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ABSTRACT In this paper, we present a new supervised speech enhancement approach based on the
cooperative structure of deep autoencoders (DAEs) as generative models and deep neural networks (DNN).
The DAE is used as a nonlinear alternative to nonnegative matrix factorization (NMF) for the extraction
of harmonic structures and encoded features of the noise, clean and noisy signals, and a DNN is deployed
as a nonlinear mapper. We introduce a deep network imitating NMF in a nonlinear manner to overcome
the problems of a simple linear model, such as performance degradation in non-stationary environments.
Compared to combinatorial NMF and DNN methods, we perform all the decomposition, enhancement, and
reconstruction processes in a nonlinear framework via a suitable cooperative structure of encoder, DNN,
and decoders, and jointly optimize them. We also propose a supervised hierarchical multi-target training
approach, performed in two steps, such that the DNN not only predicts the low-level encoded features as
primary targets but it also predicts the high-level actual spectral signals as secondary targets. The first step
acts as a pretraining for the second step which improves the learning strategy. Moreover, to exploit a more
discriminative model for noise reduction, a DNN-based noise classification and fusion strategy (NCF) is
also proposed. The experiments on TIMIT dataset reveal that the proposed methods outperform the previous
approaches and achieve an average perceptual evaluation of speech quality (PESQ) improvement of up to
about 0.3 for speech enhancement.

INDEX TERMS Deep autoencoders (DAEs), deep neural network (DNN), joint optimization, nonnegative
matrix factorization (NMF), speech enhancement.

I. INTRODUCTION
The goal of a speech enhancement problem is to recover the
desired speech from a noisy speech. Speech enhancement
algorithms can be categorized into supervised and unsu-
pervised techniques. The unsupervised algorithms such as
spectral subtraction [1], Wiener filter [2], [3], Kalman filter-
ing [4], and minimum mean-square-error (MMSE) estima-
tor [5] are based on the probabilistic models of noise and
speech. Inaccurate estimation of the noise statistical informa-
tion is a drawback of these methods. In contrast, supervised
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algorithms applied to speech enhancement, such as nonneg-
ative matrix factorization (NMF) [6], [7], [8], sparse coding
[9], [10], deep neural networks (DNN) [11], [12], and deep
autoencoder (DAE) [13], [14] need a set of training data
to learn a structure to be applied in an unknown situation.
In the presence of an adequate amount of training data, the
performance of supervised algorithms can be better than the
unsupervised ones [6], [11], [13].

In recent years, deep learning-based methods have been
extensively studied and have significantly improved enhance-
ment performance over conventional approaches [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
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[23], [24]. Deep learning networks have significant ability in
complex function mapping. The approach in [22] is an on-
the-fly speech enhancement approach in which a recurrent
variational autoencoder (RVAE) and an NMF model are con-
sidered for speech signal and noise, respectively. Noise signal
parameters are approximated during the test time via a vari-
ational expectation-maximization algorithm (VEM) to per-
form the enhancement. Reference [23] proposes a two-branch
convolutional neural network (CNN) model with some inter-
action modules between the two branches of speech and noise
to help each other. A typical spectral DNN-based speech
enhancement model commonly maps the speech-noise mix-
ture features into the magnitude spectrograms of the sources
directly [25], [26]. In [17] and [18], a convolutional-recurrent
network (CRN) is used for magnitude and complex spectral
mapping, respectively. In another approach, DNN can be used
for mapping the mixture into a specific spectral ideal mask
as a gain that describes the proportion of speech and noise
in the mixed-signal [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], such as the ideal binary mask (IBM),
ideal ratio mask (IRM), phase-sensitive mask (PSM), and
complex ideal ratio mask (cIRM). References [15] and [16]
used a long short-term memory (LSTM) network for mask
estimation and noise suppression. In [33], where the IRM
and PSM are the training targets, the time-frequency (T-F)
components are differentially weighted to consider the T-F
energy distribution of speech. The ideal masks or the original
magnitude spectrograms that are used as targets have promi-
nent spectro-temporal structures due to the speech production
process [32]. However, one problem of using deep networks
in a typical deep learning-based speech enhancement appli-
cation is that it does not consider the sparsity and intrinsic
harmonic structure of speech.

Along with the development of deep learning-based meth-
ods in speech enhancement, somemodel-based methods such
as NMF and sparse coding have also grown significantly. This
is mostly due to their ability in representing the structure of
a signal as a model. Unlike Fourier or wavelet analysis, these
methods have an adaptive representation with data and could
create the structural representation of speech and noise using
supervised techniques [6], [9], [38]. In these methods, a given
data matrix is approximated by a simple linear product of a
base matrix as a dictionary and a coefficient matrix through
a dictionary learning process in which the fundamental pat-
terns of the given data matrix are extracted by minimizing a
specific cost function. While using these methods for spectral
speech enhancement, the magnitude spectrogram of a con-
taminated signal is typically decomposed into the weighted
linear combinations of the trained base matrices of the speech
and noise. The basic assumption in these methods is the
orthogonality conditions between the base matrices of the
separate sources. However, this condition is not met in many
cases, which leads to errors in the estimation of the coefficient
matrices and the separation of the sources. If the underlying
assumptions are met, these methods perform well.

Some research works combined DNN with NMF or its
variants to overcome their shortcomings and improve their
performance [39], [40], [41], [42], [43], [44], [45], [46].
In [39], a DNN is learned tomap the spectral magnitude of the
noisy signal to a set of concatenated NMF activation coeffi-
cients of speech and noise. Then, the corresponding activation
part of each source is separated from the estimated activation
matrix of the observed noisy signal. Next, they are linearly
combined with the corresponding trained basis matrix man-
ually to estimate the magnitude spectrograms of the main
signals. Then, a Wiener filtering technique is applied as a
post-processing step to limit the sum of the estimated speech
and noise magnitudes to the mixture magnitude. Moreover,
in [46], instead of directly estimating the original magnitude
spectrograms or mask values, the estimation of the NMF
activation matrix of an IRM is set as the DNN target. Then,
the estimated activationmatrix of the IRM ismultiplied by the
corresponding learned basis matrix to reconstruct the IRM.
Finally, this estimated IRM is used to separate the speech
from the mixture. In these works, the NMF basis matrices
capture the patterns of the target sources to some extent, and
the DNN approximates the corresponding activation matri-
ces. However, these two stages are performed separately and
may lead to double estimation errors. Furthermore, the target
of DNN is not the actual objective of the separation, and it
just estimates an intermediate objective produced by NMF.

Some works have gone further and proposed a jointly
combinational model of DNN and NMF [40], [41], or other
variants like Convolutive NMF (CNMF) [42]. They integrate
the learned NMF or CNMF basis matrices of speech and
noise into a DNN as an extra layer. Then, the DNN directly
estimates the actual targets of speech and noise from the
mixed signal. On the other hand, in [43], the speech and
noise activation coefficients are estimated by applying NMF
on the noisy magnitude spectrum and using the concatenated
learned speech and noise bases. Then the noisy activation
coefficients composed of the concatenated activation coeffi-
cients of speech and noise are used as DNN input training
features. The main spectral magnitude of speech is then esti-
mated through the modified cost function. In [44] and [45],
the DNN is also used for mapping the NMF activation coeffi-
cients of the noisy speech to an IBM mask [44] or a new soft
mask [45].

In some other works, DNN and NMF are combined in
two separate stages to improve the enhancement quality
[47], [48], [49], [50], such that the DNN is first used for
separation and then, NMF performs the enhancement [47],
[48], [49], [50], or vice versa [50]. Grais et al. evaluated
both of them and compared them with the combination of
two DNNs, one for separation and one for enhancement [50].
Williamson et al. used theNMF and sparse reconstruction as a
post-processing step to further enhance the source separated
by the binary, soft, and ratio masks in [47], [48], and [49],
respectively. Here, a DNN is first used for mask estimation;
then, the speech separated by the mask is represented as a
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FIGURE 1. The overall system block diagram. Wi s are the weights corresponding to the classifier accuracies in
each noise type. For seen noises, we choose the best joint DAE-DNN model based on the noise classification
decision, while a fusion strategy is required for unseen cases.

linear or sparse linear combination of the base vectors from
the pre-trained clean basis matrix. In comparison with [47],
in [51] and [52], a DNN is used in the second stage to act
as NMF and estimate the NMF activation coefficients of
the clean speech from the masked speech. Then, by linearly
combining the estimated clean activation coefficients and the
pre-trained basis spectra manually outside of the network,
the clean speech is approximated. It has been revealed that
the use of DNN in estimating the NMF activation coefficients
generates less unwanted disturbance and improves the perfor-
mance more than the NMF method itself [46]. In all of these
works, the NMF learned bases and the corresponding acti-
vation coefficients used in the DNN structure are extracted
from a linear operation. The linear operations are combined
with nonlinear ones and either the nonlinear DNN is forced
to act as a linear NMF decomposition and map the mixture
into the linear activation coefficients directly [39] or its effect
is implicit and the main signals are used as the DNN target
output [40], [41], [42].

Autoencoders (AEs) are suitable for sparse coding and
dictionary learning due to the mapping of the input to a
low-dimensional space in the bottleneck layer [53], [54],
[55], [56]. In [55], the bottleneck features are used for
speech recognition. In [56], the authors used the components
extracted from the encoded hidden layer of an AE trained by
a complex noisy speech spectrogram as the input for another
denoising AE with a complex mask target.

Model-based techniques are beneficial due to the incor-
poration of prior information. However, they are sensitive to
inaccuracies in model knowledge which can lead to poor per-
formance in complicated real systems with dynamic behav-
ior [57]. These methods are more successful for structured
interferences. Furthermore, these algorithms mostly necessi-
tate costly inference making them difficult to be applied in
real-environment speech-based applications [32].

Data-driven techniques such as DNNs lead to better per-
formance in case they can be given prior knowledge of the
signal [57], such as the signal structure. Deep networks have
the advantage of working in non-stationary environments
better, but the problem of being trapped in local minima is

the main disadvantage. This may be solved by adding some
prior knowledge such as those extracted through NMF or AE.
Given enough training data, this method has also been found
to generalize well. Furthermore, the system works in a frame-
by-frame manner, and inference is quick, allowing real-time
implementation [32].

A. OUR WORK AND CONTRIBUTIONS
In traditional DNN-based speech enhancement which is a
direct mapping from noisy features to actual targets, the learn-
ing process is difficult due to the variation and contamination
of features in different noisy conditions. However, using the
structural features which are relatively invariant in various
auditory conditions can lead to regulated learning and more
robust mapping [46]. Nonlinear models are believed to be
able to extract and encode the basic structure of the signal
with higher clarity than a linear NMF model. Hence in this
paper, we propose a novel supervised method that, as shown
in Fig. 1, uses sparse nonlinear generative DAEs models to
provide prior knowledge for deep networks. Thus, it could
create a more suitable integrated nonlinear framework to
improve the results. To this end, we propose exploiting DAEs
for nonlinear feature extraction and dictionary learning while
the whole decoder portions could be considered as nonlinear
dictionaries. In our designed model, the DNN works for non-
linear enhancement and three DAE-based models are used
for feature and structure extraction. Speech and noise DAEs
are used to create the corresponding decoders and encoded
features which are respectively used as the reconstruction part
and the intermediate output target of DNN. Also, by using the
encoder portion of noisy DAE, the noisy encoded feature is
produced. However, when the encoded noisy feature is used
as the DNN input feature for enhancement, the dashed-line
noisy DAE is applied. Otherwise, when we use the main
noisy spectrum as the input feature, thementioned noisy DAE
is not applied. The sparse encoded features are extracted in
a nonlinear manner by DAEs, and are fed to the DNN as
input (noisy encoded features) and/or target output features
(speech and noise encoded features) for nonlinear mapping.
Reconstruction of the objective speech and noise signals is
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performed by using the relevant pre-trained decoders instead
of linear multiplication of NMF basis matrices. Moreover,
to further consider the extracted prominent structure of
speech components in DNN, the DNN training is performed
in two steps. Firstly, we pre-train the DNN to predict the
speech and noise DAEs’ encoded features as primary targets.
Then, we fine-tune the joint model of the pre-trained DNN
(enhancement part) and decoders (reconstruction part) with
the actual targets of speech and noise signals to improve the
results. Thus, in the fine-tuning stage, all pre-trained layers
continue to be learned with the new targets and cost function.
Another issue in speech enhancement problems is learning a
general model with different kinds of noises. In this paper,
as shown in Fig. 1, a DNN-based noise classification and
fusion strategy (NCF) is applied to choose either one, or an
appropriate combination of the learned noise-specific models
for treating each input noisy speech. According to Fig. 1,
the noise type is first detected in the decision block. Then,
for seen noises, the related joint model of DAEs and DNN,
trained with that kind of noise, is employed for the feature
extraction, enhancement, and reconstruction stages. Mean-
while, for unseen noises, a weighted average of the outputs
from multiple models is computed. The weights are based
on the classification rates. The advantages of the suggested
NCF strategy are improving the generalization, accelerating
the convergence, and reducing the probability of local minima
traps. The suggested fusion strategy, using different weights
of the classifier, shows its effectiveness in unseen noise condi-
tions when that noise type was not seen in the training phase,
and thus, one specific model cannot accurately follow the
signal.

Our main contributions compared to earlier works are:
• We propose a joint DAE-DNN model, which is a joint
and nonlinear sparse equivalent of NMF-DNN previ-
ously suggested in [39], [40], [41], and [42]. Therefore,
we propose a DAE-based nonlinear replacement for
NMF for use in the feature extraction (signal decompo-
sition) and signal reconstruction stages. Also, the non-
linear sparse encoded features of speech and noise, and
jointly the objective speech and noise magnitudes are
estimated nonlinearly from the noisy feature by using
an appropriate DNN integrated with decoder layers as
nonlinear reconstruction layers (the joint effort of DAE
and DNN). Thus, the joint optimization of the whole
cooperative DAE-DNNmodel is performed. This is con-
trary to [39], in which NMF and DNN operated indepen-
dently, and also the linear NMF activation coefficients
were set as DNN targets, and the NMF reconstruction
was applied manually outside of the DNN to reconstruct
the main objective signals. This different strategy also
goes for [40], [41], and [42] where the activation coeffi-
cients did not directly affect the DNN and the objective
signals were directly optimized by DNN through an
extra linear NMF reconstruction layer.

• In comparison with [39], [40], [41], [42], [43], [44],
and [45], where the NMF activation coefficients were

just used as DNN output [39], [40], [41], [42] or input
features [43], [44], [45], we investigate the use of NMF
as well as DAE-based sparse encoded features in both
DNN input and output parts. Thus, the proposed model
contains two parts, namely input-related and output-
related ones. In [40], [41], [42], and [43], the learn-
ing process contained a direct mapping from the noisy
signal to the main separation targets without any direct
injection of knowledge about the activation coefficients
in prior layers. Contrary to [40], [41], [42], and [43],
we propose step-wise learning. This involves a two-step
training approach with mapping the noisy feature to the
sparse encoded features of speech and noise in the first
step, and then to the main objective signals in a hierar-
chical framework. The proposed hierarchical approach
helps reduce the local minima problemwhich could lead
to better results.

• In [43], the concatenated speech and noise NMF acti-
vation coefficients were considered as noisy activation
coefficients and used as DNN input features for further
enhancement while ignoring the overlap between speech
and noise bases. Unlike the mentioned strategy in [43],
in this paper, in the input-related proposed models,
the linear and nonlinear sparse encoded noisy features
and the base models are extracted directly from the
main noisy signal to consider any possible correlation
between the speech and noise, and then, are used as
DNN input features. Then, extracting the speech and
noise encoded features from the noisy encoded fea-
tures is performed by a DNN in a nonlinear framework
rather than the conventional linear separation scheme
in the NMF-based enhancement method. This nonlinear
framework could represent the speech signal properties
more appropriately.

• We compensate for the necessary orthogonality condi-
tions between the linear basis matrices of speech and
noise in the NMF-based speech enhancement: the equiv-
alent nonlinear modeling and also mapping of the noisy
signal to the target encoded features is carried out by
DNN as a regression model. Deep hidden layers incor-
porate and learn the inter-dependencies and tolerate the
mutual coherency between the speech and noise dictio-
naries to estimate the sparse enough encoded features.

• We do a multi-target estimation of the encoded fea-
tures and the main signals of speech and noise in a
single DNN: it jointly estimates the speech and noise
encoded features and the main signals hierarchically at
the related output layer based on the individual related
loss function. This further considers the complementary
and correlative specifications of speech and noise.

• We suggest the appropriate incorporation of the
noise-specific models with a noise classification and
fusion strategy (NCF).

• We provide an applicable and suitable model under lim-
ited data and limited processing capability conditions via
the proposed gradual learning and noise classification
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strategies. Obviously, with larger amounts of data and
larger processing capacities, many challenges may dis-
appear.

• We present a well-suited idea in a simple but effective
structure that can be applicable even in other compli-
cated networks which may be suggested in the future.

The remainder of this paper is coordinated as follows: In
Section II, the basic problem of speech separation is intro-
duced. Section III reviews the speech separation approach
based on NMF. Section IV discusses the proposed nonlinear
sparse deep model, composed of extracting the intrinsic spec-
tral structure of the signal (feature extraction stage) and the
cooperative DAE-DNN model. In Section V, the experimen-
tal results are reported and discussed. Finally, the conclusion
and future work are given in Section VI.

II. PROBLEM DESCRIPTION
For a speech signal contaminated by additive noise, i.e.
y(i) = s(i) + n(i), where i is the sample index, the short-time
Fourier transform (STFT) magnitude spectrogram without
considering the speech-noise cross-term is approximated as
follows [58]:

|Y (f , t)| ≈ |S(f , t)| + |N (f , t)| (1)

where |·| is the absolute value operator and f and t are the
indices of frequency and time, respectively. Also, Y, S, and
N ∈ RF×T

≥0 are the magnitude spectra of the noisy signal,
clean speech, and noise, respectively. Also, F and T are the
frequency bins and time frame numbers, respectively. For the
sake of simplicity, we may show (1) as Y ≈ S + N.

The function of speech enhancement in presence of addi-
tive noise n(i) is to acquire an estimate Ŝ(i) of clean
speech s(i) from a noisy one y(i). In practice, the mag-
nitude spectrum of clean speech is usually approximated
and then combined with the noisy phase spectrum. Then,
the time-domain signal of the clean speech is reconstructed
by using inverse STFT (ISTFT). However in some stud-
ies, phase spectrum enhancement is also considered for its
importance in perceptual quality [31], [59], but its efficacy
is under question. Therefore, many studies have good sepa-
ration results while reconstructing with a noisy phase [11].
Hence, in this work, only the magnitude enhancement is
performed.

III. SPEECH SEPARATION BASED ON NMF
NMF [8] is one of the linear model-based techniques that
can be used to separate speech from the speech-noise mixture
signal. In this method, a nonnegative matrix, which is usually
the magnitude spectrogram of a signalX∈RF×T

≥0 , is factorized
as a product of a nonnegative basis matrixWx∈R

F×K
≥0 (where

K ≤ F) and an activation matrixHx∈R
K×T
≥0 according to (2).

K , T , and F are the number of basis vectors, time frames,
and frequency bins, respectively. The basis matrix includes
the basic patterns of X, and the activation matrix represents
the related amounts as coefficients that linearly combine the

basis vectors to approximate X. X can be the clean speech S
or noise signal N.

X ≃ WxHx (2)

Wx and Hx are approximated by iteratively minimizing the
distance between X and WxHx using the Kullback-Leibler
(KL) divergence [8]. In the training stage, Wx and Hx are
usually randomly initialized and obtained using the iterative
multiplicative update rules. Then, Hx is discarded and Wx
is kept constant for the separation stage. Once Wx is found,
the STFT magnitude matrix of a test signal is estimated as
the product of the fixed trained basis matrix Wx and a new
activation matrix that is computed by (2).

In the case of combining two sources such as speech
separation from the noisy one, the basis matrices of the
sources should be known in advance. Therefore, in the train-
ing phase, according to (2), NMF is applied to each source
and Ws∈R

F×Ks
≥0 and Wn∈R

F×Kn
≥0 are trained individually

for the speech and noise signals. Then, the basis matrix
Wy of the noisy speech is formed by their concatenation
([WsWn]). Ks and Kn denote the speech and noise basis
vectors sizes, respectively, and Ks + Kn = K . In the sep-
aration stage, by applying the NMF decomposition to the
trained [WsWn], the activation Ĥy is extracted as the best
approximation of themixture as below. Ĥy, each part of which

corresponds to a specific source (

[
Ĥs∈R

Ks×T
≥0

Ĥn∈R
Kn×T
≥0

]
), is obtained

using the KL cost function and the multiplicative update
rules [8].

Ytest ≃ WyĤy = [WsWn]
[
Ĥs

Ĥn

]
= WsĤs + WnĤn

= Ŝ + N̂ Ŝ, N̂ ∈ RF×T
≥0 (3)

According to (3), an estimation of the magnitude spectrum
of each source is calculated by multiplication of the related
trained basis matrix and its corresponding activation matrix
by subdividing the estimated Ĥy into two sections of Ĥs
and Ĥn. For further smoothing and obtaining the final sep-
arated magnitudes, a Wiener filter composed of the approx-
imated speech and noise magnitudes Ŝ and N̂ is multiplied
by the magnitude spectrum of the mixed-signal to restrict
the sum of the approximated speech and noise to the mixed-
signal [6], [25]. Then, by transforming the result to the time
domain using the noisy phase and ISTFT, the speech and
noise waveforms are reconstructed. Although this method
is easy to implement, it has some problems. For example,
each basis matrixWx is learned individually, and the relation
WxĤx = X̂ in (3) is only valid when the orthogonality
conditions between the base matrices of speech and noise are
met [7], [60]. In this paper, instead of using the concatenated
bases, a DNN learns the mapping of the noisy mixture to the
speech and noise activations to consider the overlaps between
the bases of speech and noise, and then, it estimates them in
a nonlinear manner.
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FIGURE 2. Details of the joint DAE-DNN model shown as one box in
Fig. 1. The feature extraction part (dashed lines) is composed of three
DAEs. The decoder portions of the pre-trained speech and noise DAEs are
first integrated into DNN as reconstruction layers, and then, they are
updated during the joint learning of DNN-DEC (fine-tuning).

IV. THE PROPOSED NONLINEAR SPARSE DEEP MODEL
In this paper, we propose the joint DAE-DNN model shown
in Fig. 2 to capture the structured prominent patterns through
the nonlinear mapping in the DAE’s encoder and decoder
layers. In the proposed model, we suggest exploiting the
sparse nonlinear features as powerful prior knowledge for the
deep network to address the problems of DNNs such as local
minima and a large amount of training data. This proposed
method is much different from the conventional DNN that
only concentrates on the nonlinear mapping between the
mixture and the target clean speech without considering the
harmonic and sparse structure of the signal. In other words,
we have designed an appropriate structure of the DAEs and
DNN to extract the sparse nonlinear properties and inject
them into the deep network.

A. EXTRACTING THE SPECTRAL INTRINSIC STRUCTURE OF
SIGNAL (FEATURE EXTRACTION)
The exploited DAEs are suitable models for the extraction of
data structure because of the dimension reduction in latent
representation to acquire informative features and also for
capturing the structural patterns in bases or deep layers. The
use of encoded representations as DNN input or output fea-
tures (rather than the signal itself) may lead to the reduction
of training complexity. Also, injecting the basic knowledge
into the network is a more appropriate initialization for DNN
and leads to learning more valuable characteristics of the
signal. While most feature extraction methods rely on human
knowledge and tuning, this approach is simple, effective, and
able to extract useful speech and noise information without
human intervention. In the linear NMF-DNN models, the
features are extracted by NMF, while they are found by DAE
in the suggested nonlinear DAE-DNN models.

FIGURE 3. The proposed joint two-step mapping of NMF-DNN. The DNN
is first learned to map the noisy magnitude (or the noisy activation
coefficient) to the speech and noise activation coefficients as the
pre-training step, and then, to the main magnitude spectra.

- DAE: dimension reduction in DAE is obtained either
by reducing the number of hidden nodes or by imposing
a sparsity constraint in case of having a large number of
nodes [53]. Hence, the network is forced to learn a compact
representation of the input data in the bottleneck layer, and
thus, the structure of the data is discovered. In this work,
in addition to reducing the number of nodes, we also apply a
sparsity constraint to achieve more compact representations.
In DAEs, the first part acts as an ‘‘encoder’’ network that con-
verts the high-dimensional input data into a low-dimensional
encoded representation, and the second part is a ‘‘decoder’’
network that reconstructs an approximation of the input data
using the encoded representation.
- NMF: by applying the NMF method individually to

the magnitude spectra of the clean speech and noise, the
basis matrices Ws and Wn are captured. Then, in a joint
model, they are integrated into the DNN output part as an
extra layer which is a deterministic layer and there are no
connective weights to be trained. In a separate model, the
corresponding activation matrices are set as output features,
and the basis matrices are applied separately outside of the
DNN. We extend the use of NMF-based features in the DNN
network in both DNN input and output parts. For the input
part, unlike [43], due to considering any possible correlation
between speech and noise, Ws and Wn are not concatenated
as Wy. Instead, Wy is learned directly by performing NMF
on the magnitude spectrogram of the noisy speech. Then,
the corresponding activation matrix Hy is used as an input
feature. The DNN itself should map Hy to Hs and Hn(in the
implemented separate model or to S andN in the joint model)
in a nonlinear manner and separateHs(or S). We also propose
a two-step training in the complementary NMF and DNN
models. Thus, according to Fig. 3, we first directly map the
input features (noisy magnitude spectrum Y or Hy, based on
the input feature configuration) to the activation output layer
as a pre-training step (Hs,Hn). Then, we jointly map the input
to the main spectrum output layer (S, N).

B. COOPERATIVE DAE-DNN MODEL
A detailed view of the proposed cooperative DAE-DNN
model which is shown in Fig. 2 is composed of nonlinear
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feature extraction (shown by dashed lines), enhancement, and
reconstruction parts. It is represented as one box in Fig. 1.
In the feature extraction part, three DAEs are used for non-
linear dictionary learning of speech, noise, and noisy signals
and for extracting the structural encoded representations (fea-
tures). The noisy DAE is used when instead of the main noisy
spectrum, the encoded noisy feature is applied as the DNN
(called enhancer DNN) input feature for enhancement. The
DAE-based structure extraction is joined with the enhancer
DNN. The enhancer DNN utilizes the extracted patterns
found in speech and noise DAEs bottleneck representations
as its output targets and the related pre-trained decoder layers
as its extra reconstruction layers. The reconstruction part also
contains theWiener filtering layer which is deterministic with
no connection weights that needed to be trained. We only use
the output of this layer to calculate the error and train the
weights of the enhancer DNN. This is believed to lead to an
improved estimation of the speech/noise encoded representa-
tions and also the main spectral signals through the nonlinear
deep and hierarchical structure of the network. Therefore,
both feature extraction and enhancement are carried out in
a joint and nonlinear fashion which is considered as a point
of strength for this cooperative approach. In this model, both
speech and noise sources are estimated simultaneously by
using their spectral magnitudes or their encoded sparse fea-
tures as the DNN targets. Because of the complementarity of
different sources in the mixed-signal, modeling all sources
in one model can lead to the improvement of the separation
performance [25], [61].

It should be noted that the reason for using a simple DNN
in our proposed models is to provide a fair comparison with
the baseline complementary NMF-DNN models [39], [40],
[41], [43], and also due to the simple structure of the DNN
network. However, since our proposed approach is a funda-
mental idea based on suggesting an appropriate cooperative
model following the characteristics of speech and noise sig-
nals, and is independent of the individual DNN structure, the
same strategy could be used for more complicated networks
such as CNN, CRN, and LSTM to improve their results as
well in future. Nevertheless, the applicability of complex
networks is limited due to their more power consumption,
more complexity of their hardware, and latency. Thus, since
the novel fundamental idea proposed in our structure leads
to good improvement despite the simple DNN network and
outperforms similar strategies, we have focused on DNN in
this paper.

- The training and testing phases:

A detailed view of the proposed cooperative DAE-DNN
model is shown in Fig. 4. The model implementation consists
of training and testing phases. The proposed architecture in
this figure (top part) is trained individually for each noise
type. We have the same approach for different noises to
generate noise-specific dictionaries and joint models. Then,
in the testing phase, as shown in Fig. 4 (bottom part), based on
the decision block result, we will find the final results either

by selecting one of the learned DAE-DNN models for seen
noises or by using the suggested fusion strategy for unseen
noises. As shown in Fig. 4 (top part), for the training phase
of our joint two-step DAE-DNN model, we subsequently
perform the following stages:

Stage A: the speech, noise, and noisy DAEs are individ-
ually trained with the corresponding magnitude spectra. The
extracted encoded representations (Es,En,Ey) and the speech
and noise decoders will be used in the next stages B and C .

Stage B: the enhancer DNN is learned to map the main
noisy magnitude (Y) or the noisy encoded feature (Ey, the
output of the noisy encoder) to the extracted encoded features
of speech and noise (Es, En, layer J). Based on the proposed
step-wise training, the mapping of the joint model input to
the main output layer is performed in two steps: first to the
encoded output layer (circle 1, stage B) and then, to the main
output layer (circle 2, stage C).
Stage C: stages A and B are used as pre-training for

stage C (fine-tuning). The pre-trained enhancer DNN, the
decoders, and also the Wiener-type filtering layer are inte-
grated and form a unified framework called the joint DAE-
DNN model. The decoders and the Wiener filtering layers,
as the reconstruction layers, follow the primary output layer
(or the encoded output layer) of the enhancer DNN to directly
estimate themagnitudes of themain signals. Therefore, in this
stage, the joint DAE-DNN model is trained (fine-tuned) with
a new objective and cost function (circle 2). This means that
the pre-trained decoder layers of speech and noise are used
as initializations for the reconstruction layers of the enhancer
DNN. These are updated along with the enhancer DNN lay-
ers during the joint learning (circle 2) to extract the main
spectral speech and noise signals from the noisy features.
Hence, in step 2 (circle 2), the integrated pre-trained parts
(the decoders (stage A) and the trained enhancer DNN with
the objective encoded features (circle 1, stage B)) continue to
learn and incrementally adapt to the actual speech and noise
targets. In the end, the final learned model and parameters
are kept fixed for the testing phase. Besides these stages,
a classifier DNN is also trained with the noisy mixtures to
classify three training noise types. The models’ configuration
and setup parameters are given in the experiments Section.

In the testing phase, shown in the lower part of Fig. 4,
firstly, the learned classifier DNN is used to predict the simi-
larity percentages of a test noisy mixture magnitude (Ytest )
to the N training noise types for each frame, which are
averaged as the classification rates of that mixture. Then,
similar to Fig. 1, in the decision block, the seen/unseen noise
category is detected. This is performed in such a way that
if one of the predicted classification rates is greater than a
high threshold (set to 0.9), that noisy mixture is considered
as a seen mixture, and only the related detected model is
used for enhancement. However, for unseen noises, we apply
a fusion strategy to obtain the final result by weighted
averaging the outputs of the N -learned DAE-DNN models
(which are related to the different training noise types i with
the total number N ). In other words, for an input noisy
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FIGURE 4. The training and testing phases of the detailed DAE-DNN architecture. In the training phase (top part), stages A, B, and C are
performed in order so that the extracted encoded features of stage A are used in stage B, and then, the learned models of both stages A
and B are used as pre-training for stage C. Stage C is our fine-tuned (updated) joint model. Circles 1 and 2 indicate the two-step mapping.
This whole architecture is trained for each noise type (as one model box in Fig. 1), and the same approach is repeated for different noise
types. In the testing phase (bottom part), after the detection of noise type in the decision block, either one (for seen noises) or a
combination (for unseen noises) of the learned DAE-DNN models (the final model of stage C) via the suggested fusion strategy is used for
enhancement.

speech, the outputs of different noise-specific models are
weighted by the related predicted classification rates and
are linearly combined as an estimate of the clean speech
magnitude.

Then, in each learned DAE-DNN model (DAE-DNN
Modeli), in the input-related methods, the noisy encoded
feature (Êy) is first estimated from the spectral magnitude
of the observed noisy speech (Ytest ). This is carried out by
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using the encoder portion of the trained noisy DAE as the
input to the enhancer DNN. Otherwise, the noisy magnitude
spectrum Ytest is used as the main input. The DAE-DNN
Modeli is the final learned joint model for each noise type i
(stage C in the training phase). It is composed of the updated
trained enhancer DNN and its extra integrated decoder and
filtering layers. It is used to estimate the encoded features
at the encoded output layer as well as the objective speech
and noise magnitudes at the main output layer from the main
noisy magnitude (or from the noisy encoded feature, based
on the different configurations of the input feature). Finally,
the time waveform is obtained by using the ISTFT and the
noisy phase. In the unjointed model (separate model), the
speech and noise encoded features are only estimated by
the enhancer DNN of stage B. Then, the main signals are
separately approximated outside of the network by using the
fixed pre-trained decoders of stage A and Wiener filtering.

The mapping functions of the noisy DAE (f ) and the
enhancer DNN (g) in the case of the encoded features map-
ping are as below:

hi = f (hi−1) = σ (Wihi−1 + bi) 1 ≤ i ≤ I ,

h0 = Y,hI = Ŷ = fDEC(fENC (Y)) = fDEC(Ey) (4)

Xj = g
(
Xj−1

)
= σ

(
W∗

j Xj−1 + b∗
j

)
1 ≤ j ≤ J ,

X0 = Ey,XJ =
[
ÊsÊn

]
(5)

where Wi, bi and W∗
j , b

∗
j are the weights and biases of the

DAE and DNN networks, respectively. The spectral magni-
tudes Y and Ŷ are the input and output of the noisy DAE,
respectively. They can be replaced by S and Ŝ, or N and
N̂, for the clean and noise DAEs, respectively. Ey represents
the bottleneck feature (encoded representation) of the noisy
DAE. The noisy decoder is discarded once the noisy DAE
is trained. Ês and Ên represent the enhancer DNN-estimated
encoded features of speech and noise, respectively. fENC and
fDEC are the mapping functions of the encoder and decoder
parts of DAEs, respectively. σ (·) is the nonlinear activation
function, i and j are the layers indices of DAEs and DNN,
and I and J are their total number of layers, respectively.
DAEs and DNN are trained and the parameters of the

networks, e.g., Wi, bi, W∗
j , and b∗

j , are computed by using
the back-propagation algorithm and a mean-squared error
(MSE)-based cost function to increase the similarity and
minimize the distance between the predicted output and the
corresponding target. The sparsity constraint is applied to the
DAEs’ hidden layers and added to the cost function as:

LCost (DAE_s) =
∥∥S − Ŝ

∥∥2
2 + ∥Es∥1 (6)

where || · ||1 denotes the l1-norm as an approximation of
l0-norm which is NP-hard. Here LCost (DAE_s) refers to the
speech DAE cost function. By dividing the estimated output
of the encoded output layer of the enhancer DNN into two
parts for speech and noise, and applying the related decoders,
the speech and noise are estimated as follows:

Ŝ = DECs(Ês), N̂ = DECn(Ên) (7)

Then we have:

Y ≃ Ŝ + N̂ = DECs(Ês) + DECn(Ên) (8)

After making a Wiener-type filter from Ŝ and N̂ similar to
the IRM and applying it to the noisy magnitude spectrum,
we obtain the final estimations of the speech and noise mag-
nitudes as below:

S̃ =
Ŝ2

Ŝ2 + N̂2
⊗ Y

Ñ =
N̂2

Ŝ2 + N̂2
⊗ Y (9)

where the division and multiplication operators are
element-wise.

- Different input-to-output mappings
In this paper, we call joint one-step and two-step methods as
J1 and J2, respectively. EN and DE indicate the encoder and
decoder, respectively. In DNN-DE-Sep, the enhancer DNN
explicitly maps the noisy spectral magnitude to the speech
and noise-encoded features (Y → EsEn). Then, the speech
and noise signals are manually reconstructed by using the
corresponding fixed trained decoders outside of the DNN
(enhancer DNN). Finally, the Wiener-type gains in (9) cal-
culated from the reconstructed speech and noise are applied
to smooth the results. In DNN-DE-J1, the DNN, decoders,
and Wiener-type filters are realized as a joint model, while
the effect of DAE-encoded features is implicit. This means
that the encoded features are not directly used as the DNN
targets and the output of the DNN encoded output layer can
be considered as the encoded variables estimates, and the
main target signals are directly reconstructed by the DNN in
one step through the integrated decoders (Y →SN). In DNN-
DE-J2, we perform mapping the noisy speech to the clean
and noise spectral magnitudes in two steps: first explicitly
mapping the input to the encoded features (Y → EsEn), and
then mapping the input to the main targets (Y →SN). The
first step acts as a pre-training for the second step.
EN-DNN-DE-Sep, EN-DNN-DE-J1, and EN-DNN-DE-J2

approaches are the same as before, but just instead of the
noisy spectral magnitude, the encoded representation of the
noisy DAE is used as the DNN input feature. In EN-DNN-
DE-Sep, the DNN maps the noisy encoded feature to the
clean and noise-encoded features (Ey → EsEn), and like
the equivalent output-related method, the reconstruction of
the main speech and noise signals is performed manually
by using the corresponding decoders. In EN-DNN-DE-J1,
the DNN directly maps the noisy encoded features to the
clean and noise spectral magnitudes in one step (Ey →SN)
whereas, in EN-DNN-DE-J2, it is done gradually in two
steps (Ey → EsEn, Ey →SN). To investigate the effect
of the DNN input and output features, in three methods of
DNN-DE-Sep, DNN-DE-J1, and DNN-DE-J2, we evaluate
the output features. In three methods of EN-DNN-DE-Sep,
EN-DNN-DE-J1, and EN-DNN-DE-J2, the input feature is
also evaluated. All the above six DAE-based methods are
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FIGURE 5. Different input-output mappings of the enhancer DNN in the
proposed model. E characters are the DAEs encoded features.

compared with their linear NMF counterparts, namely DNN-
NMF-Sep, DNN-NMF-J1, DNN-NMF-J2 (related to out-
put part), and NMF-DNN-NMF-Sep, NMF-DNN-NMF-J1,
NMF-DNN-NMF-J2 (related to input part)), resulting in
12 implementedmethods. The overall schematic of the differ-
ent mapping configurations (Sep, J1, and J2) of the enhancer
DNN input-output is shown in Fig. 5. In methods with the
‘‘Sep’’ label, the spectral reconstruction part is performed
separately outside of the network compared to other methods
in which it is integrated and jointly optimized.

The DNN-NMF-Sep, DNN-NMF-J1, and NMF-DNN-
NMF-Sep-J1 methods are the same as the main ideas
of [39], [41], and [43], respectively, but with our setup param-
eters and dataset. The other eight mentioned methods are the
proposed ones. In DNN-NMF-Sep [39] as described earlier
in Section I, the NMF activation coefficients of speech and
noise are estimated by the DNN from the noisy magnitude.
Then, in a separate process outside of the DNN, the main
spectral signals are approximated by the linear product of
the estimated coefficients with the pre-learned NMF basis
matrices. In DNN-NMF-J1 [41], which is the joint model
of [39], the NMF basis matrices and a Wiener-type filtering
layer are integrated into the DNN to reconstruct the objective
signals. However, in this method, the structural activation
features are not directly applied as DNN targets and cannot
directly participate in the learning process. The NMF-DNN-
NMF-Sep [43] is also similar to [39], but with the input of
the noisy activation coefficient instead of the noisymagnitude
spectrum.

V. EXPERIMENTS
For evaluation of the proposed and baseline methods,
we compare the performances of the proposed DAE-DNN
approaches with their equivalent linear NMF-DNN methods
[39], [41], [43] in speech enhancement. Furthermore, the
baseline NMF [60], DNN [25], LSTM with the IRM target
(LSTM-Mask) [15], [16], CRN with the spectral magnitude
target (CRN-Mag) [17], RVAE-VEM [22] and SN-Net [23]
approaches are considered for comparisons. In the baseline
DNN method [25] and CRN-Mag [17], the mixed-signal
is directly mapped to the objective signals. While, in the
LSTM-Mask method, it is mapped to the IRM mask values
which are multiplied by the mixed-signal to estimate the

objective signals. We first implement [39] and [41], which
are the separate and joint complementary models of NMF-
DNN, respectively (DNN-NMF-Sep, DNN-NMF-J1) where
the noisy magnitude spectrum is the input feature. Also sim-
ilar to [43], we implement ‘‘NMF-DNN-NMF-Sep, NMF-
DNN-NMF-J1’’ in which the NMF activation coefficients are
used as the input features. Then, our proposed joint two-step
training is performed by setting the NMF activation coeffi-
cients as primary targets, as well as the main speech and noise
signals as secondary targets (DNN-NMF-J2 or NMF-DNN-
NMF-J2, as shown in Fig. 3).
Moreover, in addition to the two-step process, for

comparison purposes, a multi-target one-step approach is
implemented in the DAE-DNN model in which the two
losses (MSEs) for the actual targets and the intermedi-
ate encoded features are combined (DNN-DE-J1-combined
loss).

A. DATASET AND SETUP PARAMETERS
The TIMIT corpus [62], containing 630 different speakers is
used as the speech dataset and the NOISEX-92 corpus [63],
including 15 common noise types of quasi-and non-stationary
noises, as well as the Freesound data [64] are used as noise
datasets. Our training set is formed by randomly selecting
200 clean speech utterances from the TIMIT training sector
and randomly adding babble, factory, andmachinegun noises
from the NOISEX-92 at SNRs from −5 to 20 dB with steps
of 5 dB, resulting in 3600 (200 signals×3 noises×6 SNRs)
noisy speech and pairs of speech and noise utterances in the
training set. The same training set with a 10% validation
split is used for evaluating all the proposed and comparison
methods. We also conducted the experiments with six types
of training noises (babble, factory, machinegun, buccaneer2,
leopard, destroyerengine), but the results did not improve
over using only three types despite using more noise types.
This could improve our claim about the good generalization
of our proposed approach due to its cooperative and fusion
strategy. However, using a very large number of various types
of noises might eventually help improve this generalization
since that would lead to a weak unseen condition. In fact,
most properties of the noises would have naturally been
seen in the training phase in this condition. Thus, we have
not focused our paper on this case. We have formed the
testing set by randomly choosing 60 clean speech utterances
from the TIMIT testing sector. Then, we added the noises
of the training set as seen noises, and also the real-world
recorded factorymachine and windshieldrain noises from the
Freesound data at SNRs of -5 to 10 dB as unseen noises not
seen during the training phase. We added noise at different
SNRs following the procedure in [65]. N in Fig. 4 is 3 due to
our three training noise types.

For setting the speech and noise encoded features as DNN
output labels (targets) and matching the speech and noise
frame numbers, the clean speech utterance is repeated to
match with the noise and noisy frame numbers.
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The magnitude spectra are extracted by applying 512-point
STFT to the waveforms sampled at 16kHz and framed with
512-point (32-ms) frame length. The frames are generated
by applying a 512-point (32ms) Hamming window and using
a 128-point (8ms) shift size. By cutting off the symmetrical
parts of the STFT coefficients, the dimension of the magni-
tude spectra is 257× number of time-frames.

B. CONFIGURATIONS
- NMF configurations

The NMF speech and noise basis numbers are empirically
set to be 100. Then, according to the magnitude spectra
dimensions, the size of the speech and noise basis matrices
is 257×100 (frequency bins×basis number). The maximum
number of NMF iterations is set at 50. We acquire the gen-
eral Wn for all training noises by applying the NMF to the
concatenated spectral magnitudes of different noises.

- Networks configurations

The enhancer DNN is composed of four hidden layers with
1024 neurons, and Leaky rectified linear units (LReLU) [66]
with α =0.1 (f (x) = max(αx, x)) as the activation function
of the hidden layers to overcome the ‘‘dying ReLu‘‘ problem.
The activation function of the output layer is linear for the
main spectral targets. For the output encoded targets (pre-
training step), ReLU (f (x) = max(0, x)) is used as the
activation function due to the nonnegativity of the activation
coefficients.

The classifier DNN contains two hidden layers of
1024 neurons with ReLU functions and one output layer
of 3 neurons with the softmax activation function for the
classification of three noise types. The softmax output is a
probability distribution in the range of [0,1] with a total sum
of 1 which is usually used for a multi-classification problem.
The batch normalization is applied to hidden layers for faster
training convergence.

The LSTM-Mask model includes two LSTM layers and a
fully connected (FC) layer having 1024 neurons with LReLU
activations, and a fully connected output layer with 257 units
for mask estimation.

The DAE bottleneck layer node number is empirically
set to 100 based on the NMF rank. The size of the clean
and noisy DAEs is 257-1024-512-100-512-1024-257 and the
noise DAE is 257-512-512-100-512-512-257. The activation
functions of the DAE layers are similar to the enhancer DNN,
and the sparsity constraints are also applied to the hidden
layers. The encoded layer and the main output layer of the
enhancer DNN have 100×2 = 200 and 257×2=514 nodes,
respectively. The DAEs, enhancer DNN, and LSTM use the
MSE, and the classifier DNN uses the cross-entropy loss
function. Also, they are trained by the Adam optimizer [67]
with an initial learning rate of 0.001 and a maximum epoch
of 100. In the two-step processing, the number of epochs for
each step is 100. Also, the early stopping based on the mini-
mum validation loss is used in all models to avoid overfitting.

TABLE 1. Results of noise classification.

The structure and the parameters of CRN, RVAE-VEM,
and SN-Net are set in the same way as in [17], [22], and [23],
respectively, except for the dataset and the maximum number
of epochs, which is set to 100 according to our settings.
However, for a fair comparison, in the implementation of
the SN-Net [23], we omit the merging module and the phase
spectrum as additional input since we only use the magnitude
spectrum in our methods. The merging module which is used
in [23] as a final module combines the outputs of the speech
and noise branches in the time domain. Since it is not used in
any of the methods in this paper, and could also be applied in
all of them, we do not apply it here for a fair comparison. The
CRN model [17] is composed of CNN encoder-decoder and
LSTM layers.

C. EVALUATION METRICS
Three objective metrics of perceptual evaluation of speech
quality (PESQ) [68], short-time objective intelligibility
(STOI) [69], and frequency-weighted segmental SNR
(SNRfw) [70], [71] are used for the enhancement performance
evaluation. PESQ reflects speech quality [68], whereas the
STOI metric indicates speech intelligibility. The range of
the PESQ score is [-0.5, 4.5] and is calculated by com-
paring the enhanced speech with the corresponding clean
speech. The STOI score is in the range of [0, 1] and measures
the correlation of the enhanced and clean speech short-time
temporal envelopes. The higher values of PESQ and STOI
show better quality and intelligibility, respectively. SNRfw is
computed using a weighting function based on a dynamic
frequency weighted signal-to-noise ratio and measures a gen-
eralized short-time performance. The metrics improvement
is also computed which is the difference between the metric
score of the enhanced and clean speech with the score of
the noisy and clean speech (such as gPESQ = PESQ(s̃, s) -
PESQ(y, s)).

D. EXPERIMENTAL RESULTS
The results are presented in the seen and unseen noise con-
ditions on the testing set. Firstly, the accuracy results of the
classifier DNN for the classification of three noises are illus-
trated in Table 1. It indicates that the accuracy is sufficient for
noise classification. The unseen factorymachine and wind-
shieldrain noises have been detected by the classifier DNN
with the approximate classification rates of (0.64, 0.22, 0.14)
and (0.80, 0.18, 0.02), respectively. Therefore, the above rates
have been used to weigh the outputs of the models related to
the three classes in speech enhancement.
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TABLE 2. The average results of previous and proposed methods over different seen noise types and input SNRs.

FIGURE 6. The average improvement (gain) of the PESQ score for various
previous and proposed methods at different input SNRs.

The models related to the DNN output part are DNN-
NMF-Sep [39], DNN-NMF-J1 [41], DNN-NMF-J2 (related
to the NMF coefficients) and DNN-DE-Sep, DNN-DE-J1,
DNN-DE-J2 (related to the DAE-encoded features). Those
also related to the input part are NMF-DNN-NMF-Sep, NMF-
DNN-NMF-J1 [43],NMF-DNN-NMF-J2 (related to the NMF
coefficients), and EN-DNN-DE-Sep, EN-DNN-DE-J1, EN-
DNN-DE-J2 (related to the DAE-encoded features). The
overall performance of the various proposed and baseline
methods in the form of the average metrics results over dif-
ferent seen noise types and input SNRs are given in Table 2.
Bold scores indicate the method with the best result. The
previous and the proposed methods are also distinguished in
Table 2. It should be noted that all noise types are unseen for
RVAE-VEM [22] method as it does not consider the noise
information in the training phase. Nevertheless, we show its
average results for our three seen noises in Table 2 only for
comparison.

To provide a better comparison, the average improvements
of the PESQ score (gPESQ) over various seen noise types
are reported in Fig. 6 at different input SNRs and for the
output-related methods and also LSTM-Mask as an example.

Also, the average results of the multi-target/combined
loss approach in the DAE-DNN model (DNN-DE-J1-
combinedloss) on seen noises are shown in Table 3 in

TABLE 3. The average results of the multi-target/combined loss approach
and the proposed one and two-step DAE-DNN methods.

comparison with the proposed one and two-step approaches.
Its configuration is the same as DNN-DE-J1. As expected,
since the types of the two targets (the actual signal and
the encoded feature) are different, simultaneously predicting
them and updating the model weights based on a combined
two-loss function is subject to error. Therefore, it shows
no better performance than the proposed two-step approach
which is step-wise learning based on the respective target
and loss function at each step. Also, as shown in Table 3,
the proposed one-step approach (DNN-DE-J1) outperforms
‘‘DNN-DE-J1-combinedloss’’. We believe that directly esti-
mating only one type of target which is based on one type of
loss function in the non-combined case (DNN-DE-J1), could
be the reason for this result.

For evaluation of the generalization abilities in unseen
noise conditions, the average results of various methods over
different unseen noise types and input SNRs are shown in
Table 4. Bold scores indicate the method with the best result.

To investigate the performance of speech enhancement in
more types of unseen noises and draw better conclusions, the
average PESQ results of two other unseen noises, restaurant,
and street, from the Aurora-2 database [65] over different
input SNRs are reported in Fig. 7 for our proposed DNN-
DE-J2 and EN-DNN-DE-J2 methods as well as the baseline
LSTM-Mask method [15], [16]. The classification rates of
these new unseen noises are estimated at about (0.11, 0.71,
0.18) and (0.18, 0.28, 0.54), respectively by the classifier
DNN.

Also, to compare the properties of different seen and
unseen noises, the spectrograms of two of the seen and unseen
noises are shown in Fig. 8 as examples, and the spectrograms
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TABLE 4. The average results OF previous and proposed methods over different unseen noise types and input SNRs.

FIGURE 7. The average PESQ results of restaurant and street unseen
noises over different input SNRs.

FIGURE 8. The spectrograms of seen machinegun and unseen
factorymachine noises.

of other used noises are given in Appendix. As could be
observed, they have different properties and structures.

E. DISCUSSION
As can be seen in Table 2, the proposed DAE-DNNmodels in
the output category (row numbers 10, 11, and 12) outperform
their equivalent NMF-DNN models (row numbers 7, 8, and
9, respectively), and also the baseline NMF [60], DNN [25],
LSTM-Mask [15], [16], CRN-Mag [17], RVAE-VEM [22],
and SN-Net [23] methods. This is also observed for the input
category methods; i.e., row numbers 16, 17, and 18 from 13,
14, and 15, respectively. This demonstrates the power of the
prior knowledge extracted by DAEs compared to NMF, and
also better learning of DNN in more structured features. The
proposed DAE-based feature extraction has more capacity
for learning and extracting the structural patterns compared
to NMF-based methods because of the deep and nonlinear

structure. Besides, in NMF-DNNmodels, the nonlinear DNN
is forced to act as a linear NMF decomposition and map
the mixture into the linear activation coefficients; whereas in
our DAE-DNN models, DNN performs similar to an encoder
network and estimates the objective encoded features from
the mixture in a nonlinear strategy. According to Table 2,
each approach also shows a rather high PESQ improvement
and some improvements in terms of STOI and SNRfw com-
pared to the related previous one in each colored section
(light-colored are related to the NMF-based methods and
dark-colored are related to the DAE-based methods), and
also baselines. In other words, within the NMF or DAE-
based models, whether in the output or input/output category,
the ‘‘joint-optimized-two-step (J2)’’ models (rows 12, 18)
outperform the ‘‘joint-optimized-one step (J1)’’ models (rows
11, 17, respectively), and subsequently, the ‘‘one-step’’ from
the ‘‘separate reconstruction (Sep)’’ as primary models (rows
10, 16, respectively).

As also shown in Fig. 6, the gPESQ values of our DAE-
DNN models (No. 10, 11, 12) are higher than the equivalent
NMF-DNN models (No. 7, 8, 9, respectively) and also the
LSTM-Mask method (No. 3). This can be attributed to the
joint effects of the nonlinear feature extraction by DAEs
and nonlinear enhancement by DNN, i.e., better extraction
of structures by the DAEs compared to the NMF and better
learning and enhancement by the DNN with the cooperation
of the extracted structural features. However, in some cases,
the improvement results of the STOI and SNRfw scores are
slightly different. Also, according to Table 2, the performance
of each method in the input/output category compared to its
equivalent in the output one shows that using the encoded
features as input features in addition to output ones does not
provide much performance improvement. This could be due
to the separate use of the encoder in the DNN input, i.e., in the
form of two consecutive models.

According to Table 4, in the unseen conditions, not surpris-
ingly, the overall performances of all methods decrease com-
pared to the seen conditions. However, we have a relatively
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FIGURE 9. Top: The magnitude spectra of the noisy speech with factory
noise at -5dB SNR (left) and the clean speech (right); Bottom: the
enhanced speech by LSTM-Mask (left) and by DNN-DE-J2 (right).

growing trend in the performance of each method compared
to the related previous one in most cases. The DAE-based
methods present more improvement compared to the corre-
sponding NMF-based ones and within them, in most cases,
‘‘two-steps (J2)’’ produce the best results. Suggesting the
fusion strategy in the unseen conditions is another reason
for improving the generalization of the proposed methods in
these cases although a limited number of noises have been
used in the training phase. Also, Fig. 7 demonstrates that the
trend of the results for other unseen noises is similar to those
in Table 4, and thus, shows the effectiveness of the suggested
classifier-fusion strategy. Fig. 8, which shows spectrograms
of a seen and an unseen noise, proves the claim that the
properties of the selected unseen noises are different enough
to generalize the results of the proposed fusion approach.
In fact, the main point is that these unseen noises have various
time-frequency properties much different from seen ones, and
when the proposed methods work on these randomly selected
non-stationary noises, they could work on other ones too.

Finally, the magnitude spectra of the enhanced speech by
the proposed two-step DAE-DNNmethod (DNN-DE-J2) and
LSTM-Mask are shown in Fig. 9, as examples. As it clearly
shows, DNN-DE-J2 preserves more speech structures (har-
monics) and can eliminate more noise components compared
to LSTM-Mask. This is mainly due to the power of DAE in
structure extraction and its hierarchical joint integration with
DNN.

In summary, some of themain reasons for the superiority of
the proposed methods over the compared methods in addition
to using the NCF approach and noise-specific models, are as
follows:

- Compared to NMF [60], DNN [25], LSTM-Mask
[15], [16], and CRN-Mag [17], we use a joint coopera-
tive model of DAEs for structure extraction and DNN for
enhancement. In DNN [25], LSTM-Mask [15], [16], CRN-
Mag [17], RVAE-VEM [22], and SN-Net [23], the tradi-
tional spectral features are used and the sparsity and the

intrinsic structures of the signal are not considered in the
learning process. However, in our methods, such features and
nonlinear dictionaries as the signal harmonic structures are
extracted in a pre-training stage and incorporated into the
network architecture and also as structural features in another
training stage. Moreover, in our two-step approach, map-
ping of the input to output features is hierarchical such that
learning the structural encoded features is performed first.
Then, in the second step of training (fine-tuning), the learned
network, along with its integrated structural reconstruction
layers, is re-trained with new objectives to learn the actual
separation signals.

- Compared with RVAE-VEM [22], we use a deep gen-
erative noise model instead of a linear NMF noise model.
Also, unlike [22], which is an on-the-fly enhancement, our
work is a supervised approach. It means that in [22], the
noise information is not considered in the training phase,
and the estimation of the noise model parameters in different
noise conditions is only carried out on the fly at the test
time from the observed noisy speech. This is a difficult task
in the absence of any observation of the noise properties in
advance, due to the variational properties of different noises.
By contrast, in our model, characteristics of some noises,
which may also be shared among different noises, are seen
in the training phase. It should also be noted that the concept
of fine-tuning in [22] is different from our work, in that it is
applied in the testing phase such that the parameters of the
clean encoder are fine-tuned with the test noisy speech, and
the enhancement is performed via theVEMalgorithm.While,
it means retraining (refitting) the pre-trained parts with the
training noisy data and the new training targets in the last
hierarchy in our work.

- In [23], unlike our approach, the whole architecture is
trained once with the noisy signal. Hence, it makes the train-
ing and mapping difficult, and the structures of speech and
noise decoders cannot be extracted well. This may be the
reason for the lower enhancement results obtained from the
implementation of this method, especially under our limited
data. Also, [23] does not involve a noisy encoder so that the
noisy encoded feature can be obtained first, and then, the
speech and noise encoded features can be extracted from it
in the following layers of the model. In a way, in the two
encoders in [23], an effort is made to separately extract the
speech and noise encoded features from the noisy signal at
once.

- Compared with DNN-NMF-Sep/J1 [39], [41] or NMF-
DNN-NMF-Sep [43], we use the nonlinear equivalent of
NMF by DAE (DNN-DE-Sep or EN-DNN-DE-Sep), one-
step joint learning (DNN-DE-J1 or EN-DNN-DE-J1) and
also two-step mapping (DNN-DE-J2 or EN-DNN-DE-J2) in
which the encoded structural features implicitly affect learn-
ing by directly applying them as the primary targets of the
DNN; while the main signals are also jointly optimized as
the secondary ones. The two-stepmapping in the complemen-
tary DNN-NMF models is also performed (DNN-NMF-J2 or
NMF-DNN-NMF-J2).
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VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed jointly-optimized cooperative
DAE-DNN models for speech enhancement to jointly take
advantage of DNN and DAE’s capabilities. DAEs are used
for nonlinear feature extraction and dictionary learning of
noise, clean, and noisy speech signals. Then, to exploit the
structural patterns of signals in the separation, the learned
nonlinear dictionaries (decoders) of speech and noise are
integrated into the DNN as extra layers. Also in some cases,
the extracted encoded features are fed to the DNN as input
(the noisy encoded feature) and target output (the clean and
noise encoded features) to make use of their nonlinear map-
ping also useful for enhancement. Furthermore, the DNN
mapping for converting the noisy signal into speech and
noise signals is performed in three categories named ‘‘Sepa-
rate (Sep)’’, ‘‘Joint-one-step (J1)’’ and ‘‘Joint-two-step (J2)’’.
The ‘‘J2’’ methods show the best performance due to their
original mapping to the encoded features, as a pre-training
step, and the final mapping to the main targets, as a fine-
tuning step. Also, we proposed the use of DNN-based noise
classification and fusion strategy which led to deploying the
proper noise-specific models and improved the generaliza-
tion in the noise reduction process. According to the exper-
imental results, our proposed models gave a considerable
improvement in speech separation and outperformed the con-
ventional methods as well as the complementary NMF and
DNNmodels, CRN, and LSTM-based enhancement in earlier
studies.

For future works, we propose further extensions of the
DAEs and enhancer DNN models to such more powerful
networks as CNNs and LSTM.

APPENDIX

FIGURE 10. The spectrograms of all seen (left) and unseen noises (right).

REFERENCES
[1] S. Boll, ‘‘Suppression of acoustic noise in speech using spectral subtrac-

tion,’’ IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-27, no. 2,
pp. 113–120, Apr. 1979.

[2] P. Scalart and J. V. Filho, ‘‘Speech enhancement based on a priori signal
to noise estimation,’’ in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. Conf., May 1996, pp. 629–632.

[3] P. Loizou, Speech Enhancement: Theory and Practice, 2nd ed. Boca Raton,
FL, USA: CRC Press, 2013.

[4] V. Grancharov, J. Samuelsson, and B. Kleijn, ‘‘On causal algorithms for
speech enhancement,’’ IEEE Trans. Audio, Speech, Language Process.,
vol. 14, no. 3, pp. 764–773, May 2006.

[5] Y. Ephraim and D. Malah, ‘‘Speech enhancement using a minimum-mean
square error short-time spectral amplitude estimator,’’ IEEE Trans. Acoust.
Speech Signal Process., vol. ASSP-32, no. 6, pp. 1109–1122, Dec. 1984.

[6] N. Mohammadiha, P. Smaragdis, and A. Leijon, ‘‘Supervised and unsuper-
vised speech enhancement using nonnegative matrix factorization,’’ IEEE
Trans. Audio, Speech, Language Process., vol. 21, no. 10, pp. 2140–2151,
Oct. 2013.

[7] K. W. Wilson, B. Raj, P. Smaragdis, and A. Divakaran, ‘‘Speech denoising
using nonnegative matrix factorization with priors,’’ in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., Mar. 2008, pp. 4029–4032.

[8] D. D. Lee and S. H. Seung, ‘‘Algorithms for non-negative matrix factoriza-
tion,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 13, no. 2000, Jan. 2000,
pp. 556–562.

[9] C. D. Sigg, T. Dikk, and J. M. Buhmann, ‘‘Speech enhancement using
generative dictionary learning,’’ IEEE Trans. Audio, Speech, Language
Process., vol. 20, no. 6, pp. 1698–1712, Aug. 2012.

[10] Y. He, G. Sun, and J. Han, ‘‘Optimization of learned dictionary for sparse
coding in speech processing,’’ Neurocomputing, vol. 173, pp. 471–482,
Jan. 2016.

[11] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, ‘‘An experimental study on speech
enhancement based on deep neural networks,’’ IEEE Signal Process. Lett.,
vol. 21, no. 1, pp. 65–68, Jan. 2014.

[12] Y. Wang, ‘‘Supervised speech separation using deep neural networks,’’
Ph.D. dissertation, Dept. Comput. Sci. Eng., Ohio State Univ., Columbus,
OH, USA, 2015.

[13] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, ‘‘Speech enhancement based
on deep denoising autoencoder,’’ in Proc. Interspeech, Aug. 2013,
pp. 436–440.

[14] S.-S. Wang, H.-T. Hwang, Y.-H. Lai, Y. Tsao, X. Lu, H.-M. Wang, and
B. Su, ‘‘Improving denoising auto-encoder based speech enhancement
with the speech parameter generation algorithm,’’ in Proc. Asia–Pacific
Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA), Dec. 2015,
pp. 365–369.

[15] M. Strake, B. Defraene, K. Fluyt, W. Tirry, and T. Fingscheidt, ‘‘Speech
enhancement by LSTM-based noise suppression followed by CNN-based
speech restoration,’’ EURASIP J. Adv. Signal Process., vol. 2020, no. 1,
pp. 1–26, Dec. 2020.

[16] J. Chen andD.Wang, ‘‘Long short-termmemory for speaker generalization
in supervised speech separation,’’ J. Acoust. Soc. Amer., vol. 141, no. 6,
p. 4705, Jun. 2017.

[17] K. Tan and D. Wang, ‘‘A convolutional recurrent neural network
for real-time speech enhancement,’’ in Proc. Interspeech, Sep. 2018,
pp. 3229–3233.

[18] K. Tan and D. Wang, ‘‘Complex spectral mapping with a convolu-
tional recurrent network for monaural speech enhancement,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019,
pp. 6865–6869.

[19] Y. Wang and D. Wang, ‘‘A deep neural network for time-domain signal
reconstruction,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Apr. 2015, pp. 4390–4394.

[20] N. L. Westhausen and B. T. Meyer, ‘‘Dual-signal transformation LSTM
network for real-time noise suppression,’’ in Proc. Interspeech, Oct. 2020,
pp. 2477–2481.

[21] S. Routray and Q. Mao, ‘‘Phase sensitive masking-based single channel
speech enhancement using conditional generative adversarial network,’’
Comput. Speech Lang., vol. 71, Jan. 2022, Art. no. 101270.

[22] S. Leglaive, X. Alameda-Pineda, L. Girin, and R. Horaud, ‘‘A recurrent
variational autoencoder for speech enhancement,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2020, pp. 371–375.

VOLUME 11, 2023 21683



M. Pashaian et al.: Novel Jointly Optimized Cooperative DAE-DNN Approach

[23] C. Zheng, X. Peng, Y. Zhang, S. Srinivasan, and Y. Lu, ‘‘Interactive speech
and noise modeling for speech enhancement,’’ in Proc. 35th AAAI Conf.
Artif. Intell., 2021, pp. 14549–14557.

[24] Z. Kong, W. Ping, A. Dantrey, and B. Catanzaro, ‘‘Speech denoising in the
waveform domain with self-attention,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2022, pp. 7867–7871.

[25] P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis, ‘‘Deep
learning for monaural speech separation,’’ inProc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2014, pp. 1562–1566.

[26] E. M. Grais, M. U. Sen, and H. Erdogan, ‘‘Deep neural networks for
single channel source separation,’’ inProc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2014, pp. 3734–3738.

[27] A. Narayanan andD.Wang, ‘‘Ideal ratio mask estimation using deep neural
networks for robust speech recognition,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., May 2013, pp. 7092–7096.

[28] D. S. Williamson and D. Wang, ‘‘Time-frequency masking in the com-
plex domain for speech dereverberation and denoising,’’ IEEE/ACM
Trans. Audio, Speech, Language Process., vol. 25, no. 7, pp. 1492–1501,
Jul. 2017.

[29] J. Chen, Z. Wang, D. Tuo, Z. Wu, S. Kang, and H. Meng, ‘‘FullSub-
Net+: Channel attention fullsubnet with complex spectrograms for speech
enhancement,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2022, pp. 7857–7861.

[30] D. S. Williamson, Y. Wang, and D. Wang, ‘‘Complex ratio masking for
monaural speech separation,’’ IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 24, no. 3, pp. 483–492, Mar. 2016.

[31] D. S. Williamson, Y. Wang, and D. Wang, ‘‘Complex ratio masking for
joint enhancement of magnitude and phase,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Mar. 2016, pp. 5220–5224.

[32] Y. Wang, A. Narayanan, and D. Wang, ‘‘On training targets for supervised
speech separation,’’ IEEE/ACM Trans. Audio, Speech, Language Process.,
vol. 22, no. 12, pp. 1849–1858, Dec. 2014.

[33] N. Saleem,M. I. Khattak,M. Al-Hasan, andA. B. Qazi, ‘‘On learning spec-
tral masking for single channel speech enhancement using feedforward
and recurrent neural networks,’’ IEEE Access, vol. 8, pp. 160581–160595,
2020.

[34] S. Abdullah, M. Zamani, and A. Demosthenous, ‘‘Towards more efficient
DNN-based speech enhancement using quantized correlationmask,’’ IEEE
Access, vol. 9, pp. 24350–24362, 2021.

[35] D. Sowjanya, S. Sivapatham, D. A. Kar, and V. Mladenovic, ‘‘Mask esti-
mation using phase information and inter-channel correlation for speech
enhancement,’’Circuits, Syst. Signal Process., vol. 41, pp. 1–19, Jul. 2022.

[36] M. Hasannezhad, H. Yu, W.-P. Zhu, and B. Champagne, ‘‘PACDNN: A
phase-aware composite deep neural network for speech enhancement,’’
Speech Commun., vol. 136, pp. 1–13, Jan. 2022.

[37] Q. Zhang, Q. Song, Z. Ni, A. Nicolson, and H. Li, ‘‘Time-frequency
attention for monaural speech enhancement,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2022, pp. 7852–7856.

[38] S. Mavaddaty, S. M. Ahadi, and S. Seyedin, ‘‘Modified coherence-based
dictionary learning method for speech enhancement,’’ IET Signal Process.,
vol. 9, no. 7, pp. 537–545, Sep. 2015.

[39] T. G.Kang, K.Kwon, J.W. Shin, andN. S. Kim, ‘‘NMF-based target source
separation using deep neural network,’’ IEEE Signal Process. Lett., vol. 22,
no. 2, pp. 229–233, Feb. 2015.

[40] S. Nie, S. Liang, H. Li, X. Zhang, Z. Yang, W. J. Liu, and L. K. Dong,
‘‘Exploiting spectro-temporal structures using NMF for DNN-based super-
vised speech separation,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2016, pp. 469–473.

[41] S. Nie, S. Liang, W. Liu, X. Zhang, and J. Tao, ‘‘Deep learning based
speech separation via NMF-style reconstructions,’’ IEEE/ACM Trans.
Audio, Speech, Language Process., vol. 26, no. 11, pp. 2043–2055,
Nov. 2018.

[42] H. Li, S. Nie, X. Zhang, and H. Zhang, ‘‘Jointly optimizing activation
coefficients of convolutive NMF using DNN for speech separation,’’ in
Proc. Interspeech, Sep. 2016, pp. 550–554.

[43] T. T. Vu, B. Bigot, and E. S. Chng, ‘‘Combining non-negative matrix
factorization and deep neural networks for speech enhancement and auto-
matic speech recognition,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2016, pp. 499–503.

[44] H.-W. Tseng, M. Hong, and Z.-Q. Luo, ‘‘Combining sparse NMF with
deep neural network: A new classification-based approach for speech
enhancement,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Apr. 2015, pp. 2145–2149.

[45] H. Jia, W. Wang, and S. Mei, ‘‘Combining adaptive sparse NMF feature
extraction and soft mask to optimize DNN for speech enhancement,’’ Appl.
Acoust., vol. 171, Jan. 2021, Art. no. 107666.

[46] Y. Wang and D. Wang, ‘‘A structure-preserving training target for super-
vised speech separation,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2014, pp. 6107–6111.

[47] D. S. Williamson, Y. Wang, and D. Wang, ‘‘Reconstruction techniques for
improving the perceptual quality of binary masked speech,’’ J. Acoust. Soc.
Amer., vol. 136, no. 2, pp. 892–902, Aug. 2014.

[48] D. S. Williamson, Y. Wang, and D. Wang, ‘‘A sparse representation
approach for perceptual quality improvement of separated speech,’’ in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process., May 2013,
pp. 7015–7019.

[49] D. S. Williamson, Y. Wang, and D. Wang, ‘‘A two-stage approach
for improving the perceptual quality of separated speech,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2014,
pp. 7084–7088.

[50] E. M. Grais, G. Roma, A. J. R. Simpson, and M. D. Plumbley, ‘‘Two-
stage single-channel audio source separation using deep neural networks,’’
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 25, no. 9,
pp. 1773–1783, Sep. 2017.

[51] D. S. Williamson, Y. Wang, and D. Wang, ‘‘Estimating nonnegative matrix
model activations with deep neural networks to increase perceptual speech
quality,’’ J. Acoust. Soc. Amer., vol. 138, no. 3, pp. 1399–1407, Sep. 2015.

[52] D. S. Williamson, Y. Wang, and D. Wang, ‘‘Deep neural networks for
estimating speech model activations,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Apr. 2015, pp. 5113–5117.

[53] G. E. Hinton and R. R. Salakhutdinov, ‘‘Reducing the dimensionality of
data with neural networks,’’ Science, vol. 313, no. 5786, pp. 504–507,
2006.

[54] H. Zhang, H. Liu, R. Song, and F. Sun, ‘‘Nonlinear dictionary learning
based deep neural networks,’’ in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2016, pp. 3771–3776.

[55] Z. Yue, H. Christensen, and J. Barker, ‘‘Autoencoder bottleneck features
with multi-task optimisation for improved continuous dysarthric speech
recognition,’’ in Proc. Interspeech, Oct. 2020, pp. 4581–4585.

[56] D. S. Williamson, ‘‘Monaural speech separation using a phase-aware deep
denoising auto encoder,’’ in Proc. IEEE 28th Int. Workshop Mach. Learn.
Signal Process. (MLSP), Sep. 2018, pp. 1–6.

[57] N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, ‘‘Model-based
deep learning,’’ Sep. 2022, arXiv:2012.08405v3.

[58] Y. Zhang, ‘‘Modulation domain processing and speech phase spectrum in
speech enhancement,’’ Ph.D. dissertation, Dept. Comput. Sci., Missouri
Univ. Columbia, New York, NY, USA, 2012.

[59] H. Erdogan, J. R. Hershey, S. Watanabe, and J. L. Roux, ‘‘Phase-sensitive
and recognition-boosted speech separation using deep recurrent neural
networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Apr. 2015, pp. 708–712.

[60] E. M. Grais and H. Erdogan, ‘‘Single channel speech music separation
using nonnegative matrix factorization and spectral masks,’’ in Proc. 17th
Int. Conf. Digit. Signal Process. (DSP), Jul. 2011, pp. 1–6.

[61] S. Nie, W. Xue, S. Liang, X. Zhang, W. Liu, L. Qiao, and J. Li, ‘‘Joint
optimization of recurrent networks exploiting source auto-regression for
source separation,’’ in Proc. Interspeech, Sep. 2015, pp. 3308–3311.

[62] J. Garofolo, L. Lamel,W. Fisher, J. Fiscus, and D. Pallett, ‘‘DARPATIMIT
acoustic-phonetic continuous speech corpus CD-ROM. NIST speech disc
1–1.1,’’ NASA STI/Recon, Washington, DC, USA, Tech. Rep. N, 1993,
vol. 93.

[63] A. Varga and H. J. M. Steeneken, ‘‘Assessment for automatic speech
recognition: II. NOISEX-92: A database and an experiment to study the
effect of additive noise on speech recognition systems,’’ Speech Commun.,
vol. 12, no. 3, pp. 247–251, Jul. 1993.

[64] Sounds Data. Accessed: Jul. 2020. [Online]. Available: https://
freesound.org/

[65] D. Pearce and H.-G. Hirsch, ‘‘The AURORA experimental framework for
the performance evaluation of speech recognition systems under noisy con-
ditions,’’ in Proc. 6th Int. Conf. Spoken Lang. Process. (ICSLP), Oct. 2000,
pp. 1–8.

[66] X. Glorot, A. Bordes, and Y. Bengio, ‘‘Deep sparse rectifier neural
networks,’’ in Proc. 14th Int. Conf. Artif. Intell. Statist., Jun. 2011,
pp. 315–323.

[67] D. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in
Proc. Int. Conf. Learn. Represent., 2014, pp. 1–42.

21684 VOLUME 11, 2023



M. Pashaian et al.: Novel Jointly Optimized Cooperative DAE-DNN Approach

[68] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, ‘‘Perceptual
evaluation of speech quality (PESQ)—A new method for speech quality
assessment of telephone networks and codecs,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), 2001, pp. 749–752.

[69] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, ‘‘An algorithm for
intelligibility prediction of time-frequency weighted noisy speech,’’ IEEE
Trans. Audio. Speech. Language Process., vol. 19, no. 7, pp. 2125–2136,
Dec. 2011.

[70] Y. Hu and P. C. Loizou, ‘‘Evaluation of objective quality measures for
speech enhancement,’’ IEEE Trans. Audio, Speech, Language Process.,
vol. 16, no. 1, pp. 229–238, Dec. 2008.

[71] J. Tribolet, P. Noll, B. McDermott, and R. Crochiere, ‘‘A study of com-
plexity and quality of speech waveform coders,’’ in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., Apr. 1978, pp. 586–590.

MATIN PASHAIAN received the B.Sc. and
M.Sc. degrees in electronic engineering from
the Iran University of Science and Technology
(IUST), Tehran, Iran, in 2011 and 2013, respec-
tively. She is currently pursuing the Ph.D. degree
with the Department of Electrical Engineering,
Amirkabir University of Technology, Tehran. Her
main research interests include machine and deep
learning, speech processing, enhancement, and
separation.

SANAZ SEYEDIN (Senior Member, IEEE)
received the B.Sc. degree in electronics engineer-
ing from the Amirkabir University of Technology,
Tehran, Iran, in 2001, theM.Sc. degree in electron-
ics engineering from the IranUniversity of Science
and Technology, Tehran, in 2005, and the Ph.D.
degree in speech recognition from the Amirkabir
University of Technology, in 2010. She is currently
an Assistant Professor with the Department of
Electrical Engineering, Amirkabir University of

Technology, teaching both undergraduate and graduate courses. Her research
interests include machine learning and AI, signal processing (audio, speech,
image, and biological signals), compressive sensing and sparse coding, and
source separation.

SEYED MOHAMMAD AHADI received the
B.Sc. and M.Sc. degrees in electronics from the
Department of Electrical Engineering, Amirkabir
University of Technology, and the Ph.D. degree
in engineering from the University of Cambridge,
Cambridge, U.K. He was a Professor of elec-
tronics with the Department of Electrical Engi-
neering, Amirkabir University of Technology.
His research interests include speech processing,
including speech recognition, speech enhance-

ment, and robustness in speech processing, image and video processing,
watermarking of multimedia signals, biomedical signal processing, and the
application of machine learning in signal processing.

VOLUME 11, 2023 21685


