scales, the GAN falls short of
capturing the textures of the desired output, and the
result is an upscaled image with just the core compo-
nents of the image. This, however, is solved by using
GLEAN (Generative Latent Bank For Large-Factor
Image Super-Resolution). GLEAN applies the concept
of using pre-trained GAN as a latent bank and can be
employed as being used as an encoder-decoder archi-
tecture. The GLEAN architecture eases the process of
training high-fidelity features by leveraging the results
from a previously trained GAN. This pre-trained GAN
already captures the rich texture before training the
model. Unlike prevalent GAN inversion methods that
require extensive image specific-optimization at run-

time the GLEANmodel only needs a single forward pass
for restoration, resulting in high-fidelity outputs for a
high-scale image super-resolution. Unlike conventional
approaches, GAN is used here as an effective way of
storing priors.
Employing priors from different generative models
allows GLEAN to be applied to diverse categories
(human faces, cats, buildings, and cars etc.)
The architecture for GLEAN model consists of essen-
tially three main sections. 1) Encoder, 2) Generative
Latent Bank, 3) Decoder following which the final out-
put is given. The architecture for GLEAN is shown
in figure 13. The encoder is used to extract features
from the low resolution image. Further on the features
extracted are analysed by passing them to a generative
latent bank. The goal of the Generative-Latent Bank is
to acquire useful knowledge regarded to the encoded
features sent by the encoder. Once analysed andmatched
the features are then sent to the Decoder to convert
them to a high resolution counterpart of the input low
resolution image.

• SRGAN - SRGAN (Super Resolution Generative
Adversarial Network) is used to upscale images to com-
paratively more minor scales than GLEAN. The gen-
erator network uses resnet architecture as shown in
figure 9. Using a resnet architecture captures the more
refined textures that are otherwise overlooked. Resnet
architecture also proves effective against vanishing and
diminishing gradient problems, allowing deeper models
to be trained effectively. The resnet architecture used
in SRGAN is shown in figure 14. The resolution of
the image is increased by the two pixel shuffler layers
(subpixel convolution). The generator also uses para-
metric RELU for more robustness as compared to the
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FIGURE 15. Resnet architecture for SRGAN discriminator [30].

FIGURE 16. ESRGAN architecture [39].

LeakyRELU. The discriminator architecture consists of
8 convolutional layers (3 × 3 filters) which keeps on
increasing from a factor of 2 to 512. Strided convolutions
are put in place to reduce the image resolution each time
the number of features taken into consideration are dou-
bled.The discriminator utilized LeakyReLU as the acti-
vation function. The architecture is shown in figure 15.
The generator used in SRGAN can also be used without
a GAN architecture. The generator is known as the
SRRESNET model. However, when the results were
compared, it was found that the GAN architecture was
more effective than the SRRESNET model. SRGAN
uses perceptual loss function which is elaborated further
in the II-C section.

• ESRGAN - (Enhanced Super Resolution Generative
Adversarial Network) [39]. Building on the performance
and the architecture of the SRGAN, ESRGAN’s main
aim is to reduce the complexity and the training time
of the SRGAN, all the while increasing the model’s
performance. The changes made to the model were as
follows.
– The generator model now contains residual in resid-

ual networks, which leads to a better capture of the
finer details that the normal residual networks may
miss.

– Batch normalization layers are removedwhile train-
ing the generator function.

– The total loss to be considered now while training
the generator function is the sum of GAN loss, per-
ceptual loss, and the pixel-wise distance between
the predicted images and the original low-resolution
image [43].

The architecture for the ESRGAN is as shown in
figure 16. The loss function includes 3 components

while training the generator function. Loss function is
a linear function of Perceptual loss, Pixel wise absolute
difference between real and fake image and Relativistic
average loss between real and fake images during adver-
sarial training. The results seemed to improve SRGAN’s
ability to improve the textures and reduce the training
time to some extent.

• GMGAN - (GAN-Based Image Super-Resolution with
a Novel Quality Loss) [44]. The SRGAN inspires the
architecture of the GMGAN. To better the results pro-
duced by the SRGAN changes were made to the gener-
ator model.
– The generator model now contains residual in resid-

ual networks, which leads to a better capture of the
finer details that the normal residual networks may
miss.

– Batch normalization layers are removedwhile train-
ing the generator function.

– The training instability of the generator model
is now stabilized as the GAN is replaced by
WGAN-GP to balance the training of the generator
module.

To gain better results while training the GAN architecture,
a novel loss was introduced. This loss is known as Quality
Loss. This loss is inspired by the gradient magnitude similar-
ity deviation (GMSD) [43]. The results seemed to improve
SRGAN’s ability to improve the textures and reduce the
training time to some extent.

6) BLIND SUPER RESOLUTION
There has been an increase in the performance of the DNNs
recently. This change is attributed to change in the architec-
ture and more resources being available to train the larger,
complex architecture. But most of the DNNs method assume
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that the blur kernel use is predefined as bi-cubic interpolation.
However if we are to get even better results the blur kernels
that are to be used for real life applications are much more
complex in nature.Thus there should be more attention paid
to the SR in the context of the blurring kernels put in place.

This type of approach is known as Blind SR [45],
[46], [47]. This technique included one more undetermined
variable i.e., the blur kernel (k) and the optimization also
becomes more difficult.

• Practical Degradation Model for deep blind image
super-resolution [48] - In this approach of blind SR
several downsamplingmethods are chosen such as Near-
est, Bilinear, Bicubic, Down-up. Based on the scale
of the high-resolution image to be downscaled random
downsampling methods are chosen from the mentioned
choices. There can be various combinations possible.
This leads to more robust and unpredictable blurring
of a high resolution image to it low resolution counter-
part [49], [50]. Further random noise can be injected to
the low resolution image generated. This increases the
complexity of the nature in which the low resolution
images are obtained.
Once low resolution images have been generated the
training begins. For this paper, the model used has
been borrowed from the classical ESRGAN model. The
said model has been trained to identify the techniques
used for blurring and give the best estimate i.e., the
super resolved counterpart of the low resolution image.
This process is more practical in real life applications
where the conditions continuously keep changing and
so does the blurring mechanism as well the noise asso-
ciated with the image. This model BSRGAN has been
able to outperform the classical model SRGAN. The
PSNR/LPIPS ratio for the DIV2K4D dataset was moni-
tored. The ESRGAN values were 23.68/0.599 while the
BSRGANmodel outperformed it by giving the metric of
24.58/0.361

• Real-ESRGAN - (Training real-world blind super-
resolution with pure synthetic data) [51]. This approach
is built upon classical ESRGAN model with some
modifications to it. The degradation space consid-
ered here are several compression algorithms which
can be due to imaging system of cameras, image
editing and Internet transmission. As the degrada-
tion space is much larger than ESRGAN the training
also becomes challenging. Improving the discriminator
model a U-Net [52], [53] based architecture is put in
place. This U-Net structure complicates the degrada-
tion process and increases the complexity in place. The
model is named Real-ESRGAN since the training is
done on real life images and is able to restore most
real-world images achieving a better visual performance
than the previous works. While BSRGAN improves the
quality of the image by including robustness in train-
ing Real-SRGAN works better on real life images on

which it has been trained on. The Real-ESRGANmodel
outperforms BSRGAN in terms restoring texture details
and boosting visual sharpness.

• FeMaSR - (Real-World Blind Super-Resolution via
Feature Matching) [54] The paper proposes a novel
SR framework that outperforms Real-ESRGAN+. The
framework here is based on the idea of feature matching.
The model matches the LR features to a set of HR in
the pre-trained implicit HR priors (HRP). The model has
been inspired and taken from VQGAN. The HRP has
been defined as the combination of a discrete codebook
which consists of pre-defined number of feature vectors
and the corresponding pre-trained decoder. The feature
vectors then can be mapped to decode the targeted HR
images. The task of SR is divided into 2 different parts.
1) Learning a high quality HRP 2) mapping the fea-
tures to the codebook in the HRP for detailed recovery.
To achieve this a novel framework named FeMaSR has
been proposed for blind SR using the HRP encoded by
a pre trained VQGAN network. This enables for better
matching between the LR and the SR leading to the
generation of more realistic images with less artifacts
for the real world problem of Image Super Resolution.
The proposed model outperformed the Real-ESRGAN
model in terms of LPIPS (can better reflect texture qual-
ity). For the DIV2K Valid dataset the LPIPS score for
the Real-ESGRAN model was 0.2993 and the score for
the FeMaSR model was 0.2753.

C. LOSS FUNCTIONS
The loss function drives the back-propagation algorithm in
any model, making it critical to select them according to the
given task carefully. This section discusses the loss functions
used by different approaches.

1) MEAN SQUARED LOSS
Mean square loss, also known as pixel loss, is the most
common loss function used in deep learning. In the case of
images, it finds the differences in the pixels of the predicted
(ISR) and ground-truth (IHR) images. Mathematically, it is
represented as

MSE =
1

W ∗ H ∗ C

∑
W∗H∗C

{
IHR(W ∗ H ∗ C)

− ISR(W ∗ H ∗ C)
}2

. (4)

Most models that use this loss function usually have a
higher PSNR. However, this does not directly correlate to bet-
ter image quality because, as can be seen from Eq. 5, PSNR
and Mean squared error (MSE) have an inverse relationship,
so as the loss decreases, the PSNR increases.

P.S.N .R. = 10 ∗ log10

{
L2

MSE

}
. (5)

Such a loss function restricts the optimization of the model
since it is similar to the mean spatial filter with all weights
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FIGURE 17. Mean filter.

as 1, shown in figure 17. The mean spatial filter applies a
smoothing effect on the image by blurring the edges and
textures, as it is an essential averaging operation. The same
happens when we use pixel loss for learning in a network.
While it reproduces the generic image details well, it cannot
effectively generate high-frequency details.

2) PERCEPTUAL LOSS
The perceptual loss was first used for image super-resolution
by Johnson et al. [25]. It works on the principle of transfer
learning where we compare the values on a perceptual plane
instead of comparing the pixel values as done in pixel loss in
section II-C1. This is done by comparing the activation’s of
trained models such as VGG19 [55] by passing both the IHR
and ISR to the model and then comparing the activation’s on
a particular layer. The difference in these activation’s is then
minimized, which is represented as follows:

Perceptual

=
1

w ∗ h ∗ c
∗

∑
w∗h∗c

{
ϕiHR (w, h, c) − ϕiSR (w, h, c)

}2
(6)

where, ϕiSR represents the ith layer activation of pre-trained
model on feeding ISR.

ϕiHR represents the ith layer activation of pre-trained model
on feeding IHR.
The perceptual loss uses pre-trained models already heav-

ily trained for complex classification tasks such as the Ima-
geNet [56]. Due to this, the layers of such models are adept
at recognizing semantic differentiation, and they are more
task-oriented for image super-resolution. For the sake of
understanding, let us assume that a network reconstructs a
perfect ISR, which is highly similar to IHR. However, the pixels
of the ISR are shifted one unit to the right compared to IHR.
This difference is insignificant to any observer but creates a
tremendous loss value when we compute the pixel loss. This
shows that the pixel loss is ill-suited for model training and
deems PSNR as an ineffective performance metric. This also
indicates that attention should be given to the image features
instead of focusing on pixel comparison.

3) ADVERSARIAL LOSS
Ledig et al. [30] pioneered using GAN architecture for single
image super-resolution. Their model utilized a discriminator
that discriminates IHR and ISR. The loss comprises the loss of
two networks, the generator, and the discriminator.

AdversarialGen = −log (Discrim (ISR)) (7)

AdversarialDiscrim = −log (Discrim (IHR))

− log (1 − Discrim (ISR)) (8)

Introducing adversarial loss motivates the model to create
better images to convince the discriminator. The discrim-
inator, in turn, gets trained to better differentiate between
IHR and ISR. This cycle improves the model as a whole.
Recently, Jolicoeur-Martineau [57] proposed the relativistic
discriminator, which improves on the original discriminator.
The previous discriminator measured the absolute probability
of the input belonging to the training set. This sets a limitation
on the network where the adversarial loss depends on the
training dataset. Using a relativistic discriminator solves this
issue by redefining the loss as a difference in the probabilities
of the image being authentic and the image being fake. Math-
ematically, the difference between the two kinds of generator
can be depicted as follows

D (x) = sigmoid
(
C (xr ) − C

(
xf

))
(9)

D (x) = sigmoid (C (x)) (10)

where,
C(x) is a function which assigns a score to an image

regarding its fakeness or realness where,
xr represents the real image (IHRinsuper − resolution).
xf represents the fake image (ISRinsuper − resolution).

4) QUALITY LOSS
Inspired by a image quality assessment (IQA) metric, a new
loss was proposed for the GMGAN model, known as quality
loss.MSE, which can be considered equivalent to PSNR, can-
not capture the perceptual loss, leading to the need to develop
other losses. The metric chosen for this loss is gradient mag-
nitude similarity deviation (GMSD), which effectively can
capture the perceptual loss from the output. The process of
calculating GMSD takes place in a major three step process.
Here hx , and hy stand for the Prewitt filters in the horizontal,
and the vertical direction. The gradient magnitudes of ISR, and
IHR at location i, denoted asmSR(i), andmHR(i) are calculated
as follows.

mSR(i) =

√
(ISRconvolutionhx)2(i) + (ISR ⊗ hy)2(i) (11)

mHR(i) =

√
(IHR ⊗ hx)2(i) + (IHR ⊗ hy)2(i) (12)

where,⊗ symbol denotes the convolution operation. Then the
gradient magnitude similarity (GMS), map is calculated as

GMS(i) =
2mSR(i).mHR(i) + c

m2
SR(i) + m2

HR(i) + c
(13)

Here c depicts a positive constant. For here, the LQM of the
ISR has been acquired. Further, on average, pooling is applied
to the GMS map to obtain GMSM.

GMSM =
1
N

N∑
i=1

GMS(i) (14)
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FIGURE 18. Model comparison on the test img062 image from Urban100 dataset.

Here N would refer to the number of pixels in ISR. Since
the average pooling offers little insight into the local qual-
ity degradation, the standard deviation of the GMS map is
calculated to be the final IQA metric.

GMSD =

√√√√ 1
N

N∑
i=1

(GMS(i) − GMSM )2 (15)

The final GMSD can now be used to reflect the distortion
severity of the image in question, which can be used to
optimize the training process. Therefore the quality loss in
question can be defined as

IQ = GMSD(Gθ (ILR), (IHR)) (16)

A higher GMSD score depicts a higher distortion level.
In practice, a single GMSD loss is calculated for each channel
of ISR and IHR (R, G, B); After that, the three losses are
combined to provide the final distortion score. There is a
significant difference in how the loss function is used in
backtracking and model training. While ESRGAN uses the
sum of three different loss functions while training (GAN
loss, perceptual loss, and pixel-wise loss); GMGAN, on the
other hand, introduces a new loss function named Quality
Loss that is used to capture the distortion score between the
input image and the super resolved image.

D. PERFORMANCE METRICS
Evaluation of any model is paramount to determine its perfor-
mance quantitatively against other models. However, since
image perception is subjective, it isn’t easy to analyze the
performance of a super-resolution model. In this section,
we will discuss the various approaches presented to quantify
the perceptuality of an image and, thus, the performance of
super-resolution models. Table 1 and Table 2 presents the
performance based on two of the metrics mentioned below.
The models have increasing complexity as we move from left
to right in the tables, going from linear models on the left

to residual and dense networks on the right, with the right-
most models (ESRGAN, SRGAN) also utilizing adversarial
and perceptual loss. A sample image comparison has also
been provided for the benchmark of the various models in
Figure 18.

1) PSNR
Peak Signal-to-Noise Ratio is one of themost commonly used
metrics for quality measurement in image processing and is
defined as

P.S.N .R. = 10 ∗ log10

{
L2

M .S.E .

}
(17)

where, L represents the range of pixel values. How-
ever, as already discussed in the mean squared error in
subsection II-C1, the PSNR is ineffective for measuring
image super-resolution effectively since it does not consider
perceptual image features. Table-1 shows the PSNR values
for the different image super-resolution networks discussed
in this paper. It can be generally noted from the given data
that apart from networks using perceptual loss (SRGAN,
ESRGAN), dense and residual models easily outperformed
the linear models, with the performance gap increasing with
higher upscaling. This can be attributed to the fact that as
we grow the upscaling, it becomes increasingly difficult for
models with lower feature retention to perform sufficient
detail regeneration. As discussed, PSNR is very sensitive to
per-pixel changes, which causes unstable metric values in the
table. Therefore, it isn’t easy to draw out long-running trends
for PSNR since the metric has a high variance.

2) SSIM
The shortcomings of PSNR, such as its absoluteness, are
improved upon by Structural Similarity Index (SSIM) [60]
which considers image degradation as a change in the percep-
tuality by taking into consideration such luminance masking
and contrast masking. It is usually calculated by a sliding
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TABLE 1. PSNR benchmark matrix of datasets versus models.

TABLE 2. SSIM benchmark matrix of datasets versus models.

Gaussian window of dimensions 11 ∗ 11 according to the
following equation:

SSIM =

(
2µIHRµISR + O1

) (
2ζIHRζISR + O2

)(
µ2
IHR + µ2

ISR + O1

) (
σ 2
IHR + σ 2

ISR + O2

) (18)

where,
µ represents Average across image patch.
ρ represents variance across image patch.
ζ represents covariance across image patch.
O1 represents (k1l1)2.
O2 represents (k2l2)2.
k1, k2 represents constants.
l1, l2 represents dynamic range of pixel values.
As seen from the Eq. 18, the averaging and the vari-

ance considers the nearby pixels to determine their simi-
larity rather than the per-pixel similarity as calculated in
PSNR. Table-2 shows the SSIM values for the different Image
super-resolution networks discussed in this paper. Comparing
the various networks shows that the dense networks (VDSR,
ESRGAN) easily outperform the other networks, especially
on the higher scales. It can also be noted that the difference
in the scores of the models is more noticeable and consistent
than PSNR since SSIM looks at the structure of the entire
image rather than per-pixel similarity. Because of this, SSIM
has a higher correlation with the perceived image quality
than PSNR. Another point of interest is that all the networks
trained on perceptual loss (ESRGAN, SRGAN) have consis-
tently better SSIM values, validating that perceptual loss is a
better network learning driver for image super-resolution.

The values for PSNR and the SSIM metrics are acquired
from various papers written in the past addressing the issue
of single image super-resolution. The dataset for which the
values are written is uniform across all the papers considered

while performing the scoring metrics. While performing the
study, the scaling factors are 2x, 3x, and 4x. An interesting
thing to note is the PSNR and the SSIM scores for the
GAN-based models such as ESRGAN and SRGAN. It can
be seen that the scores for the GAN-based models come
into the picture only when the desired high-resolution image
has a scale factor of 4x. The values are not available for
the lower scale factors. This highlights that GAN models
being more complex, are viable to use only when the desired
high-resolution image is of a comparatively larger scale.
Given the complexity of the GAN models, the time required
for the GAN models outweigh the performance of the model
for lower scales.

3) MA’s SCORE
Ma et al. [61] proposed a score for evaluating the perceptual
quality of the outputs of super-resolution models. Based on a
large mean opinion score (MOS) test on the BSD dataset [59]
of over nine models, they compiled a regression model which
predicts a score based on various features of the image. Their
seminal work was used as the benchmark test at the PIRM-
SR 2018 challenge [62] to measure the performance of the
multiple models submitted by the participants.

III. CHALLENGES AND RESEARCH DIRECTIONS
In this section, we discuss the latest developments in the field
of image super-resolution, which has been proposed quite
recently. However, they have not been put into the above
taxonomy as these are singular, and not enough literature
exists to warrant a separate category for the same.

• Coordinate convolution layer - While convolution lay-
ers are used in neural networks frequently, they work
on a positional-invariant filter, i.e., the pixels can be
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rearranged and still produce the same output for the
same filters. This positional independence is essential
for image processing tasks such as classification or seg-
mentation. However, in the image super-resolution task,
the spatial position information could lead to more effi-
cient representations, especially for edges. To counter
this problem, Liu et al. [63] introduced coordinate
convolution layer in their work. This spatial informa-
tion of the pixels has been explicitly accounted for by
Zafeirouli et . [31] in their work using coordinate convo-
lution layer. Their model shows that using a coordinate
convolution layer can produce more refined details and
better image reproduction.

• Importance of receptive field - While most of the
research has focused on the depth of neural networks,
recent work by Shamsolmoali et al. [33] has shown that
the receptive field of the network layer is one of the
most important parameters for image super-resolution.
In this work, two models were compared with the same
receptive field but varying network depth, and found that
such models have similar performance. However, when
the authors compared twomodels with the same network
depth but varying receptive fields, they achieved higher
performance, fewer parameters, and less execution time
as the receptive field increased. Their work also pro-
poses the use of a progressively dilating convolution lay-
ers block. Since dilated convolution layers have a higher
receptive field for the same filter size as a convolution
layer, such networks can speed up the execution of the
network model.

In this section, we discuss the parts of the super-resolution
domain that require attention and pinpoint specific areas of
deep networks that can be investigated further. This section
aims to provide a future research direction for the community
to improve image super-resolution further.

• The performance metrics of any experiment are a fun-
damental aspect of analyzing the effectiveness of the
proposed approaches. PSNR does not evaluate the per-
ceptual quality of the image, and while SSIM does lean
towards perceptual consideration, it is not good enough.
Blind evaluation techniques such as Ma’s score [61]
need to be researched as they do not require a reference
image for scoring. The need for a reference image is a
limiting factor for evaluation since such images are not
always available in real-time scenarios.

• Loss functions are the principle drivers of neural net-
works since they are responsible for parameter opti-
mization. Perceptual-oriented loss functions need to be
developed to drive the models to create realistic images.
There is no best suitable loss function defined for
image super-resolution. Perceptual loss as described in
[25], [30], and [39] is a promising start in the direction
of finding better loss functions.

• Various convolution layer varieties have been proposed,
such as coordinate convolution layer [63] and dilated
convolutions for image super-resolution. However, their

FIGURE 19. Surveillance.

various combinations in a neural network have not been
explored. Imbalanced convolutions with unequal filter
sizes (such as a filter of 1 × 3) and dilated convolutions
reduce the computational cost, whereas coordinate con-
volutions add two extra positional channels. Research
needs to be done to combine these layers in differ-
ent combinations to determine what gives a superior
performance.

• The work done by Shamsolmoali et al. [33] argues that
the receptive field has a more significant impact on
image quality than network depth. Research needs to
be done in this direction to find the optimal network
depth size and receptive field beyond which we get
diminishing returns. A comparative study is required to
understand the impact on super-resolution with minor
parameter changes. Such analysis would enable the cre-
ation of compact models which can perform well at
lower parameter counts.

• As models get more profound and their receptive fields
wider, the parameters increase significantly. While this
leads to better performance, it deems the models imprac-
tical for real-life scenarios such as smartphones or
other mobile systems. A quick look at the PIRM-SR
2018 challenge [62] and NTIRE-SR2017 challenge [64]
shows that most of the proposed methods with higher
perceptual quality take a long time to process a sin-
gle image that too on powerful hardware such as the
NVIDIA TitanX. Such computationally expensive mod-
els do not make sense for real-life scenarios. Research
needs to be done to optimize neural networks to reduce
computational costs and their memory footprint to
increase their applicability in less powerful hardware
configurations.
Apart from model optimizations, we also suggest using
lightweight cloud computing architectureswith load bal-
ancing algorithms [65] for super-resolution tasks for
low-end systems. The input image can be divided into
multiple parts, and each part can then be processed on
cloud engines for faster computations.

IV. USE CASES
Although image super-resolution has dramatically improved,
it cannot be justified as necessary while there are no practical
uses. This section explains how image super-resolution is
helpful in several fields and how it is advancing many fron-
tiers. Additionally, Dai et al. [66] demonstrated how image
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FIGURE 20. Medical image for MRI.

super-resolution enhances the efficiency of numerous image-
processing tasks, including segmentation and classification.

A. HYPERSPECTRAL IMAGE SUPER-RESOLUTION
Hyperspectral images captured by Synthetic Aperture Radars
(SAR) satellites such as the one described by Patel et al. [67]
are critical for objectives such as area surveillance, crop
health monitoring, and ecological analysis. The complex-
ity of SAR satellites in terms of their weight and hard-
ware depends on the precise resolution required for their
output. These images are scaled to a resolution of several
meters, represented by a single pixel. Due to this, their spatial
resolution is of utmost importance. The concept of single
image super-resolution is adopted for hyperspectral images
to reduce the hardware requirements and stay within weight
constraints in microwave remote-sensing. Yuan et al. [68]
have proposed using a CNN model inspired by SRCNN to
improve the spatial resolution of a given benchmark of a
hyper-spectral image. Mei et al. [69] further proposed using
a 3D convolutional layer to fully exploit the correlations
between the spatial band and the pixels of the neighboring
bands for better high-resolution image reproduction.

B. SURVEILLANCE MONITORING
CCTVs are a crucial part of today’s security systems moni-
toring various areas. Many TV shows and movies show sci-fi
scenes where a detective goes through surveillance footage
and asks the operator to zoom in and ‘‘enhance’’ the blurred
part of an image, revealing some clue in their investigation.
While previously, such magical enhancement of low-quality
images was a part of science fiction, mage super-resolution
hasmade them a reality.Work byRasti et al. [70] uses amodel
inspired by SRCNN [4] to improve facial recognition in
low-quality images considerably as shown in figure 19. Such
systems can be a handy tool for law enforcement agencies
and security companies.

Apart from this, CCTVs are commonplace at crossroads to
track vehicles and apply penalties and fines if the drivers are
not driving correctly. In such applications, super-resolution
proves helpful in processing the surveillance records of
the systems. For example, license-Plate recognition for

identifying vehicles and their owners can be improved by
performing super-resolution as a pre-processing task in [71].
Furthermore, by increasing image resolution, Optical Char-
acter Recognition (OCR) tasks get more accurate, which is
critical in license plate OCR, or the system can end up penal-
izing an innocent citizen. Apart from this, super-resolution
can also be applied to surveillance records, as shown in [72]
in which the authors use a multi-frame CNNmodel for image
super-resolution to enhance the records.

Besides CCTVs, image super-resolution can be easily
ported for wireless multimedia sensors such as RGB cameras.
However, such systems have a limited resolution capability
to preserve bandwidth and power usage. In such cases, image
super-resolution can exponentially reduce hardware costs.

C. MEDICAL IMAGING
Magnetic Resonance Imaging (MRI) is a class of medical
imaging techniques that is a critical resource used extensively
for cancer diagnosis, brain abnormalities, and detecting and
monitoring Alzheimer’s and Parkinson’s disease as shown in
figure 20 MRI uses radio waves and strong magnetic fields
to scan the targeted parts of the human body and generates
detailed images of the body structures, such as organs and
tissues. However, high-resolution MRI scans require longer
scan times and reduce the spatial area that can be covered.
Due to these reasons, it is critical to identify methods to
generate higher resolution images without compromising on
these factors. In addition, traditional methods such as bi-cubic
interpolation cannot be used to upscaleMRI scans effectively,
leading to image blurring and even loss of details. The prin-
ciples of image super-resolution address the shortcomings
mentioned above. As a result, they can generate high-quality
MRI scans without needing any special hardware equipment
or increasing scan times.

Chen et al. [73] have used 3D convolutions with dense
connections for image super-resolution that utilize the details
from the neighboring scan slices to create super-resolution
MRI images. Their work considerably outperforms the
traditional methods. Since MRI scans are a particular niche,
it is not always possible to get the high-resolution and low-
resolution scan sequences required to scan neural networks.
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The author in [74] uses a self super-resolution algorithm
in which the MRI scans are degraded along the x-axis to
generate the training dataset.

V. CONCLUSION
This paper survey focuses on major architectural elements
of a network with single-image super-resolution. In par-
ticular, we have discussed various upscaling tools, net-
work designs, loss functions created for model training,
and current assessment metrics applied to multiple models.
In addition, we measured the PSNR and the SSIM of these
models and evaluated them using different datasets and scale
factors. These results show a significant improvement in
PSNR/Perceptual loss metric compared to traditional meth-
ods like normal CNN, interpolation, bi-cubic interpolation,
etc. These findings have also been well-discussed in the
corresponding assessment metric section. We also discussed
several image super-resolution applications, including secu-
rity monitoring and medical imaging, demonstrating that it
is a critical domain that requires investigation and develop-
ment. Finally, the paper advocates the future research direc-
tions that should be investigated to advance single-image
super-resolution.
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