
Received 17 January 2023, accepted 23 February 2023, date of publication 1 March 2023, date of current version 7 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3250611

Implementation of Traveling Wave Models of
Grating-Based Integrated Optical Devices for
Circuit Simulation
J. H. RASMUSSEN AND TOM J. SMY
Department of Electronics (DoE), Carleton University, Ottawa, ON K1S 5B6, Canada

Corresponding author: Tom J. Smy (tomsmy@cunet.carleton.ca)

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Optiwave Inc.

ABSTRACT This paper presents the development and use of a traveling wave model of waveguide-based
grating devices for use as a compact model in a circuit-level simulator. Both passive and active devices
are modeled, with the grating being characterized by coupling coefficients for the two counter-propagating
waves. It is shown how the implicit carrier frequency can be offset from the Bragg frequency using two
possible methods: either by the static detuning of the model or introducing a phase modulation into the
coupling coefficients. Other physical aspects of the model are addressed such as dispersion and energy
conservation. A comparison to a 1D Yee-cell model is used to verify the applicability of the traveling wave
model. As an example of the circuit simulation of a passive device, an optical code generating application
is used and it is noted that for a passive device the interface between the compact model and the circuit
simulator is not a concern. Using traveling-wave-based laser simulations of grating-based laser structures
it is demonstrated that the model captures the complex behaviour of the devices. In particular the lasing
frequency is naturally produced from the model and the introduction of delay elements into the structure can
be used to restrict the laser to single mode operation. A number of examples are used to illustrate important
aspects of its use as a compact model. Firstly, it is shown that an operating point for either of the laser
configurations can be constructed and detuning used to produce an un-modulated output, allowing for much
more efficient simulations. A final example uses a directly modulated laser to illustrate the effect of back
reflection on the stability of the laser simulation.

INDEX TERMS Laser, modeling, traveling wave, photonic circuit analysis.

NOMENCLATURE
GLOSSARY
BC Boundary Condition. 3.
DBR Distributed Bragg Reflector. 2, 7, 8, 14-18, 21,

22.
DFB Distributed Feedback Laser. 2, 7-9, 14-22.
FDTD Finite Difference Time Domain. 2, 9, 10.
FFT Fast Fourier Transform. 15.
FP Fabry-Pérot. 2, 3, 5, 7-9, 13-15.
FSS Fast Steady State. 5, 8, 9, 17, 18.
FTSS Fine-Tuned Steady State. 5, 8, 9, 17, 18.
LNA Low Noise Amplifier. 21.

The associate editor coordinating the review of this manuscript and
approving it for publication was Sukhdev Roy.

MNA Modified Nodal Analysis. 3-5.
NR Newton-Raphson. 4, 5.
OP Operating Point. 2, 5, 8, 9, 17, 18.
PD Photo-Detector. 21.
PS Pre-simulation. 5, 8, 9.
SPE Spontaneous Emission. 3, 5, 16, 17.
SS Steady State. 2, 5, 9, 15-17, 19, 21.
TWM Traveling Wave Model. 2-15, 17-19, 21.

I. INTRODUCTION
The voluminous and ongoing work into photonics technolo-
gies and the wide spread application of such technologies,
in areas such as sensors and communications, has lead to
a significant demand for design tools that enable quick
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efficient work flows. In particular the tight integration of
electronics and photonics in circuits motivates the creation
of circuit-level tools capable of self-consistently simulating
mixed (electrical/optical) circuits and systems. This impetus
has lead to work in both frequency and time domain methods,
work into co-simulation of electronics and optical devices [1],
[2], [3], [4], [5], as well as commercial efforts [6], [7], [8].

A key requirement of all such system-level simulators is
quick efficient compact models of the elements of the circuit.
Electrical components such as bipolar transistors have well
established compact models for use in both the frequency
and time-domains. Compact models for optical devices, how-
ever, are less well developed and present quite different
challenges. In particular, the distributed nature of an optical
device is often an important factor in the device operation.
Phenomena such interference, dispersion, and the presence
of modes can be key. A particularly useful approach for
modeling waveguide-based devices in time-domain analysis
is the use of a Traveling Wave Model (TWM). The model
represents the optical signals as counter-propagating complex
envelopes with the carrier removed. Such a representation is
very advantageous for system-level simulation because the
need to model the very fast modulation of the carrier is elim-
inated. The TWMmodel is remarkably flexible, enabling the
modeling of passive and active devices from simple gratings
to lasers. A large literature dealing with the application of
the TWM to a wide range of structures with experimental
verification is available [9], [10], [11], [12], [13].

The use of a TWM model in a fully integrated opti-
cal/electrical simulator, based on a spice-like configura-
tion, was presented in [14]. This paper introduced the basic
TWM compact model development and illustrated the use
of the device with examples of passive and active devices
used in mixed electrical/optical circuits. It is important that
time-domain compact models have a means of predicting a
steady-state (SS) solution to enable the system simulator to
find an operating point (OP) of the circuit. This is a signif-
icant challenge for compact models of lasers as the they are
characterized by a harmonic SS with stochastic variation and
can produce chaotic behaviour [15]. However, a methodology
to obtain an effective OP for a Fabry-Pérot (FP) laser has also
been developed [16].

Optical technologies incorporating waveguides with incor-
porated gratings are very common [17], [18], [19], with
a wide range of passive and active applications. Although
TWM models have been widely used for grating-based opti-
cal devices [18], [20], [21], the use of a TWM compact
model in a system/circuit-level simulator produces a number
of issues that need to be addressed. Although initial work on
simple grating-based passive devices was reported in [14],
the modeling of the grating and the phenomena produced
were not significantly explored as the emphasis was on the
creation of the compact model and integration into the cir-
cuit simulator framework. A very important application of
gratings is their use as a distributed mirror in active devices
such as Distributed Bragg Reflector (DBR)-based lasers and

Distributed Feedback (DFB) lasers. Neither of these devices
were dealt with in [14] or [16]. Although the fundamental
principles on which these lasers are based is similar to FP
lasers, in a number of aspects they are dissimilar and these
differences have implications on the use of the TWM as a
compact model. With respect to the work presented in [14]
and [16], in this paper we will first deal more carefully and
extensively with passive applications of gratings and then,
importantly, will address the implications of grating based
laser simulations, using TWM based models, within a circuit
simulation framework.

Sec. II outlines the basic TWMmodel, presenting the opti-
cal field equations and a carrier equation for active devices.
The second part of this section reviews the numerical imple-
mentation of the model as well as the integration into a
circuit-level simulator. Sec. III reviews the important physical
phenomena present in grating-based devices. Close attention
is paid to modeling issues with a discussion of the model
coupling coefficients, dispersion, and group velocity. To illu-
minate the physics of the grating and verify the appropriate
use of the TWMmodel, a 1D Yee-cell-based finite difference
time-domain (FDTD)model is used as a reference. The end of
this section discusses the physics and model implementation
of grating-based lasers. Finally, two sections (Sec. IV and
Sec.V) will present a number of examples to illustrate the use
of the compact model in a variety of configurations, including
a passive optical code generator and a directly modulated
DFB laser.

II. BASIC THEORY AND IMPLEMENTATION
This section will first outline the basic TWM model dealing
with the field equations and the additional carrier equation
needed to model optical amplifiers and lasers. The second
section will outline the methodology used to create a com-
pact model from the TWM for use in a circuit/system-level
simulator.

A. TRAVELING WAVE MODEL
The derivation of the TWM model results from two basic
assumptions: 1) propagation of the electromagnetic field in
a homogeneous waveguide which is described by a set of
transverse modes each with a specific group velocity vg and
effective index ng and 2) identification of a reference (or
carrier) wavelength associated with the field. Such a model
is a good candidate for a compact model as it models the
evolution of the envelope of the optical signal and not the
fundamental frequency.

1) FIELD EQUATIONS
If we assume for simplicity that only one transverse mode
is excited then the total field (which is the sum of two
counter-propagating fields Êfc and Êrc) in the waveguide is
given by,

Ê(t, z) = Êfc + Êrc
= Êf(t)ei(ωct−kcz) + Êr(t)ei(ωct+kcz),
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FIGURE 1. Waveguide/Laser geometry showing the length (L), width w
and the three primary variables for the TWM: carrier density N and
forward and reverse propagating complex fields Êf and Êr. Also shown
are facet/mirror reflectivities, the presence of grating region
characterized by coupling coefficients κ̂f,r, and the optical outputs Ôf,r.

where Êf and Êr are complex envelopes for the forward
and reverse propagating fields. These capture both the local
magnitude and phase of the signals.1 The carrier frequency
and wavenumber for the signal are given by ωc and kc.

One of the advantages of the TWM is its physical nature
and the ease with which phenomena can be added to the
model. The propagation constant β̂ can be used to model
the local material gain, index variation due to the presence
of carriers N (z), or a static detuning of the carrier wave-
length. In addition, and of particular importance for modeling
grating-based devices, coupling between the forward and
reverse traveling waves can be incorporated using the cou-
pling coefficients κ̂f,r. Finally, spontaneous emission (SPE)
can be modeled by adding stochastic terms to the equations
(F̂f and F̂r). With these additions the two 1st-order wave
equations describing the evolution of these two signals are
[9]:

1
vg

∂Êf
∂t

= −
∂Êf
∂z

− iβ̂(N , S)Êf + iκ̂fÊr + F̂f (1a)

1
vg

∂Êr
∂t

= +
∂Êr
∂z

− iβ̂(N , S)Êr + iκ̂rÊf + F̂r, (1b)

where vg is the group velocity2 of the propagating mode and
β̂(N , S) defines a gain/loss term given by,

β̂(N , S) =
1
2

[
δ + αHG0(N , S) + igfG0(N , S)

]
, (2)

where the parameter δ is a static detuning factor that deter-
mines the carrier frequency ωc and the factors αHG0(N , S)
and gfG(N , S) capture dynamic carrier induced detuning and
gain respectively. The two coefficients κ̂f and κ̂r describe
coupling of the two counter-propagating waves. We define a
photon density S(z) = |Êf(z)|2 + |Êr(z)|2 where it is assumed
that the two signals are normalized correctly. The set of
equations in (1) are well suited for modeling both passive

1A ˆ over a symbol indicates a complex value.
2It should be noted that vg = dω/dk is determined by the waveguide

effective index and the dispersion relationship. However, the bandwidth
of the envelope modulation is assumed to be sufficiently small that vg at
the carrier frequency can represent the velocity for all components and
the equations in (1) will not capture dispersive effects other than that of a
gross velocity modification. Other dispersive effects can be modeled by the
addition of a frequency dependent polarization term or a non-zero κ̂ [14].

waveguide-based devices and active devices such as optical
amplifiers and lasers (see Fig. 1).

A TWM of a simple passive grating would drop the
gain/loss and spontaneous emission terms, and conservation
of energy requires we set κ̂f = κ̂∗

r ,
3 resulting in,

1
vg

∂Êf
∂t

= −
∂Êf
∂z

−i
δ

2
Êf + iκ̂fÊr (3a)

1
vg

∂Êr
∂t

= +
∂Êr
∂z

−i
δ

2
Êr + iκ̂∗

f Êf, (3b)

where we have retained the static detuning terms.

2) LASER MODEL
To create a TWM model of a semiconductor laser a number
of effects need to be added. First, the addition of a simple
distributed rate equation of the excess carrier density (N (z))
is needed. The equation describing the evolution of the carrier
density is given by a distributed 1st-order rate equation:

dN (z)
dt

=
ηID
qVl

− G0(N (z) − Ntr)S(z) −
N (z)
τn

, (4)

where we have a differential gain G0, η is the quantum
efficiency, Vl the volume of the active region, ID is the laser
current and τn the spontaneous emission coefficient.
To complete a Fabry-Pérot (FP) laser model it should be

noted that the presence of mirrors places a boundary condi-
tion (BC) on the two fields such that:

Êf(0) = R Êr(0) and Êr(L) = R Êf(L), (5)

where R is the reflectivity of the two surfaces at the end of the
laser. The right side output of the laser will then be given by:

Ôf = Êf(L)
√
1 − R2

The 1st-order rate equations (1,4) and the BC relationship
(5) comprise a basic distributed model of the laser, describing
both the temporal and spatial evolution of the laser operation.
The presence of gain dispersion is an important feature of
optical amplifiers and FP lasers determining the pulse evolu-
tion and longitudinal mode distributions. Such dispersion can
be incorporated by a frequency dependent polarization term
[14], [16], [22]. Although the longitudinal mode structure is a
less dominant feature of grating-based lasers gain dispersion
can be incorporated in the same manner.

B. SIMULATION AND INTEGRATION
Simulation of TWMmodels is typically done in a stand-alone
manner where the simulation configuration is started from
off or in a simple initial condition. It is then time-stepped
to a final state using a discretized version of (1). However,
as presented in [14] and [16] the TWMmodel is also verywell
suited for incorporation into a circuit/system-level simulator.
This section will review the straightforward discretization
scheme and then outline the methodology presented in [14]
for incorporation of the TWM into a circuit simulator based
on modified nodal analysis (MNA).

3The operator ∗ indicates complex conjugation.
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1) NUMERICAL MODEL
The TWM numerical model described by (1) is formed by
discretizing both space and time with z → zi and t → tj.
Several steps are taken to minimize numerical errors. The
upwind formulation is used for the spatial derivatives:

∂Êf(zi, tj)
∂z

=
Êf(zi, tj−1) − Êf(zi−1, tj−1)

1z
∂Êr(zi, tj)

∂z
=

Êr(zi+1, tj−1) − Êr(zi, tj−1)
1z

.

The time derivative is discretized as usual,

∂Êf(zi, tj)
∂t

=
Êf(zi, tj) − Êf(zi, tj−1)

1t
,

but it is important that a synchronization condition given
by (1z = vg1t) is used [11]. Direct integration of the
basic propagation equation motivates using an exponential
(e−iβ̂(zi)1z) rather then the 1st-order approximation (1 −

i△zβ̂(zi)). These steps all greatly improve numerical accu-
racy.

Using this approachwe obtain explicit time domain expres-
sions for the unknowns in terms of the previous time-step. For
example:

Êf(tj, zi) = Êf(tj−1, zi−1)e−iβ̂(zi)1z

+i1zκ̂fÊr(tj−1, zi+1) + F̂f (tj−1, zi) (6a)

Êr(tj, zi) = Êr(tj−1, zi+1)e−iβ̂(zi)1z

+i1zκ̂rÊf(tj−1, zi−1) + F̂r (tj−1, zi). (6b)

Using a similar approach for the N equation we obtain
explicit time domain expressions for all the variables and the
solution can simply bemarched from a known state to a future
one.

2) TWM-BASED DEVICES AS CIRCUIT ELEMENTS
Work has been ongoing into the development of a wide
variety of approaches for optical circuit-level simulation, both
academic and commercial [1], [2], [3], [4], [5], [6], [7], [8].
In particular, the work described in [23] implements a fully
integrated optical/electrical simulator (OptiSPICE) using the
MNA framework commonly used in electrical circuit sim-
ulation. The MNA method converts a system of coupled
equations governing connected electrical devices into a set
of nonlinear algebraic-differential equations and represents
them in matrix form [24]. The method represents devices
with ‘‘stamps’’ which relate the inputs (typically voltages) to
outputs (usually currents). The system or circuit-level equa-
tions can be created by ‘‘stamping’’ each element into a set
of 1st-order nonlinear algebraic-differential equations. These
global equations are then simulated in the time domain using
an implicit integration technique with Newton-Raphson (NR)
iterations performed at each time-step [25].

To include optical elements in such a framework an appro-
priate definition of an optical-node for guided-wave devices
is needed [23]. The basic optical-node is represented as two

FIGURE 2. Traveling waveguide compact model: Three inputs are
shown—the two complex optical inputs (Îf and Îr) and an input voltage
(VB). The three outputs are the optical output fields (Ôf and Ôr) and the
device current (ID) present between the two electrical contacts. The
internal variables are the carrier density N and the forward and reverse
propagating complex fields Êf and Êr. The model provides an evolution
from t ′ to t ′ + 1t to allow for the calculation of the output values at t .
In general, 1tS will vary, but 1t = 1z/vg is a constant. Dashed lines imply
an interpolation with respect to time is present for the connections to the
internal model.

modulated waves propagating in the forward and reverse
directions with the forward and reverse complex envelopes
defined as Ôf(t) and Ôr(t) respectively. The use of a complex
envelope removes the burden of modeling the quick varia-
tion of the signal at the carrier frequency. However, it also
decouples the forward and reverse traveling components of
the electromagnetic modes, resulting in the need to model
forward and reverse traveling signals independently.

The TWM model is a flexible physical optical device
model appropriate for devices varying from simple waveg-
uide elements to lasers and is well suited for a variety of
circuit-level simulation approaches. The assumptions of the
TWM model: removal of the carrier and two counter propa-
gating signals, is nicely compatible with the use of optical-
nodes in a spice-like simulator. The task of formulating the
TWMas a compact model for use in such a simulator is essen-
tially to create a model that can be ‘‘stamped’’ into the global
system matrix and was addressed in detail in [14]. We shall
briefly summarize the approach—which is complicated by
two aspects of the TWM. Firstly, the model is an explicit time
stepping method, whereas the MNA formulation is implicit
and involves solving a nonlinear set of equations using NR
iterations. Secondly, the internal time-step (1t) must be
specified by the synchronization condition and is generally
much shorter than the time-step (1tS) associated with the
system/circuit-level simulation [26]. These two aspects of the
TWM indicate that the model cannot be directly stamped into
the system matrix. To solve this issue the TWM compact
model is formulated as a nonlinear circuit element.

Fig. 2 illustrates the incorporation of the physical TWM
model into an infrastructure where the inputs and outputs
are isolated from the physical model. The three input nodes
represent the forward traveling wave incident at the left facet
of the device (Îf), the reverse traveling wave incident at the
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right facet of the device (Îr) and the applied voltage (VB).
The outputs are the traveling waves leaving the device facets
(Ôf and Ôr) and the device current (ID). All of these model
inputs and outputs are determined by times specified by the
system time-stop 1tS. The relationships between the outputs
and inputs are determined by the physical TWM model’s
evolution from a known state at tj to the desired time t [14]
and are interpolated to provide the outputs at the system
time-steps.

It is very important that the compact model provides the
output values at any time t without disturbing the required
synchronized internal time stepping of the model [14]. The
clock of the TWM element will be quantized with a time-step
of1t . The solution points demanded by theMNA engine will
generally not line up with the TWM time points. Therefore
as shown in Fig. 2 when new output values are required for
the element the TWM model must be advanced from the last
known state (tj) to a state (tk ) just past the desired time point
at t and interpolation is used to determine the values passed
into and out of the internal model. Using this procedure the
TWM will simulate with a very high bandwidth of 1/1t .
As analytical derivatives of the outputs with respect to the
inputs are not available numerical derivatives can be used in
forming the Jacobian for the MNA solution [14].

3) STEADY-STATE AND OPERATING POINTS
Although typically stand-alone simulations are run from off
circuit simulation often needs to be performed from a known
OP. Obtaining such a SS initial circuit solution can involve
many NR iterations. It is therefore desirable to have a quick
method of obtaining an OP of the TWM compact model.

For simplewaveguide elements with a prescribed detuning,
gain or loss captured by β̂(z), finding a SS configuration of
the TWM is straightforward as the update equations (6) can
be written for the SS condition,

Êf(zi) = Êf(zi−1)e−iβ̂(zi)1z

Êr(zi) = Êr(zi+1)e−iβ̂(zi)1z.

These equations are valid for all points except for the initial
point which is a known input and both Êf(zi) and Êr(zi) can
be found by direct calculation.

For Fabry-Pérot (FP) lasers it was found in [16] that a
three-step process was able to efficiently find an OP.4 For
the first step a single dominant mode is assumed and SS state
equations written in terms of the magnitude of the envelope
(with the phase of the mode removed). This produces this set
of equations,

|Êf ,k | = |Êf ,k−1|e−iβ̂k1z (7a)

|Êr,k | = |Êr,k+1|e−iβ̂k+11z (7b)

4It should be noted that a laser does not have a well defined OP. The
nature of the dynamics and the presence of SPE result in a harmonic SS
with stochastic variation present. However, in [16] it was shown that for a
Fabry-Pérot laser a practical solution could be found that was effective and
efficient.

Sk =

∣∣∣Êf ,k ∣∣∣2 +

∣∣∣Êr,k ∣∣∣2 (7c)

Nk =

[
ηId
qVl

+ gfG0NtrSk

] [
gfG0Sk +

1
τn

]−1

, (7d)

where

β̂k =
1
2
[δ + αHgk + i(gk − αb)] (8)

gk = gfG0(Nk − Ntr ).

These equations can be simply iterated and a solution found
quickly. This can be done as the photon density is only
dependent on the field magnitudes and allows a solution to be
found regardless of dominant mode chosen. Even though the
resultant single mode OP (denoted as the Fast Steady State
(FSS) solution) is a good approximation when used to start
the TWM it will produce a small transient. This is because the
TWM is sensitive to matchingN with the total photon density
determined by Êf and Êr and even a close approximation may
have a significant transient.

To eliminate this transient we run the exact TWM algo-
rithm on the FSS without the stochastic forcing of the SPE
producing a deterministic evolution that can be run to con-
vergence. With no SPE present the solution will stay in the
dominant mode as there is no physical mechanism to create
power in the other modes. Although this step (which we will
refer to as Fine Tuned Steady State (FTSS)) is significantly
more computationally intensive than the FSS (typically in the
order of tens of thousands of iterations) it obtains a very clean
single-mode OP solution with no significant transient [16].
To form a complete OP solution, however, energy must be
added into the other harmonic modes of this stationary laser
solution. To add the appropriate energy to the other modes
of the OP a short pre-simulation (PS) using the full TWM
transient model including SPE can be used to naturally add
harmonic content from other modes [16].

III. GRATING-BASED DEVICES
Inclusion of gratings into a TWM is well documented and
involves the use of a coupling coefficient κ̂ that models the
scattering of the counter-propagating waves [20], [27].

A. SIMPLE GRATINGS
1) TRAVELING WAVE MODEL
The additional coupling terms present in the TWM when a
grating is present can be derived from the 2st-order wave
equation. Generally, the grating is modeled as a sinusoidal
modulation of the permittivity,

ϵ = ϵ0 (1 + 1ϵ cos(2kBz)) ,

where 1ϵ prescribes the depth of the grating and 3 =

π/kB = λB/2 is the periodicity. The value of κ̂ when the
carrier frequency (ωc) is at the Bragg frequency ofωB = kBvg
is found to be [20],

κ̂ =
△ϵkB
4

. (9)
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The use of κ̂ in the TWM can model both index and gain grat-
ings [28]. For the case of index gratings power conservation
requires κ̂f = κ̂∗

r and for the cosine grating given we have
simply a single real κ̂ .
The direct modulation of the envelopes Êf and Êr creates

frequency content off ωc and in most of the TWM literature
ωc is set to ωB. However, when using the TWM in a circuit
configuration, it may well be needed to set ωc at a different
value. The TWM allows for two approaches to detuning ωc
from ωB. We can directly use the detuning parameter (δ)
present in (1) and use (9) to define the coupling coefficients
which are constant along the grating. However, the modeling
of coupled counter-propagating waves for this case where
ωc ̸= ωB was addressed in [27] and it was shown an implicit
offset of ωc can also be accommodated by a coupling coeffi-
cient with a phase dependence on z described by,

κ̂f,r = κe∓j21kz, (10)

where 1k = kB − kc. A derivation of the TWM for a
cosine grating from a 2st-order wave equation showing this
relationship is given in App. A.
A number of grating applications have used apodized and

chirped gratings in which the depth or period is modulated
along the length [29], [30], [31], [32]. Such a case can be
easily accommodated by simply letting κ̂ or kB be functions
z giving,

κ̂ ′

f,r(z) = κ(z)e∓j21k(z)z.

A secondmodification to the discretized form of the simple
TWM grating model of (3) is needed to address the conserva-
tion of energy. Appendix B shows the derivation of a factor fE
which addresses this issue resulting in (for a simple grating),

Êf(tj, zi) = fEÊf(tj−1, zi−1) + i1zκ̂fÊr(tj−1, zi+1)

(11a)

Êr(tj, zi) = fEÊr(tj−1, zi+1) + i1zκ̂rÊf(tj−1, zi−1),

(11b)

where fE =

√
1 − |1zκ̂|2. This factor should be added to the

full discretized equations (6) when simulating more complex
configurations.5

The assumption of a cosine grating in the derivation of κ̂ is,
obviously, a significant consideration and a great deal of anal-
ysis on the effect of grating shape has been undertaken [20],
[33], [34]. The derivation of κ̂ in App. VI invokes the use
of a phase matching condition to ignore a 3st-order reflected
harmonic that arises for a simple cosine. For an arbitrary
grating topography represented by a Fourier series expansion,
it is found that the dominant contribution to the value κ̂ is due
to only the 1st harmonic. As will be shown later this leads to
responses that are relatively insensitive to the grating shape.

5The formulation of the TWM presented in [20] includes this factor, but
does not present it as explicitly.

2) GROUP VELOCITY AND DISPERSION
In the TWM described by (1) the envelope propagation is
characterized by the velocity vg which for a simple waveguide
is determined by the dispersion relationshipω(k) of themode.
However, in the presence of a grating it is expected that the
effective vg will need to be determined by the dispersion
relationship of the periodic grating placed in the waveguide.
The presence of a gratingwill cause a reduction in the velocity
and a distortion (spreading) of pulses as they propagate. The
time-domain TWM model (1) implicitly includes a 1st-order
dispersion relationship. However, it is useful to compare
time-domain results to frequency-domain relationships for
idealized structures of infinite length. There are two appropri-
ate ways to determine the dispersion relationship—either start
with the 2st-order equation from which the TWM is derived
or use the 1st-order TWM equations directly.

A rigorous derivation of the dispersion relationship will
start with a 2st-order scalar wave equation with a cosine
perturbation of the permittivity,

d2Ê
dz2

−
1
v2g
(1 − 1ϵ cos(2kBz))

d2Ê
dt2

= 0, (12)

where kB determines the grating period and 1ϵ the depth of
the modulation. The wave velocity vg in this equation would
be the carrier mode velocity for a simple waveguide.

An appropriate solution for the problem is a Floquet-Bloch
expansion [35],

Ê =

∞∑
n=−∞

Ênej(ωct−nkBz)ejK̂ z,

where K̂ is associated with a reciprocal lattice vector of the
grating. As shown in App. C the substitution of this solution
into (12) produces a generalized eigenvalue matrix equation
of the form,

A(ω, kB, 1ϵ)9 = K̂B(kB)9.

The solution of this equation for a specific ω value will
provide a set of K̂ eigenvalues. If a given K̂ eigenvalue is
real the mode propagates, whereas a complex K̂ implies an
evanescent mode and the presence of a stop-band. Using this
equation a dispersion relationship ω(K̂ ) can be obtained by
simply solving over a range of ω values and determining
K̂ . The effective velocity of signals in the grating can be
determined from v′g(ω) = dω/dK̂ , where v′g is understood
as the corrected carrier velocity for a grating.

The TWMequations can also be used to derive a dispersion
relationship directly [28]. We assume a time dependence of
exp(iδvgt) where the detuning is, δ = (ωc − ωB)/vg, and
write the TWM equations in the frequency domain,

iδÊf = −
∂Êf
∂z

+ iκ̂Êr (13a)

iδÊr = +
∂Êr
∂z

+ iκ̂Êf, (13b)
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FIGURE 3. Dispersion relationship and group velocity for a cosine grating.
a) ω(K̂ ) for no grating and three modulation depths. b) Lower right hand
quadrant of a) showing both the dispersion relationship and the group
velocity v ′

g.

defining,

δ =
ωc − ωB

vg
.

A general solution to this set of equations, assuming no gain
or loss, has the form of

Êf = f̂1eiKz + f̂2e−iKz

Êr = r̂1eiKz + r̂2e−iKz.

After substitution of this into (13) we find that we have
non-trivial solutions (see App. D) when,

K =
1
vg

√
(ωc − ωB)2 − κ2.

For this simple analytical relationship we can find an effective
group velocity v′g

v′g =
dωc
dK = vg

√
(ωc−ωB)2−κ2

(ωc−ωB)2
.

To illustrate this effect, in Fig. 3 the two dispersion rela-
tionships for a cosine grating are shown for modulations (1ϵ)
of 0.05, 0.10, and 0.20. The clear presence of a stop-band
is evident—as expected it increases in magnitude for larger
1ϵ . There is a small difference between the two dispersion
relationships as we approach the Bragg frequency which
increases as 1ϵ becomes larger.
In Fig. 3b the group velocity of the grating v′g is shown

for both cases and a significant drop is predicted for K̂ values
close to zero asωc approaches the edge of the band-stop. Both
methods give very similar predictions of the group velocity.
As both the 1st and 2st-order analyses give essentially the
same reduction in velocity and the TWM implicitly includes

FIGURE 4. Grating-based lasers: a) DBR structure showing the central FP
cavity with current injection where the FP mirrors at each end have been
replaced by Bragg gratings. These gratings do not have current injection.
The two gratings may not have the same reference plane and
κ̂ ′ = κ̂ exp(iα) where α is a phase shift between the two gratings. b) DFB
structure showing how the FP cavity with current injection has been
replaced by a Bragg grating with current injection and gain. Unlike the FP
there are no mirrors at the ends. The grating itself is a distributed mirror.

the 1st-order correction, we expect the model to predict the
velocity change and pulse dispersion accurately.

3) PASSIVE GRATING STRUCTURE OPERATING POINTS
For simple gratings such as described by (3) analytical solu-
tions are available for some situations [27]. However, in gen-
eral (6) can be simplified for static gratings under steady-state
to,

Êf(zi) = Êf(zi−1)e−iβ̂(zi)1z + i1zκ̂Êr(zi+1)

Êr(zi) = Êr(zi+1)e−iβ̂(zi)1z + i1zκ̂Êf(zi−1).

These equations are valid at all interior points and (when com-
bined with the boundary conditions (inputs) of the grating)
can be formulated as a matrix equation with the unknowns
defined by Êf and Êr. This equation can be easily and quickly
solved to find an initial configuration of the fields.

B. GRATING-BASED LASERS
The creation of TWM models of grating-based laser struc-
tures such as the Distributed Bragg Reflector (DBR) and
Distributed Feedback laser (DFB) is straightforward given
an understanding of the coupling phenomena. A significant
amount of literature associated with stand-alone simulation
of a wide variety of effects in these laser structures has been
reported [20].

Grating-based lasers are created by replacing the mirrors
in a FP laser with gratings. Figure 4 shows the geometric
features of the two configurations: DBR and DFB.

1) DBR TRAVELING WAVE LASER MODEL
Lasers based on DBRs are created by replacing the mirrors at
one or both ends of a FP cavity with gratings (see Fig. 4a).
As in a FP laser, gain is present in the central region due
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to the injection of holes and electrons. The gratings act as
narrow-band reflectors and provide optical feedback causing
the light to pass through the gain section repeatedly. Bragg
gratings strongly reflect light near the Bragg frequency, act-
ing as an excellent mirror for this frequency while passing
all others. This high frequency selectivity reduces the gain
requirements on the central gain section compared to a FP
laser.

Implementing a DBR configuration with the TWM simply
requires a spatial variation of the current injection (see (4))
ID(z) and the coupling coefficient κ̂ . The central section is
configured as a simple TWMwaveguide section with current
injection and grating κ̂ equal to zero while the end sections
have constant non-zero κ̂ with no current injection. Even
though current is not injected into the gratings the carrier
equation is still implemented in them as carriers will be
generated by the fields. The traditional reflectors at the ends
of the FP cavity are not needed, of course, but they could be
used to model reflectivity off the cavity ends if desired.

The relative positions of the reflective gratings have a
significant impact on the spectral content of the output. If the
two gratings are aligned (the separation is an even multiple
of 3) then constructive interference will not occur at the
Bragg frequencyωB, but instead at two frequencies within the
stop-band either side ofωB where the round-trip phase shift is
2π and so produces constructive interference6 [20]. In such
a situation either of these frequencies can be the dominant
lasing mode after start up.

Such indeterminacy in the frequency of operation can
be undesirable. The introduction of an additional delay of
dλ = λB/4 between the two gratings creates a situation
where constructive interference occurs at ωB and this is
then the dominant mode of the laser. Modeling this delay
between the two grating can be done in the TWM; either
by shifting the reference of one of the gratings resulting in
differing coupling coefficients for the two gratings, or by
applying a phase shift at the interior ends of the two gratings.

In summary, no changes are required to the TWM equa-
tions tomodel a DBR laser—only specific laser configuration
parameters. The DBR laser offers a number of advantages for
some applications over FP lasers. However, issues of stability
due to the separation of the reflective elements and the gain
region motivates the use of fully distributed feedback by the
extension of the grating throughout the laser creating a DFB
laser.

2) DFB TRAVELING WAVE LASER MODEL
A DFB laser configuration (see Fig. 4b) is created by hav-
ing both the grating and current injection (to produce gain)
throughout the laser cavity. As in the DBR laser, for a DFB
laser with a uniform grating, constructive interference is not
supported at the Bragg frequency. As before, there are two

6Higher order modes where constructive interference occurs will be out-
side the stop-band and will not be strongly reflected by the grating and will
escape leaving the laser after a single pass.

frequencies just inside the stop-bandwhich produce construc-
tive interference and possible lasing modes. Again, it usually
being undesirable to have two possible lasing frequencies,
a total λB/4 delay can be introduced (typically at the center
of the laser) to create a single lasing mode at ωB.

The introduction of a single λB/4 delay at the center of
laser, however, creates a significantly non-uniform distribu-
tion of fields and carriers along the laser. This can lead to
stability issues similar to those present in the DBR laser. The
use of multiple delays such as 2 × λB/8 delays can alleviate
these issues.

Implementing the DFB configuration with the TWM is
therefore straightforward requiring the specification of κ̂ , any
delays present, and the current injection for the entire section.
As with the DBR no reflectors at the ends of the section are
needed, but can be incorporated if desired.

3) OPERATING POINT DETERMINATION FOR DBR/DFB
LASERS
As outlined in Sec. II-B3 a methodology for obtaining an OP
for FP lasers has been presented in [16]. The methodology
steps through a process of: 1) producing an approximate
single mode solution (FSS); 2) obtaining a fine-tuned single
mode solution (FTSS); and 3) adding harmonic content from
other modes using a short pre-simulation (PS). If the TWM
model of DBR/DFB lasers is to be used in a circuit simu-
lation context the same capability to predict an OP must be
developed.

Essentially, the same approach can be used for DBR and
DFB lasers. If the laser is configured with a uniform grating
there are two possible dominant modes—either above or
below ωB and either can be chosen to be the constructed
OP. If the laser is configured using a total λB/4 delay the
single dominant mode is at ωB. In a similar manner to the FP
laser the FSS solution can be determined and then fine-tuned
with the FTSS. However, the procedure for the grating-based
lasers is somewhat more complicated.

For a DBR laser the form of the central cavity field mag-
nitude and distribution of N is the same as for FP and in
the gratings the fields simply decay as there is no gain. The
gratings can be characterized by an effective reflection, which
can be be determined prior to finding the FSS, and the effect
of N in the gratings assumed to be negligible. Then for the
interior resonator we use the same procedure given in [16]
for the FP and through iteration of (7) we determine the
magnitude distribution which satisfies the carrier equation
self-consistently creating a single mode FSS solution. Once
obtained the phase modulation due to the choice of the dom-
inant mode can be introduced and the decaying fields in the
gratings added into the solution.

The DFB has only one single uniform section but produces
a more complex field form. The presence of coupling requires
that (7a) and (7b) need to be replaced by,

Êf ,k = Êf ,k−1e−i(1ω1t+β̂k1z) + iκ̂f Êr,k (14a)

Êr,k = Êr,k+1ei(1ω1t−β̂k+11z) + iκ̂r Êf ,k , (14b)
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FIGURE 5. 3D plot of simple propagation through a grating segment.
Input is constant field from the left. Plot shows SS complex fields:
forward Êf (blue) and reverse Êr (red). The reflected fields are rotated
exactly π/2 from each other. The normalized field components (real and
imaginary) are plotted along the waveguide. The position of the field
along the waveguide is denoted by the segment number of the TWM
model.

where 1ω is the frequency shift from ωB for the mode of
interest. Unlike (7a) and (7b) these equations are coupled, can
not be directly calculated, and will need to be iterated to find
a solution. Therefore, the solution of the FSS for the DFB
involves two nested iterations whereby the outer loop solves
for N using (7d) having obtained Êf and Êr from iterating
(14). Although for both grating-based lasers the formation
of the initial FSS is more complicated than for the FP the
iteration to self-consistent solution is still efficient, taking
approximately 100 iterations – with the interior loop for
solving (14) needing only 10 iterations for a DFB simulation.

The FTSS code is identical to the FP TWM code. It was
found that due to the narrow band operation of the two
grating-based lasers we do not require the PS step of the
TWM OP which added in the non-dominant modes.

IV. GRATING RESULTS AND EXAMPLES
In this section we will first provide an example of the TWM
with the two counter-propagating envelopes present in a grat-
ing, providing for an intuitive grasp of the model. We then
investigate pulse propagation using the TWM making a
detailed comparison to an FDTD simulation using a Yee-cell
implementation, confirming the accuracy of the model for
the questions of interest. Finally, we will illustrate the use of
the TWM model for a passive application, the generation of
optical codes, using this to explore system-level impacts of
the TWM circuit implementation.

A. GRATING PROPAGATION
1) FIELD CONFIGURATION
An intuitive understanding of the TWM propagation through
Bragg gratings can be grasped using a simple example where
there is a constant input field incident from one side. Fig. 5
presents the complex field amplitudes along a grating seg-
ment with an input field incident from the left with a fixed

unit amplitude and Êf(t, 0) = 1.7 The carrier frequency is at
the Bragg frequency and the coupling coefficient κ̂ is real and
constant. The forward field (blue) is moving to the right; the
generated counter-propagating reverse field (red) is moving
to the left.We see both the forward and reverse traveling fields
do not rotate in time or space, but the two complex envelopes
are rotated π/2 with respect to each other, as expected
from the presence of the ‘‘+iκ̂Êf,r’’ terms in the TWM
equations (1).

The decay in magnitude of Êf is due to the coupling of
the counter-propagating field. For example, the coupling term
for Êf produces a small positive imaginary contribution to Êr.
This imaginary contribution to Êr is in turn coupled into Êf as
a negative real contribution reducing the total Êf field. As the
field propagates there is a reduction at each step producing a
decay in the field. In the reverse direction we have no incident
field from the right and Êr(L) = 0. At each step the coupling
from Êf will produce a small increase in the imaginary part of
Êr as it propagates to the left. This gives the basic dynamics
of the grating feedback in the coupled fields.

2) PULSE PROPAGATION
In order to validate the TWMgratingmodels we implemented
Maxwell’s equations with a 4st-order Yee-cell implementa-
tion in 1D [36]. We use this to compare the TWM output
with the predicted output from the Yee-cell simulation. Fig. 6
shows the propagation of a modulated8 Gaussian pulse with
a grating placed midway through the cavity. The excitation
frequency of the pulse equals the Bragg frequency of the
grating (ωc = ωB) and we expect the pulse to primarily be
reflected. The initial pulse at TS = 0 is shown in Fig. 6a and
is traveling to the right. Also shown is κ̂ which defines the
presence of the grating.

Fig. 6b shows the pulse at two different simulation times.
At TS = 0.35 ps (left) the pulse peak has just reflected off the
grating and at TS = 0.7 ps the pulse has moved away from
the grating still traveling left. As the grating is finite and short
it acts as narrow band reflector with an effective reflectance.
The presence of bandwidth off ωB due to the shape of the
pulse will produce a small amount of transmission. Both the
reflected and transmitted pulses undergo dispersion due to the
distributed nature of the ‘‘reflector’’.

The plots in Fig. 6b allow for a comparison of the Maxwell
Yee-cell 1D FDTD simulation with the TWM. The top row
of Fig. 6b shows the real fields of the Yee-cell simulation.
To compare with the TWM we take the envelope of the
complex Yee field and compare with the forward and reverse
field amplitudes. In the bottom row we can see that when
the pulse is outside the grating they match very well. When
partially inside the grating, the interference pattern generated
by the counter-propagating waves implicitly present in the
Yee field produces an interference pattern which is difficult to

7For this section all field values are given with respect to a normalized
excitation.

8The modulation is a complex exponential of the form exp(i(ωct − kcz)).
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FIGURE 6. Propagation of Gaussian pulse into grating with excitation at
Bragg frequency. a) Initial configuration of a pulse showing both a
Yee-cell and TWM simulation. b) Propagation of a modulated Gaussian
pulse with a grating placed from z = 50 µm to z = 75 µm for two
different simulation times TS. The pulse is reflected by the grating when
the excitation frequency matches the grating (ωc = ωB). The top row is 1D
Yee-cell FDTD simulation and bottom row shows a comparison of the
magnitude of the two traveling wave fields Êf and Êr to the Yee-cell
result. c) Detail of the interference pattern present in the grating
(TS = 0.35 ps) when both the forward and reverse waves are present.
Shown is the magnitude of the Yee-cell field and the summed TWM fields
with the carrier included.

compare to the envelopesmodeled by the TWM.We can note,
however, that the average magnitude of the Yee field matches
the corresponding field (dependent on direction of travel) of
the TWM. We can show that the fields match exactly by
introducing the carrier into the the TWM fields according to;

Êfc = Êfei(ωct−kcz) (15a)

Êrc = Êrei(ωct+kcz). (15b)

In Fig. 6c we have combined the TWM fields with the carrier
at TS = 0.35 ps and presented the fields in detail inside
the grating. We see that even for the complex interference

FIGURE 7. Propagation of Gaussian pulse in grating when the excitation
frequency is offset from the grating frequency (ωc = 1.05 ωB). The basic
configuration is the same as Fig. 6. a) Complex coupling parameter κ̂ ′ .
b) Yee-cell simulation for TS = 0.35 ps. Yee-cell and TWM simulation
comparison for both types of TWM detuning: c) For TS = 0.35 ps, d) for
TS = 0.7 ps.

pattern due to the reflection, the two models are in excellent
agreement.

We now turn to the more general case where the excitation
frequency of the Gaussian pulse does not equal the Bragg
frequency of the grating (ωc ̸= ωB) and partial reflection
is expected. As remarked above there are two approaches
to detuning the excitation from ωB by 1ω: Firstly, the intro-
duction of a complex non-constant coupling coefficient κ̂ ′,
see (10), can be used to implicitly move the carrier; or,
alternatively, the parameter δ found in (2) can be used detune
the carrier with κ̂ kept as constant.
The effect of detuning the transmitted frequency (ωc) from

the grating Bragg frequency (ωB) is to decrease the coupling
and lower reflection. In Fig. 7 this case (the short grating
and pulse used in Fig. 6) is presented for both methods of
detuning. The detuning used was such that ωc = 1.05ωB and
the complex modulation of κ̂ ′ can be seen in the top panel.

The middle two plots (Fig. 7b and c) show simulations at
TS = 0.35 ps when the pulse has split into two—a smaller
reflected pulse and a larger pulse in the grating. A comparison
with Fig. 6 shows a much larger degree of transmission.
Fig. 7b shows the Yee-cell real field which exhibits a complex
shape due to the beating between the forward and reverse
traveling components. To compare with the TWM, in Fig. 7c
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the absolute fields for the Yee-cell and TWM simulations are
presented and we see a very good match. The bottom plot,
Fig. 7d, is at TS = 0.7 ps, after the pulse has passed through
the grating, and again the Yee-cell magnitude matches the
TWM very well. In addition to presenting the TWM model
using a complex coupling coefficient with an implicit carrier
ωc = ωB + 1ω, the plots also include a simulation where a
constant coupling coefficient κ̂ was used and a detuning of
δ = 1ω/vg. It can be seen that the same match is obtained
for both methods of detuning.

In Sec. III-A1 it was noted that for propagation in a grating
the simple TWM equations needed a correction factor fE
to conserve energy (see (11) and App. B). To investigate
this effect on the TWM we introduce a much longer grating
(400µm), and use a complex κ̂ ′ to detune the carrier. In Fig. 8
the results are plotted with and without the factor present.
Fig. 8a, again shows κ̂ ′ for the grating. Fig. 8b shows the
simulation at TS = 0.6 ps, when the pulse has split into two
pulses going in opposite directions. For this short interaction
time the correction factor is not impactful and both curves
match the Yee-cell magnitude. Fig. 8c shows the simulation
at TS = 5.2 ps, after the pulse has passed through the long
grating. It can be clearly seen that with the factor fE present
the match to the Yee-cell result is good, conversely if the
factor is omitted (fE = 1), energy is not conserved and we
see an incorrect result.

3) GRATING SHAPE
The TWM characterizes the effect of the grating with two
simple coupling parameters κ̂f and κ̂r. Section III-A1 and
App. VI present an expression for these parameters assuming
a cosine grating with a permittivity perturbation 1ϵ . How-
ever, as noted in Sec. III-A1, due to phase matching it is
expected that the effect of the grating will be characterized
by the strength of the first harmonic. Fig. 9 illustrates this
by comparing the TWM with the Yee-cell model for several
shapes of permittivity. We start with a pure 1st-harmonic
cosine variation and then add in a number of harmonics,
nh, of the Fourier Series expansion of a rectangular grating.
A key point in presenting the results is that the fundamental
harmonic of the Fourier Series in each grating has the same
weighting. In Fig. 9a we see the four gratings with a transition
from the pure cosine (top) to reasonable approximation of
a square wave using 11 harmonics. In Fig. 9b we see, the
perhaps counter-intuitive result, that not only do the TWM
forward and reverse fields match the Yee-cell field magni-
tude, but the fields for all values of nh also are essentially
identical. This confirms that it is not the grating shape that is
important but the magnitude of the fundamental period of the
grating—a result also remarked upon in [34].9

9It should be noted that this 1D characterization of the grating is limited
and more sophisticated models have been developed incorporating both
longitudinal and cross-sectional grating and field configurations [27], [33],
[34]. These models would allow for a more accurate determination of κ̂ for
use in the TWM.

FIGURE 8. Propagation of Gaussian pulse in a long grating when the
excitation frequency is offset from the grating frequency (ωc = 1.05 ωB).
a) Coupling coefficient and grating configuration. Propagation of Gaussian
pulse for two times b) TS = 0.6 ps and c) TS = 5.2 ps. The initial pulse
configuration was as in Fig. 6 with a grating of 400 µm. Two simulations
are presented with and without the energy conservation factor fE used.

4) GROUP VELOCITY AND DISPERSION
As discussed in Sec. III-A2 the presence of a grating will
change the effective group velocity (v′g) of a waveguide. Two
derivations of the dispersion relationship are presented based
on the 2st-order wave equation and the 1st-order TWM wave
equations. The TWM model implicitly includes the 1st-order
dispersion relationship. As presented in Sec. III-A2 they pre-
dict almost identical dispersion relationships. In order to val-
idate the relationships we compare both of them to Yee-cell
simulations through a long grating for various grating depths,
varying the carrier frequency (ωc) with a grating prescribed
by ωB. For the TWM simulations a complex κ̂ ′(z) was used to
detune the carrier. In Fig. 10a we see the expected variation
in v′g as we approach the stop band where the wave becomes
evanescent with an effective speed of zero. For the case with
no grating (1ϵ = 0), v′g is equal to the nominal group velocity
vg for all three. Overall the 2st and 1st-order calculations are
extremely close to each other and agree well with the Yee-
cell measurement. Note that the simple speed calculation used
for the Yee-cell simulation will not be as accurate as we
approach the stop band frequency and the pulse slows down
and becomes evanescent.
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FIGURE 9. Gaussian propagation through different grating topologies. The excitation frequency is offset from the grating frequency (ωc = 1.05 ωB).
Simulation configuration is the same as in Fig. 6. Shown in each row is a detail of the permittivity as a function of z and a comparison between the
Yee-cell and TWM simulations for TS = 0.6 ps. The permittivity is varied by adding a number of harmonics nh in a Fourier series expansion of a
rectangular grating. For all gratings the fundamental harmonic has the same weighting.

FIGURE 10. Group Velocity: a) Comparison of v ′
g(ω) between analytical derivation and Yee-cell simulation. b) Gaussian propagation through a long

grating showing v ′
g reduction due to the dispersion relationship. The bottom plot (with grating) shows that the pulse does not travel as far in the

simulation time TS = 2.6 ps.

Fig. 10b shows two of the simulations for ωc/ωB =

0.95 used to generate the data in Fig. 10a—one with no
grating (1ϵ = 0) (top) and another with 1ϵ = 0.1 (bot-
tom). As expected, with no grating the TWM agrees with the
Yee-cell and the pulse travels at the velocity of the carrier.
In the bottom plot, with 1ϵ = 0.1, the pulse is slowed and
travels a distance shorter by 1zp in the prescribed time. The
pulse dispersion (change of shape) and the velocity reduction
present in the Yee-cell simulation is well predicted by the
TWM. Using the 2st-order dispersion relationship we find
that 1zp is 19.4 µm and this agrees well with the observed

value of 19.1 µm. We can conclude that the 1st-order disper-
sion relationship implicit in the TWM captures the velocity
reduction and shape changes effectively.

B. CIRCUIT IMPLEMENTATION: OPTICAL CODE
GENERATION
As an example of the use of a passive grating structure
in an optical circuit we will use an implementation of a
picosecond optical code generator simulated in OptiSPICE
[6] incorporating a TWM model. Techniques for generating
codes formed from short optical pulses have been developed
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FIGURE 11. Grating Example: Optical Code Generation. a) Circuit schematic. b) Coupling coefficient κ̂ plotted along the grating. c) Field
configurations as the incident pulse propagates through the grating. d) Circuit output for a variety of time-step configurations. Also shown is a
stand-alone TWM simulation of the grating.

with varying levels of sophistication [37], and implemen-
tations have included fiber Bragg gratings [38] and array
waveguide devices [39]. However, an attractive alternative is
integrated waveguide devices [32]. The use of an integrated
device allows for very fine control of the grating topography
enabling chirping or apodization of the grating. Such engi-
neering of the grating manifests as spatially varying coupling
coefficients in the TWM model.

As described in [32], an integrated waveguide-based grat-
ing can be configured to produce an optical code consist-
ing of a set of picosecond length pulses. A simple circuit
implementing a code generation application is presented
in Fig. 11. The circuit consists of an optical pulse gen-
erator, an optical circulator to redirect the code generated
(in reflection) from the grating, a configured grating, and
an absorber. The basic operation of code generation is to
have a pulse incident on the grating with ωc = ωB,
where the grating is spatially configured to reflect back
a sequence of pulses as the pulse traverses it, creating
the code.

The grating can be configured quite simply if 2st-order
FP reflections are negligible—requiring that the grating seg-
ments generating each pulse are only extracting a small
amount of the incident power. In this case the binary code to
be generated can literally be simplewritten in space along the
grating with alternating sections of uniform waveguide and
grating.10 For the TWM this is modeled as a spatially varying
κ̂ , with a value of zero being present for the waveguide
sections. One consequence of the nature of the application is
that later bits in the code are generated by a broader forward
traveling pulse of diminishing magnitude.

In Fig. 11b and c we can see the internal aspects of the
TWM model. The first figure shows the configuration of the
grating in which a sequence of grating regions are placed. All
grating regions have the same pitch with ωB = ωc. However,
the grating is apodized such that the value of the coupling
coefficient is engineered to produce bits of similar magnitude

10More sophisticated methods can be used to engineer the grating taking
into account the FP reflections, but this simply results in a different grating
configuration and no conceptional difference.
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FIGURE 12. DBR Laser transients. Output field as a function of time:
a) Laser with synchronous gratings (no delay), b) Laser with a total of
λB/4 delay present. c) Spectral content at harmonic SS. Obtained using an
FFT of the field from the last nanosecond.

and width. The excitation pulse is a Gaussian pulse with a
width of 2 ps and Fig. 11c shows a depiction of the field
configuration in the TWM at the point where the incident
pulse is propagating through the grating device. You can see
the reflected code being formed as the incident pulse travels
along the grating.

The operation of the TWM circuit element at the system
level is presented in Fig. 11d which plots the incident and
reflected pulses as a function of time. The optical code of
110110100101 can be clearly seen in the reflected signal
and the bits are of roughly equal magnitude. The primary
system-level concern is the interaction between the internal
time-step 1t of the TWM and the external system time-
step 1tS. The system-level time-step will be defined by the
bandwidth of excitations within the circuit. The TWM time-
step will need to be generally at most half of this value,
but may well be shorter as it is constrained by the spatial

configuration of the device (which determines the number
of elements Nz in the TWM) and the synchronization con-
dition (1z = vg1t). Shown in the figure are a number of
simulations for varying time-steps. To resolve the input pulse
adequately a system step-size less then 1tS = 300 fs was
needed. It could be expected that for a passive device such as
this, the external bandwidth would dictate the response of the
device as no higher frequency components can be internally
generated. Indeed, it was found that as long as the system
time-step adequately discretizes the incident pulse and the
internal time-step was smaller than this value, the circuit
simulation reproduced the stand-alone TWM simulation with
no bandwidth limitations (except of course those imposed by
the internal time-step).

V. LASERS RESULTS
In this section we will deal with the TWM simulation of the
two grating-based lasers of interest: DBR lasers, configured
with two distributed reflectors and an internal gain region;
and DFB lasers with a full grating throughout the laser cavity.
The first part of this sectionwill demonstrate the TWMability
to capture the essential behaviour of the two lasers using the
simulation of full transients for a variety of configurations.
These simulations will be used to illuminate a number of
aspects that influence the use of the TWM for laser simulation
in a circuit context. The second part of this section will
deal explicitly with circuit aspects of the laser simulation.
Firstly, it will show the effectiveness of the operating point
determination for the two laser configurations. Then, the sim-
ulation of full transients will be used to demonstrate the use
of detuning to allow for an increase in the system time-step.
Finally, an example of a directly modulated DFB laser will be
used to illustrate the interaction of the system time-step and
simulation stability in the presence of a back reflection.

A. FULL TRANSIENT SIMULATIONS
1) DBR LASER
The DBR laser fundamentally operates in a manner very
similar to the FP laser with a central gain cavity and mirrors
at each end. The two mirrors are, however, Bragg gratings
which create a narrow-band distributed reflector. As in the
FP laser, current is injected into the central cavity creating a
gain region. Lasing is initiated by spontaneous emission and a
lasing mode will be created. Light at the Bragg frequency will
be most strongly reflected by the gratings, but the phase of the
reflected light at this frequency does not produce constructive
interference so this frequency will not lase. However, two
frequencies (ωc = ωB ± 1ω) at the edges of the grating stop
band will be reflected with a phase appropriate for lasing and
either of these modes can become the dominant lasing mode.
The frequency offset 1ω is determined by the length of the
gain cavity and the grating configuration. Frequencies outside
of the stop band are not reflected strongly and do not produce
lasing.
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FIGURE 13. DBR internal configuration after a full transient: a) Complex field propagation for two laser configurations. Note that these fields are
rotating as well as traveling. The fields for the configuration with no delay (left) rotate quickly in the CW direction, giving the high frequency envelope
component. The fields with a total of λB/4 delay (right) rotate very slowly resulting in no high frequency components. b) Field magnitudes. c) Electron
and photon densities. The introduction of the λ/8 delays does not change the field amplitudes or internal densities significantly.

The presence of two possible lasing modes at ωB ± 1ω

is usually undesirable, so, by placing a λB/4 delay between
the two reflectors, such that they are no longer spatially
synchronized, ωB becomes the dominant lasing frequency.
In the TWMmodel this delay can be implemented either with
a change in the reference for κ̂ in one of the gratings (resulting
in a different κ̂ for each grating) or by implementing a phase
delay of λB/8 in the TWM model on each interior grating
edge.

Full transient simulations are shown for both laser config-
urations in Fig. 12. The top figure shows a full transient and
detail for a default DBR laser with synchronized gratings (no
delay), κ̂ = −50 in both reflectors and the implicit carrier is at
ωB. The laser undergoes a transient and produces a harmonic
SS and it is clear that the final state is off the Bragg frequency
due to the fast oscillation of the envelope (see the detail).
This frequency shift is also evident in Fig. 12c which presents
the spectral content of the harmonic SS. The spectrum was

obtained using an Fast Fourier Transform (FFT) of the field
from the last nanosecond. Both lasing modes are clearly
present with the dominant mode at 1ω = 63 GHz. The
presence of this high frequency modulation of the envelope
has important implications for using the TWM as a compact
circuit model, as it will set a limit on the size of the system
time-step.

In Fig. 12b we see the effect of the introduction of a total
delay of λB/4 between the two reflectors. The frequency of
oscillation is now very close to that of the Bragg frequency
and the modulation is no longer present. In the plot of the
spectral content we clearly see that there is now only a single
lasing mode present at the Bragg frequency.

The interior configuration of the DBR laser at SS can be
seen in Fig. 13. In Fig. 13a the complex field distribution of
Êf and Êr are shown for the two cases of no delay andwith two
λB/8 delays. For the first case as the fields propagate through
the cavity it can be seen that a spatial twist in the complex
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envelopes is created, representing the shift in frequency of
1ω. This image is a snapshot in time and the envelopes are
both rotating in time at frequency of1ω. In contrast, when the
total delay of λB/4 is introduced into the cavity it is manifests
as two phase jumps in the fields and a very small envelope
twist—consistent with ωc being very close to ωB and a slow
rotation of the envelopes. Also presented in this figure are
plots of the magnitude of the two counter-propagating fields
and the carrier and photon densities along the laser. In the
first the exponential nature of the fields is clearly seen—with
growth in the interior gain region and decay in the gratings.
The carrier and photon densities in the interior region are
similar to that of a FP laser. It can be seen that the presence
of a delay element in the device has little impact on these
quantities, although, of course, it has a significant impact on
the lasing frequency as we have seen.

2) DFB LASER
Although the DFB laser has a grating distributed through-
out the laser and no distinct resonant cavity, its opera-
tion is similar to the DBR. The Bragg grating creates a
narrow-band distributed reflector while current injection cre-
ates gain throughout the laser. Lasing is, as with the DBR,
initiated by spontaneous emission and a lasing mode will
be created for light that undergoes constructive interference
when reflected by the grating. Light at the Bragg frequency,
however, does not satisify this phase condition and will not
lase. But as before, two frequencies (ωc = ωB ± 1ω) at the
edges of the grating stop band will be reflected with a phase
appropriate for lasing and either of these modes can become
the dominant lasing mode.11 Once again, frequencies outside
of the stop band are not reflected strongly and do not produce
lasing, limiting the longitudinal modes present. As with the
DBR, to restrict the operation of the device to a single mode
at the Bragg frequency one can introduce a total λB/4 delay.
However, the introduction of delay elements (essentially a
discontinuity in the grating periodicity) into the the uniform
grating has a significant effect on the internal field, carrier
and photon distributions.

A simulation of a DFB laser is shown in Fig. 14. Fig. 14a
shows the transient where the laser is configured with a delay
element of λB/4 present at the center of the grating. This
has shifted the lasing frequency to ωB and no high frequency
modulation of the output envelop is present. After a few
nanoseconds the laser has transitioned to harmonic SS at a
very slight offset from the Bragg frequency. This can also be
seen in Fig. 14b where the spectral content obtained from
the last nanosecond of this simulation is presented. Also
shown in this figure are three simulations of a uniform grating
laser (no delay elements) for three different lengths. One
obvious feature of these three simulations is that the laser
can randomly (as determined by the nature of the SPE) start

11For the DFB the uniform nature of the device allows for an approximate
value for the frequency shift 1ω to be found from the relationships: |βeL| ≈

π/2 with βe = ∓

√
(δ + jG0)2 − κ̂2 and δ = 1ω/vg, where g is the net gain

in the laser [20].

up in either of the two modes available at ωB ± 1ω. Also
evident is the length dependence of the lasing frequency (see
footnote 11).

In the last two plots of this figure the field magnitudes
(Fig. 14c) and carrier and photon densities (Fig. 14d) are
plotted along the length of laser. The introduction of a single
delay element of λB/4 at the center of the device produces a
dramatic change in the fields and distributions. In particular
the carrier distribution N becomes significantly non-uniform
which can produce instabilities due to hole-burning and non-
uniform heating. A solution to this is to introduce multiple
delays of smaller magnitude and also presented in this figure
is a device configured with 2 × λB/8 delays equally spaced
along the device. Such a device has a lasing frequency of ωB
and relatively uniform carrier and photon distributions.

Having illustrated the TWM capabilities of modeling a
wide variety of phenomena present in grating-based lasers
we will turn to the issues present when using the model as
a circuit simulator element.

B. CIRCUIT INTEGRATION
In this section we will first demonstrate the ability to generate
an operating point OP (harmonic SS) for both DBR and DFB
lasers using the procedures given in III-B3. We will then
illustrate some of the circuit implementation issues that arise
from using the TWM as a circuit simulation element. The
first example will be for a simple transient from off with a
comparison between the circuit simulation to the stand-alone
TWM simulation. The final example will deal with direct
modulation of a DFB laser to produce an output bit stream.

1) LASER OPERATING POINT DETERMINATION
An illustration of the use of the procedure given in Sec. III-B3
to create a laser OP is shown in Fig. 15. This figure verifies
the effectiveness of creating an OP for both DFB and DBR
lasers. By using the FSS to produce an approximate OP and
then using the FTSS to create a final OP, simulation start-up
time is greatly reduced. In these examples bothDBR andDFB
lasers have no delay elements present and produce an output
modulated at 1ω. The magnitude of the output is plotted
in Fig. 15a, presenting both a simulation of full transient to
harmonic SS over 50 ns, and a simulation started from an
OP. When the laser is started from off, the initial transient
is clearly seen in the first 10-20 ns. The simulation started
from an OP has no appreciable transient at start-up.

Details of the harmonic SS obtained by both a full transient
simulation and from an OP are presented in Fig. 15b with the
optical output and average carrier density Na plotted for both
lasers. For the simulation from off, a nanosecond at the end of
a 100 ns simulation is plotted. while for the simulation from
an OP, the first nanosecond is presented. As can be seen for
both lasers, the constructed OP is essentially identical to that
of the one obtained by performing a full simulation, with both
the average value and the stochastic variation well produced.
The variation in the field and carrier density is due to the SPE.
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FIGURE 14. DFB laser full transient simulation: a) Temporal response of a laser with
λB
4 grating shift. b) Spectral response showing three lengths:

L = 0.02, 0.04, 0.06 with no grating shift and L = 0.04 and a
λB
4 grating shift. c) Field magnitudes. d) Electron and photon densities for L = 0.04 and

dλ = 0,
λB
4 , 2 ×

1
8 λB.

Finally, the spectral content of the OPs for both lasers
are presented in the Fig. 15c. As mentioned, both lasers
do not have any delay elements and the offset from the
Bragg (and implicitly the carrier frequency) is obvious. There
are, of course, two possible modes at ωB ± 1ω for the
simulation from off with the dominant mode being randomly
produced. For the OP simulation the mode can be chosen by
construction and here was chosen to match the full simulation
from off.

The sequential use of the FSS and the FTSS was found
to be very effective at finding an OP for both grating-based
lasers. When finding a circuit-level OP, the use of the FTSS
is precluded from the initial iterations due to the need to
perform a relatively large number of them. The FSS, however,
is fast and deterministic so may be included in these initial
iterations. Therefore the procedure proposed in [16] for use in
a circuit simulator is very appropriate. During the initial stage
of convergence the FSS is used. Once a circuit-level OP has
been found that is consistent with the FSS, the procedure can
be continued for a small number of iterations using the FTSS
giving a final OP appropriate to start a transient solution.

2) DFB LASER CIRCUIT EXAMPLES
Two examples of the using a TWM-based laser compact
model will be presented in order to explore system-level

issues. Both examples will use a DFB laser. The first example
is the simulation of a full transient from off. This example
will be used to illuminate the use of detuning to remove the
high frequency modulation of 1ω present for a laser with no
delay elements as well as to discuss the bandwidth restriction
present on the output of the laser model. The second example
will deal with a directly modulated DFB laser driving an opti-
cal link. This example will demonstrate the model’s ability to
incorporate optical feedback and address the impact of the
model on the stability of the simulation.

3) CIRCUIT SIMULATION OF LASER TRANSIENTS
Fig. 16 presents a comparison between the stand-alone (inter-
nal) model predictions and the TWM compact model (exter-
nal) output. In the top panel we see the output field for the
first nanosecond of the internal TWM output (Êf(t,L)) and
the external model output Ôf(t). The internal output has a
step-size of 1t = 0.1 ps whereas the external output is
discretized by the system step-size1tS = 1 ps. This very fine
system-level step-size is needed due to the 1ω = 108 GHz
modulation of the envelope which has an implicit carrier
of ωB. The detail on the right side of this panel shows the
harmonic SS obtained at the end of a 50 ns simulation and
the discretization of the model output Ôf due the system-
level time-step. This is an important consequence of the laser
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FIGURE 15. Comparison of simulation from off with an OP for both DBR and DFB lasers with zero grating shift: a) Temporal response of the optical
output over 50 ns. b) Detail of optical output and average carrier density in the laser for 1 ns. For the simulation from off, a nanosecond at the end of a
100 ns simulation is used. For the simulation from an OP the first nanosecond is presented. c) Spectral response taken over 1 ns.

model as it is, being a nonlinear device, able to internally gen-
erate high frequencies which are not limited to the bandwidth
of the inputs. This high internal bandwidth will typically be
restricted by the interpolation process using to generate the
model outputs.

The presence of this high frequency envelope modulation
is undesirable from a system simulation perspective due to the
need to have very small time-steps. In Fig. 16b an approach to
alleviate this issue is presented. Two simulations are shown.
In one case the laser has a single λB/4 delay element present.
For this case the lasing frequency is shifted down to the
implicit carrier frequency of ωB and the envelope has no high
frequency modulation present. In the second case there is no
delay element present but the detuning parameter δ is set
to 1ω/vg, implicitly moving the carrier to ωB + 1ω and
removing the high frequency modulation of the envelope.
As can be seen for both simulations the use of much larger
system step-size of 20 ns is now appropriate.

The bottom plot in this figure presents details of the initial
transient and harmonic SS for the device with a delay present.
It can be seen that the 20 ps system step-size is just adequate
for resolving the initial transient and very appropriate for use

at harmonic SS. A circuit simulator with a variable time-step
methodology would be appropriate in this situation.

4) CIRCUIT SIMULATION OF A DIRECTLY MODULATED
LASER
The second circuit example is shown in Fig. 17 and is an
OptiSPICE simulation of a simple optical link created from a
directly-modulated DFB laser, a waveguide element, a photo-
detector (PD), and a low noise amplifier (LNA). A TWM
compact model is used for the laser. The waveguide sim-
ply connects the laser to the photo-detector. The model of
the photo-detector is an output voltage given by VPDF =

αPD|ÔPD|
2, where ÔPD is the optical input signal to the

photo-detector and αPD characterises the response. The LNA
is modeled by a voltage gain with a low pass filter response.
Incorporated into the model is a reflected optical signal from
the PD given by RPD, the reflected power level. A key point of
this circuit is that it is inherently nonlinear (due to the laser
dynamics and output voltage of the PD being related to the
square of the optical field input) and also has a feedback path
which returns light back to the laser. Both of these conditions
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FIGURE 16. Circuit simulation of DFB laser transients. In all plots both the internal TWM and the circuit (external) output fields are shown. a) Default
laser with no delay elements. Shown are two plots of the output field; one of a 1 ns transient from off and the other of the SS obtained after 9 ns. The
carrier frequency is chosen to be the Bragg frequency and the circuit simulation step-size required is 1tS = 1 ps. b) Two lasers for which the laser output
frequency is near the carrier frequency: Firstly, a laser with a λB/4 delay and ωc = ωB. Secondly, a laser with no delay but where ωc has been shifted by
1ω = 107GHz to the laser output frequency using the detuning parameter δ. See (2). The circuit simulation step-size required is 1tS = 20 ps. c) Details of
the initial transient and harmonic SS for the device with a delay present.

require the simulator to find a self-consistent dynamic solu-
tion.

An initial 20 ns simulation was done for a current mod-
ulation prescribed by a pseudo-random 4 GHz bit stream
(Fig. 17b) with a system time-step of 5 ps and no back
reflection. Both the laser optical output and the LNA output
are shown in Fig. 17c. The characteristic laser dynamics are
evident at the bit transitions which are in large part removed
by the filtering of the LNA. Also shown in these plots are
the response of the circuit when the reflected power is 0.5%.
The second simulation is very similar to the first but has,
however, slightly smaller power levels due to a reduced gain
in the laser. The voltage swing of the LNA as the bits switch
is essentially unchanged. The system step-size for both simu-

lations is set to 5 ps which easily resolves the transients at
the bit transitions. It is tempting to increase this step-size
to facilitate faster simulations, but this can lead to stability
issues.

It was found that for zero back reflection system step sizes
up to at least 20 ps produced stable and accurate results.
However, the introduction of a back reflection was found
to create instabilities at larger system step sizes. This is
illustrated in Fig. 17d where two simulations are shown for
RPD = 0.5%. When a step-size of 5 ps is used, the simulation
is stable. Increasing the step-size to 10 ps created instability
and unphysical results as seen in the plot. This instability
is not surprising as the dynamics of a laser with external
feedback are very complex—restricting the bandwidth of the
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FIGURE 17. Circuit simulation of DFB laser bit-stream at 4GHz and 8GHz. a) Circuit schematic. b) Current modulation at 4GHz. c) Comparison of circuit
response with 0 and 5% optical power reflection off photo-detector. d) Response for two different system step sizes of 5 and 10 ps. e) Eye diagrams for
zero reflected power at 4GHz and 0.5% reflected power for 4 and 8 GHz.
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external feedback by increasing the system step-sizewill have
effects that are hard to anticipate.

Finally, in the bottom panel of the figure, eye diagrams are
presented for the LNA output for three cases. Simulations are
shown for a 4GHz bit stream,with andwithout reflection, and
for an 8 GHz bit stream with reflection. As can be seen for
this particular laser configuration the eye is starting to close
as the bit rate is doubled.

VI. CONCLUSION
This paper has presented the development and use of a TWM
for waveguide-based grating devices. Both passive and active
devices are modeled with the grating being characterized by
coupling coefficients for the two counter-propagating waves.
A key feature of the TWM model is the presence of an
implicit carrier and it is natural to assume this carrier is at
the Bragg frequency of the grating. However, many situations
occur when it would be more useful to have the carrier
different from the Bragg frequency. It is shown how this
can be accommodated by two methods: either by the static
detuning of the TWM or introducing a phase modulation into
the coupling coefficients. Other physical aspects of the model
are addressed such as dispersion and energy conservation.
Comparison to a 1D Yee-cell model is used to verify the
applicability of the TWM. As an example of the circuit
simulation of a passive device, an optical code generating
application is used. This example uses the TWM compact
model within the OptiSPICE framework to model generation
of a picosecond optical code from a single incident pulse.
It clearly shows that the framework proposed in [14], where
the internal clock of the TWM is left undisturbed by the
system-level simulation, is effective. It is also noted that for
a passive device the interface between the compact model
and the circuit simulator (which can produce a bandwidth
restriction) is not a concern.

Using TWM-based laser simulations of DBR and DFB
structures it is shown that the model captures the complex
behaviour the devices. In particular, the lasing frequency is
naturally produced from the model and the introduction of
delay elements into the structure can be used to restrict the
laser to single mode operation.

A number of examples are used to illustrate important
aspects of use of the TWM as a compact model. Firstly, it is
shown that a modified version of the procedure presented
in [16] can be used to obtain an operating point for either
of the laser configurations. A significant issue with the sim-
ulation of both laser configurations is that, if not designed
with delay elements, the laser operating frequency will be of
the order of a 100 GHz off the Bragg frequency (which is
also implicitly the carrier frequency). This will result in the
need for a very short system-level time-step. It is shown how
detuning can be used (by moving the carrier frequency to the
lasing frequency) to produce an unmodulated output, allow-
ing for much more efficient simulations. The final example
uses a directly-modulated DFB laser to illustrate the effect of
back reflection on the stability of the laser simulation. This

example shows how the introduction of this optical feedback
requires a shorter system-level time-step to produce a stable
simulation.

This work shows that the methodologies presented in [14]
and [16] can be used as a framework for incorporating grating
based devices in a spice-like simulator. A key insight is the
impact of the choice of the carrier frequency for DFB and
DBR configurations on simulation efficiency. In conclusion,
this paper has presented a method of incorporating TWM
model of grating-based structures that is physically-based,
flexible and remarkably effective.

APPENDIX A TRAVELING WAVE MODEL DERIVATION
AND SPECIFICATION OF κ FOR ωB ̸= ωc
In this section we will determine the relationship between
the TWM wave coupling parameter κ̂ and a cosine grat-
ing. The starting point is the 2st-order scalar wave equation
describing a propagating waveguide mode characterized by
a group velocity of vg. Adding a cosine perturbation in the
permittivity prescribed by 1ϵ we have,

∂2Ê
∂z2

−
1
v2g

(1 + 1ϵ cos(2kBz))
∂2Ê
∂t2

= 0.

The solution can be expressed as consisting of a forward and
backward traveling wave,

Ê = Êf(t, z)û(x, y)ej(ωct−kcz) + Êr(t, z)û(x, y)ej(ωct+kcz),

with a transverse mode profile given by û(x, y), which we can
absorb into Êf and Êr,

Ê = Êfej(ωct−kcz) + Êrej(ωct+kcz).

Substitution of this ansatz and the use of Euler’s identity for
the cosine, a slowly varying approximation and defining kB =

kc + 1k we obtain the simplification

kc

(
∂Êr
∂z

fej(ωct+kcz) −
∂Êf
∂z

ej(ωct−kcz)

)

−
ωc

v2g

(
∂Êf
∂t

ej(ωct−kcz) −
∂Êr
∂t

ej(ωct+kcz)

)
=

−
1ϵk2c
4j

(
Êfej(ωct+kcz+21kz)

+ Êrej(ωct+3kcz+21kz)
)

−
1ϵk2c
4j

(
Êfej(ωct−3kcz−21kz)

+ Êrej(ωct−kcz−21kz)
)

.

This can be split into two equations for forward and reverse
traveling components,

ωc

v2g

∂Êf
∂t

ej(ωct−kcz) + kc
∂Êf
∂z

ej(ωct−kcz) =

1ϵk2c
4j

(
Êfej(ωct−3kcz−21kz)

+ Êrej(ωct−kcz−21kz)
)

ωc

v2g

∂Êr
∂t

ej(ωct+kcz) − kc
∂Êr
∂z

ej(ωct+kcz) =
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FIGURE 18. Field coupling in the TWM with energy conservation for a
single spatial cell over a single time-step. The model includes the factor
fE used to correct the energy imbalance. The time index is indicated by
the superscript and the spatial index by the subscript: for example
Êf(tj−1, zi−1) = Êf|

j−1
i−1.

1ϵk2c
4j

(
Êfej(ωct+kcz+21kz)

+ Êrej(ωct+3kcz+21kz)
)

.

Imposing a phase-matching condition the±3kcz terms can be
removed and cancelling the common exponential factors we
obtain,

1
vg

∂Êf
∂t

+
∂Êf
∂z

= −jκÊre−j21kz

1
vg

∂Êr
∂t

−
∂Êr
∂z

= −jκÊfej21kz,

with κ = 1ϵkc/4. For kc = kB the wave coupling is simply
described by κ as shown in [20]. However, if the frequency of
the carrier is such that kc ̸= kB then an additional factors of
exp(±j21kz) must be incorporated into the TWM equations.
If the grating is chirped (a non-uniform grating spacing) this
can be accommodated by simply letting1k be a function of z.

APPENDIX B TRAVELING WAVE MODEL OF A GRATING
WITH ENERGY CONSERVATION
To show the need for an energy conservation correction in
the simple TWM equations for a passive grating we start with
(3), and assume steady-state and an index grating described
by κ̂f = κ̂r = κ̂ and only introduce a fE correction factor to
be determined,

Êf(tj, zi) = fEÊf(tj−1, zi−1) + i1zκ̂Êr(tj−1, zi+1)

Êr(tj, zi) = fEÊr(tj−1, zi+1) + i1zκ̂Êf(tj−1, zi−1).

Fig. 18 shows the energy flow through a single cell of the
TWM. We can write as the total energy E at tj−1 for adjacent
cells as,

E(tj−1) =

(
|Êf(tj−1, zi−1)|2 + |Êr(tj−1, zi+1)|2

)
1z,

and we obtain,

E(tj−1) = (f 2E + |1zκ̂|
2)|Êf(tj−1, zi−1)|21z +

(f 2E + |1zκ̂|
2)|Êr(tj−1, zi+1)|2)1z.

The total energy at in the cell of interest at the next time-step
tj due to flow from adjacent cells is,

E(tj) = |fEÊf(tj−1, zi−1) + i1zκ̂Êr(tj−1, zi+1)|21z+

|fEÊr(tj−1, zi+1) + i1zκ̂Êf(tj−1, zi)|21z,

which can be shown to be,

E(tj) = f 2E + |1zκ̂|
2
|Êf(tj−1, zi−1)|21z+

(f 2E + |1zκ̂|
2)|Êr(tj−1, zi+1)|21z,

Conservation of energy implies E(tj) = E(tj−1) and equating
the coefficients of the fields gives,

fE =

√
1 − |1zκ̂|2,

which will be close to 1 for small 1z.

APPENDIX C DISPERSION RELATIONSHIP AND GROUP
VELOCITY: 2nd-ORDER WAVE EQUATION
To determine the effective group velocity with in a grating
we need to obtain the dispersion relationship for the cosine
grating. As in App. A we start with a 2st-order scalar wave
equation describing a propagating waveguide mode with a
cosine perturbation of the permittivity,

d2Ê
dz2

−
1
v2g
(1 − 1ϵ cos(2kBz))

d2Ê
dt2

= 0.

Assuming an infinite and periodic grating an appropriate
solution for the problem is a Floquet-Bloch description [35],

Ê =

∞∑
n=−∞

Ênej(ωct−nkBz)ejK̂ z, (16)

where K̂ is associated with a reciprocal lattice vector.
The substitution of the assumed solution and the use of

Euler’s identity results in,

∞∑
n=−∞

(
v2p(K̂−nkB)2 − ω2

c

)
Êne−jnkBz +

∞∑
n=−∞

ω2
c
1ϵ

2
Ên+2e−jnkBz +

∞∑
n=−∞

ω2
c
1ϵ

2
Ên−2e−jnkBz = 0,

matching powers of ejnkBz due to the orthogonality of the
terms in the expansion we obtain,

0nÊn + ω1Ên+2 + ω1Ên−2 = 3nK̂ Ên − v2pK̂
2Ên,

with,

0n = v2p(n
2k2B) − ω2

c , ω1 = ω2
c
1ϵ

2
, 3n = 2 v2pnkB.

This equation couples the coefficients of the Bloch Solution
(16) and by limiting the number of terms in the solution to
2N + 1 where ±N are the limits on the expansion a matrix
equation can be formed,

GÊ = K̂LÊ − v2pK̂
2IÊ,
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with

G =



0−N 0 �1 0 · · ·

0 0−N+1 0 �1 0 · · ·

�1 0 0−N+2 0 �1 0 · · ·

...
. . .

. . .
. . .

. . .
. . .

...

0 · · · �1 0 0N−2 0 �1

0 · · · 0 �1 0 0N−1 0
0 · · · · · · 0 �1 0 0N


E =

[
Ê−N Ê−N+1 · · · Ê0 · · · ÊN−1 ÊN

]T
L =

3−N 0 · · ·

...
. . . · · ·

0 · · · 3N

 and I =

1 0 · · ·

...
. . . · · ·

0 · · · 1

 .

This is a nonlinear Eigenvalue equation, however, it can be
linearized by a simple substitution,

Êf = K̂ Ê

GÊ = K̂L − v2pIÊf,

and we can write,[
∅ I
G ∅

][
Ê
Êf

]
= K̂

[
I ∅
L −v2pI

][
Ê
Êf

]
,

which gives,

A9 = K̂B9

, which is generalized linear eigenvalue problem.
Solution of this equation for a specific ωc value will pro-

vide a set of K̂ eigenvalues. If the K̂ eigenvalue is real the
mode propagates, whereas complex K̂ implies an evanescent
mode and the presence of a stop-band. Using this equation a
dispersion relationshipωc versus K̂ can be obtained by simply
solving over a range of ωc values and determining K̂ . The
effective velocity of signals in the grating can be determined
from v′g(ωc) = dωc/dK̂ .

APPENDIX D DISPERSION RELATIONSHIP AND GROUP
VELOCITY: TRAVELING WAVE EQUATIONS
A 1st-order dispersion relationship can be obtained directly
from the TWM equations. Following the procedure given
in [28] we start with the TWM equations for a grating,

1
vg

∂Êf
∂t

= −
∂Êf
∂z

+ iκ̂Êr

1
vg

∂Êr
∂t

= +
∂Êr
∂z

+ iκ̂Êf.

Defining a detuning factor,

δ =
ωc − ωB

vg
,

and assuming a time dependence of exp(iδvgt) we obtain a
frequency domain version of the TWM equations,

iδÊf = −
∂Êf
∂z

+ iκ̂Êr

iδÊr = +
∂Êr
∂z

+ iκ̂Êf.

A general solution to this set of equations, assuming no gain
or loss, is,

Êf = f̂1eiKz + f̂2e−iKz

Êr = r̂1eiKz + r̂2e−iKz.

Substitution into TWM equations (3) produces,

iδ(f̂1eiKz + f̂2e−iKz) = −(f̂1iKeiKz − f̂2iKe−iKz)

+iκ(r̂1eiKz + r̂2e−iKz)

iδ(r̂1eiKz + r̂2e−iKz) = (r̂1iKeiKz − r̂2iKe−iKz)

+iκ(f̂1eiKz + f̂2e−iKz).

The grating is symmetrical and we have s1 = r2 and s2 = r1,
using the second equation andmatching exponential termswe
get two coupled equations,

δr̂1 = r̂1K + κ r̂2
δr̂2 = −r̂2K + κ r̂1.

An explicit solution of this is,

r1 =
κ

δ − K
r2,

and for non-trivial solutions we have,

δ2 − K 2
= κ2.

This equation is an explicit dispersion relationship between
K and ωc,

K =
1
vg

√
(ωc − ωB)2 − κ2.

Finally, we obtain a corrected group velocity,

v′g =
dωc
dK = vg

√
(ωc−ωB)2−κ2

(ωc−ωB)2
.
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