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ABSTRACT Traffic accidents caused by drowsy drivers represent a crucial threat to public safety. Recent
statistics show that drowsy drivers cause an estimated 15.5% of fatal accidents. With the widespread use
of mobile devices and roadside units, these accidents can be significantly prevented using a drowsiness
detection solution. While several solutions were proposed in the literature, they all fall short of presenting
a distributed architecture that can answer the needs of these applications without breaching the driver’s
privacy. This paper proposes a two-stage Driver Drowsiness Detection System using smart edge computing.
Mobile devices in the car are used to capture and analyze the current condition of the drivers without sharing
their data. The smart edge is deployed as a decision-maker where the drowsiness is confirmed when the
information about the driver status received from the mobile client and the observed car path match. Our
approach relies on a) a distributed edge architecture that has two levels of hierarchy, namely the Main
Edge Node (MEN) and Local Edge Node (LEN), to better manage the area of interest and b) a data fusion
offloading strategy that considers: 1) local detection of driver drowsiness through facial expressions using
CNN model, 2) global detection of car path through acceleration readings using YoLov5 algorithm, and
finally, 3) a two-layer LSTM algorithm for drowsiness detection based on the local and the global detection.
The proposed framework achieves drowsiness detection with an average accuracy of 97.7%.

INDEX TERMS Drowsiness detection, deep learning, smart edge, convolutional neural network (CNN).

I. INTRODUCTION
As Drowsy driving results in about 328,000 crashes
yearly [1]. It contributes to approximately 15.5% and 13.1%
of fatal accidents causing deaths and injuries [2]. It happens
when the person is driving with extreme drowsiness, making
him not alert enough to respond to traffic events. An accurate
drowsiness detection system that runs in real-time could help
reduce drowsy driving accidents. However, existing solutions
are limited by the drawbacks of the methodologies they
use.

In the literature, mainly three methodologies are used
to detect driver status, namely vehicle behavior monitoring
methods, physiological-based methodologies, and computer
vision approaches [3]. These methods rely on different
features to build detection systems. Vehicle behavior methods
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utilize trends such as steering activity and vehicle position
variability relative to road features [4]. However, these
methods suffer from the unpredictability of the driving
environment and the differences in driving habits between
drivers, making them less reliable than the other approaches.
Physiological-based methodologies depend on electroen-
cephalogram (EEG) and heart rate variability measures
collected via wearable devices. However, EEG devices
are susceptible to vibrations generated by motion and
engine. Therefore they fail to perform well in real driving
conditions [5]. Finally, computer vision approaches rely on
eye movement, yawning, and head orientation extracted from
video streams and images. They are the most user-friendly
and accurate approaches as they do not require wearing
any measuring devices and are relatively independent of
the external environment. Nevertheless, the performance
of computer vision methods is affected by varying light
conditions. They also tend to be computationally expensive
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and are not efficient to be implemented on embedded
systems [6].

From an architecture point of view, many of the existing
drowsiness detection solutions are deployed on centralized
platforms [7], [8], [9]. However, due to the limitations of
these architectures in restricting the cooperation between
different entities, they are not necessarily the best for data-
sensitive real-time applications, especially when it comes to
safety-critical problems such as drowsiness detection, where
early detection can save individuals’ lives. Also, centralized
platforms require high computational performances, which is
expensive and increases with the amount of data collected
from the real-life environment. Accordingly, distributed
architectures [10] have been proposed as an alternative to
centralized solutions.

This work tries to cope with the challenges mentioned
above by addressing the following questions: How to build
a driver drowsiness detector that (i) consistently delivers
accurate detection, (ii) is efficiently deployable on embedded
systems, and (iii) can preserve the data privacy of drivers.

To answer these questions, a smart edge-based drowsiness
detection system is proposed. The system primarily relies on
smart edge deployment and data fusion offloading.

The distributed architecture used in this work adopts
the OffSEC model proposed in [11] and [12], which is a
crowdsensing framework that uses mobile edge computing
(MEC). OffSEC utilizes a two-layer selection mechanism to
discover a more comprehensive array of workers better fitted
to the tasks, achieving a higher quality of service (QoS).
The selection mechanismworks by delegating data collection
to main edge nodes (MENs) and worker nodes discovery
and assignment to local edge nodes (LENs). The MENs and
LENs are selected by the edge server (ES) from a pool of
heterogeneous IoT devices withWI-FI connections, as shown
in Figure 4.

The drowsiness detection is a two-stage detection: local
detection through the driver’s facial expression monitoring,
using a mobile device inside the car, and global detection
through the fusion of crowdsourced data provided locally
by the drivers and vehicle trajectory monitoring detected by
the edge servers. This offers two complementary channels
to detect drowsiness efficiently. Data fusion is used on the
edge nodes that receive the mobiles’ outcomes of the driver
drowsiness detection and the accelerometer readings that the
LENs are continuously collecting along the vehicles’ path.
More specifically, a driver is confirmed as drowsy only after
his mobile device generates a positive drowsiness detection
alongside a confirmation based on the accelerometer readings
produced at the LEN using the driver behavior classification
model. The accelerometer readings are collected by the LENs
across the vehicle’s path and shared with the MEN only
after sufficient records are collected. Once the drowsiness
status of a driver is confirmed, it gets reported to concerned
entities.

The proposed solution relies on deep learning algorithms
to build a CNN that can accurately make driver drowsiness

detection and an LSTM network that detects the driving
behavior to confirm the output of the CNNmodel on the edge
level.

The major contributions can be summarized as follows:

• An edge-based architecture that is enriched by the
CNN model feeding its output to the edge node.
The edge-based architect allows for a fast selection
of the crowdsourced drivers and data analysis for
timely drowsiness detection and information propaga-
tion through the edge nodes.

• The selection of the driver’s car is processed by edge
nodes based on the car’s location within the range of the
CCTVs.

• A Local detection of drowsiness based on the driver’s
facial expression using video streaming recorded by the
driver’s device.

• Aglobal drowsiness detection at the edge level where the
driver’s car is tracked using the YoLoV5 algorithm for
object detection, accelerometer readings, and weather
conditions. The output of this tracking is combined
with local detection for the final confirmation of the
driver behavior, where a two-layer LSTM algorithm is
deployed.

II. BACKGROUND AND RELATED WORK
The importance of this work lies in developing an integrated
solution that accurately detects driver drowsiness using a
multimodal approach over a distributed architecture, namely
OffSEC. At the worker’s level, the detections are handled
using a deep learning vision-based detection model that runs
on the driver’s mobile phone and uses images captured for
him while driving. At the edge nodes level, the data collected
for the driver across several edge nodes are forwarded to the
MEN node to confirm the detection output. The proposed
solution at theMEN node utilizes the collected accelerometer
data from the driver with a deep learning model to predict
the driving behavior that emphasizes the drowsiness attitude
of the driver. The output of the MEN node will present a
confirmed drowsiness detection, which will allow emergency
responders to be more alert and prepared to deal with the
repercussions of the situation. Moreover, alerting the driver
will enable him to exit the road safely before causing an
accident.

Although multiple possible inputs can be used for drowsi-
ness detection, with the focus on deep-learning computer
vision techniques. Most works on drowsiness detection use
the YawDD [15], NTHU [16], and DROZY [17] datasets
to set a uniform baseline. More recently, a new dataset
was proposed, UTA-RLDD [18]. The YawDD dataset is
a yawn detection dataset. The NTHU dataset contains IR
and RGB videos filmed in day and night settings with
multi-ethnic participants. The participants were instructed
to perform actions that are associated with drowsiness. The
DROZY database contains images and a more diverse set of
information regarding drowsiness, including EEG, EOG, and
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TABLE 1. Literature Review Summary.

ECG signals. The UTA-RLDD dataset is composed of RGB
videos collected from multi-ethnic participants. The main
difference between the two datasets is that the UTA-RLDD
dataset captures the subjects as they fall asleep, thus capturing
the micro-expressions that appear as the subjects become
drowsy.

In [7], a deep drowsiness detection (DDD) network
is proposed where features are extracted both as RGB
videos and optical flow, the features are passed to three
networks: AlexNet to extract features related to drowsiness,
VGG-FaceNet to learn features related to drowsiness but is
more sensitive to variations in appearance, and FlowIma-
geNet extracts facial and head movements. This architecture
achieves 73.06% detection accuracy on the NTHU dataset.
A solution proposed that is more customized for buses
and large vehicles is [8]. This proposal uses existing dome
cameras to make predictions based on facial features and the
driver’s whole upper body.While considering pose variations,
it uses a multi-model approach.

A [9] a Multi-granularity Convolutional Neural Network
(MCNN) was proposed to extract both local and global
representations and use an LSTM network to learn the
relations between the models. They achieved an accuracy of
90.05% on the NTHU dataset. While the accuracy achieved
by both approaches is relatively high, in general, the networks
proposed are inefficient for running on embedded systems.

The study [13] uses an MCT AdaBoost classifier and
an LBF regressor for face landmark detection. To achieve
real-time results on an embedded device as input, they use
68 facial landmarks and classify eye states using the eye
aspect ratio. It [14] presents a compressed model that can
be efficiently deployed on embedded systems and reasonably
accurate results. The teacher-student compression technique
was used to compress the network. The best accuracy was
achieved by a 2-stream model that uses the left eye and
mouth as inputs achieving the test accuracy of 93.84%.
The highest compression they achieved was also in a 2-
stream model where the model was three times smaller than
its teacher network. They used the DROZY database for
benchmarking.

The authors in [6] proposed a lightweight CNN that accom-
plishes real-time performance of 60fps on an embedded
device. They achieved an accuracy of 94.4% on an expanded
NTHU dataset. The CNN is derived from the network
proposed in [14] this proposal. However, a different technique
was used to reduce the size of the CNN, wherein [14] they
applied the teacher-student compression technique. Here the
network was pruned, reducing the number of layers and
neurons without adversely affecting the accuracy.

In [10], an IoT-basedmultimodal monitoring system is pro-
posedwhere data can be fused from several sources, including
user characteristics, history, and data collected from other
sensors (vital sensors, vehicle sensors), to detect drowsiness.
The paper focuses on visual data only. The detection from
the video feed is done via a Fully Convolutional Recurrent
Deep Neural Network (FCR-DNN) on edge, and the rest
of the data is enriched in the cloud. They achieved the test
accuracy of 99.5% for mouth detection and 99.01% for eye
state detection. Our proposal goes one step further in that
the drowsiness detections are made on the agents rather than
the edge; this allows for less impact on the network and the
edge.

To enrich the proposed drowsiness detection solution
and to deliver an accurate detection, accelerometer readings
collected from smart-phones sensors and deep learning
computer vision-based approach are adopted. The accelerom-
eter readings are used to classify driving behavior, which
is used to confirm the detection made by the computer
vision approach at the agent level. Accelerometer sensors
are the most widely used sensors to address the problem
of smartphone-based driving behavior classification [19].
The authors in [20] utilized 3-axis accelerometer readings
collected from a light vehicle to classify safe and aggressive
driving styles. The dataset consists of ten-time sequences
of triaxial accelerometer readings for a total of 2.6 hours,
sampled at 17 Hz. These time sequences represent the driving
sessions and are labeled in a binary fashion as aggressive or
normal.

Another accelerometer readings-based dataset employed
by [19] and [21] to reveal aggressive driving behavior is
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a multi-labeled dataset. Besides the accelerometer sensor,
the data contains readings from other sensors, namely linear
accelerometer, magnetometer, and gyroscope sensors. The
vehicle used for collecting the data experiments is a Honda
Civic with two drivers using a Motorola smartphone. The
data were collected at a sampling rate close to 50 Hz and
ended up in a total of 104 minutes of driving divided into
69 driving sessions labeled with seven labels, six aggressive
types, and one label for non-aggressive driving. This dataset
is considered the most extensive set of aggressive driving
types in the literature. The authors in [19] published another
accelerometer-based dataset motivated by [21], consisting
of 450 driving events. The data were collected at a sample
rate of 50 Hz using two vehicles and Motorola smartphones.
Five categories are addressed in this dataset, four of which
represent abnormal driving behavior and one category for
normal driving.

Smartphone-based driving behavior classification problem
is addressed using threshold-based techniques and learning-
based approaches. The study proposed by [22] detects events
such as sudden braking, acceleration, and lane change using
a threshold on accelerometer sensor readings. The authors
in [23] classified the driving behavior into aggressive and
safe driving using threshold-based techniques that use a g-g
diagram to characterize the relationship between speed and
acceleration. Although threshold-based algorithms are simple
to design and implement, they suffer in defining one suitable
threshold in most cases with the different accelerometer data
sequences, which introduces the need for a dynamic learnable
threshold.

On the other hand, machine learning algorithms
achieved competitive results in addressing the problem of
smartphone-based driving behavior classification. In [20],
the authors conducted feature extraction, feature selection,
and classification methods to distinguish aggressive driving
style from safe driving behavior. They preprocessed 3-axis
accelerometer sensor readings and extracted 78 driving
features falling into five sets in the time and frequency
domain: histogram features, correlation coefficient, data
threshold violation, jerk profile features sets in the time
domain, and spectral feature set in the frequency domain.
Out of the 78 features, six were selected for the classification
task using a random forest classifier and achieved a
classification accuracy of 95.5%. The study [21] utilized
data from different sensors, including the accelerometer
sensor, and compared the performance of different machine
learning algorithms on various combinations of the data,
and concluded that the random forest classifier is the
best-performing machine learning approach in addressing
the problem of multi-class classification of driving behavior.
This work proposes a deep learning approach based on
the Long Term Short Term (LSTM) models to capture the
temporal data sequences and predict the driving behavior in a
binary classification fashion. The authors in [24] proposed a
multifractal detrended fluctuation analysis method to detect
driving fatigue. the method relies on two main subbands

extracted from electroencephalogram (EEG) signals through
different simulations used to calculate the Hurst exponent,
symmetry of MF-DFA, and spectral width values. As a
result, the proposed method shows an efficient detection
against driving fatigue change when less interference and
more stable data are deployed. An extensive analysis
of driver drowsiness detection methods and classification
techniques was deeply explained and discussed in [25]. The
authors’ study provides a classification of existing methods
into three categories: physiological-based, behavioral-based,
and vehicular-based approaches. This study proves that
using a single method is not guarantee full accuracy
while using a combination of techniques helps to improve
drowsiness detection results. Also, in terms of supervised
learning, SVM remains optimal and faster compared to
other classifiers to achieve high accuracy, especially when
used with a small dataset. The authors in [26] proposed
a driver identification and verification approach relying on
driver psychological behavior information including vehicle
control operation and driver eye movement. The proposed
approach deploys a squeeze-and-excitation (SE) block and
a full convolutional network (FCN). The simulation was
conducted using 24 participants under different driving
scenarios where 99.60% of accuracy was detected out of
15 drivers. For the verification process, a Siamese neural
network was added to map all the behavioral data used to
compute the similarities which provided 96.91% of accurate
verifications.

III. METHODOLOGY
As mentioned previously, the approach relies on two distinct
steps: First, the local drowsiness detection is achieved at the
driver side, and the drowsiness confirmation step is achieved
at the edge side.

A. LOCAL DROWSINESS DETECTION MODEL
This section describes the proposed vision-based drowsiness
detection approaches, which take input images sampled
from a video feed capturing the driver’s face using a
front-facing camera embedded in the agent and produce
a binary classification of whether the driver is drowsy or
not. The first tested approach is a face-based drowsiness
detector that takes as input the whole face and generates the
classification. The second tested approach utilizes the eye
region of interest (ROI) and mouth ROI. In this approach,
two classifiers are built, and their outputs are jointly used
to decide whether the driver is drowsy or not. The first
classifier classifies the eye ROIs into open and closed classes,
while the second classifies the mouth ROI into the normal
or yawing state. When the eye is closed, and the mouth
is yawning, the driver is considered drowsy and is normal
otherwise.

1) FACE-BASED DROWSINESS DETECTION APPROACH
The first drowsiness detection approach uses facial features
extracted from the whole face. The proposed model takes
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FIGURE 1. Input Data Samples for the Face-based Drowsiness Detection Model.

image frames extracted from videos at a resolution of
5 frames per second (FPS), which are fed to the model for
training in two scenarios. The model is trained using the raw
frame images in one scenario without applying face detection
techniques to crop the face region of interest (ROI). The
second scenario investigates face detection techniques to crop
the face ROI from the frames before feeding the data to the
model. Samples for the input data in both scenarios are shown
in figure 1. The default dlib face detector is used to detect the
face region, crop it from the frame and use it as an input to
the model.

The face-based drowsiness detector is built using a pre-
trained VGG16 model, previously trained on the ImageNet
dataset. First, the pre-trained convolutional layers of the
VGG16 model are frozed while the last fully connected
(FC) layer is fine-tuned using the extracted frames from
the NTHU dataset videos. To avoid model over-fitting,
a dropout layer was added after the fully connected layer
and L2 regularizers, which were added to the FC and output
layers. The number of trainable parameters has been reduced
from 15,894,849 to only 1,180,161 parameters due to the
frozen pre-trained VGG16 network layers, which effectively
reduced the training time and made use of the deep VGG16
architecture as well.

2) EYE AND MOUTH ROI-BASED DROWSINESS DETECTION
APPROACH
To further improve the results of the driver drowsiness
detection deployed on the worker nodes, a second approach
that uses the facial features related to the eye and mouth
region of interest is proposed. A preprocessing script is first
applied to the videos captured for the driver, where image
frames are extracted at 5 FPS. Then the eye ROI and face
ROI are cropped from the frame and fed in parallel to two
classifiers: eye and mouth. Only the eye located closer to the
camera is considered to reduce the computational detection

FIGURE 2. Input Data Samples for the Eye ROI Classification Model.

time without affecting the model efficiency [10]. The eye
classifier takes the eye ROI as an input and outputs one
of two classes, either eye closed or open. The input to the
mouth classifier is the face ROI, and the output is yawn and
normal classes. The driver’s drowsiness state is determined
from the frame output of the two classifiers, where the driver
is considered drowsy if his eye is closed and he is yawning
and is considered normal otherwise. The eye classifier is
implemented using the CNNmodel and a sample of the input
data used to train the classifier is shown in figure 2. Different
variations of the network were examined to come up with the
proposed architecture.

B. DISTRIBUTED ARCHITECTURE
This section describes the framework architecture estab-
lishment steps as presented in algorithm 1. First, the
edge nodes are defined as CCTVs installed in the street,
crossroads, and traffic lights, as illustrated in figure 3.
They can be uni or multi-directional CCTVs, and they are
considered high-performance roadside units due to the need
to continuously fetch data from drowsy drivers. The distance
between every edge node is 50 meters which is the detection
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Algorithm 1 LEN and MEN Selection, Clustering, and
Drowsiness Detection
Input : , Participant’s coordinate, Connectivity_type = Wireless, Bluetooth,

or CCTV, Accelerometers reading
Output: LENs, MEN, Drowsiness

1 initialization
2 for every connected participant do
3 Check the shared participant’s connectivity type
4 if Wi connectivity_type = CCTV then
5 Add Wi to the list of preselected EN else
6 Wi is driver
7 end
8 end
9 end

10

11 for Every EN in predefined list do
12 calculate EN’s objective function
13 Objective_function = w1 × REWi + w2 × UW

i + w3 × Accuracy
14

15 for every time units do
16 Calculate the number of optimal clusters as
17 best_ size = list of LENs - 1
18 if LENij = Maxt_objective function then
19 LENij is MENij
20 FinalLENs = dropMENij from list of LENij
21 Construct the clusters as:
22 Cr_id = kmeans(LWi , best_size)
23 Centroids = best_size LENijs
24 for Every Cluster do
25 SelectWCr

g where driver coordinate are within CCTV
range

26 Detect driver car
27 Calculate car accelerators
28 Fuse local detection with accelerometers readings
29 Apply LSTM Algorithm
30 Confirm Drowsiness
31 end
32 end
33

34

35

range of CCTV (lines 2-9). Once the list of LENs (playing
the role of CCTVs) is pre-defined, an objective function
is calculated using LENs computing capabilities in terms
of energy consumption REWi and computing unit UW

i and
devices accuracy (lines 11-13) to define a final list of
LENs and then the MEN. The MEN is LEN with the
highest objective function, responsible for reporting the
overall detection to authorities to stop the drowsy driver
(lines 16-20). To cope with the mobility of cars and the
change in the CCTV range, the clustering process is dynamic
and relies on LENs and car locations (X and Y Coordinates).

Each re-clustering is the start of a new cycle. The cycle
ends after the MENs’ confirmation of drowsiness detection.
The length of each cycle is set to five-time units. A relatively
small process is selected to track the drivers as they are
moving continuously.

After each cycle, LENs share records of drivers with
sufficient data to the MEN, and the rest of the data is
forwarded to the other LENs as carry-over. At the beginning
of the next cycle, each LEN keeps only the carry-over records
of its detected drivers and continues accumulating data. If a
driver is detected as drowsy, his data collection continues
until he gets a MEN drowsiness confirmation. This feature
enables the solution to keep track of malicious drivers over
time (lines 25-31).

C. DRIVING BEHAVIOUR CLASSIFICATION - DROWSINESS
CONFIRMATION
The process of drowsiness detection is triggered by detecting
driver drowsiness using a video stream captured by the
mobile client. The detection result is then forwarded to
the LENs, which continue to track the drowsy drivers to
collect extra drowsiness detection records and accelerometer
readings. Once the LENs have sufficient detection records per
drowsy driver, it get forwarded to the MEN to confirm the
drowsiness detection made by the LENs using the generated
acceleration metrics. A list of confirmed drowsy participants
is produced as output. On the MEN side, a driver behavior
classification model is implemented. It uses the drivers’
acceleration records collected over a while to detect driver
behavior over a sliding window of records. To confirm the
similarities between classes, five classes are considered as
listed in [19] namely: sudden right, left swerving, sudden
acceleration and breaking. A set of different sequence lengths
are used to evaluate the classification accuracy as shown in
table 5.

IV. SIMULATION PARAMETERS
In this work, four datasets are considered: Kaggle drowsi-
ness detection dataset [27], NTHU dataset [16], Sarwat
Foursquare datasets [11]. The Kaggle dataset contains two
subsets; the first is for the eye ROI, which has two classes,
closed_eye, and open_eye, while the second is for classifying
the mouth as a yawn or normal. The whole dataset contains
2900 images with a size of 640 × 480 pixels. However,
the NTHU dataset includes videos of drivers driving in
different situations in day and night illuminance settings. The
videos were collected with a resolution of 640 × 480 pixels
in AVI format. An infrared (IR) illumination is employed
to collect the low-light (night setting) videos. It contains
videos of 18 subjects for training and evaluation. Data
augmentation techniques are applied to both datasets, such as
shear effects, re-scaling, and horizontal flipping techniques.
To reduce the algorithm’s complexity, the face ROI images
are down-sampled to 112 × 112 pixels while the eye ROIs
are resized to 64 × 64 pixels.
The acceleration dataset used in this model is provided

in [19]. It contains acceleration readings of events across the
x, y, and z axes. The length of the action sequences ranges
from 38 to 200 time steps. The sequences are classified into
normal behavior, sudden breaking, sudden acceleration, and
sudden swerving which are used to make an active decision
to break or accelerate. At the same time, the vehicle can
swerve unexpectedly if the driver loses grip on the steering
wheel. sudden swerving is considered as drowsy behavior,
while normal, sudden acceleration and sudden breaking as
normal behavior.

Sarwat Foursquare dataset [11], which is a dataset for
social networking applications, is used in this model to get
information about the drivers’ devices such as energy, sensor
availability, and device accuracy. More parameters used to
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FIGURE 3. Edge-based distributed architecture for Drowsiness Detection.

FIGURE 4. Conceptual Architecture.

simulate the drowsiness detection model are presented in
table 2.

A. EVALUATION PARAMETERS
The main performance metrics are described as follows
[28], [29], [30]:

• Precision rate:

Precision =
TP

TP+ FP
∗ 100% (1)

where TP is the true positive and FP is the false positive.
The precision rate presents the proportion of samples
predicted to be true positive in the sample of positive
cases.

• Recall rate:

Recall =
TP

TP+ FN
∗ 100% (2)

where FN is the false negatives, and recall rate presents
the proportion of samples predicted as negative cases to
all positive samples.

• F1-score:

F1 − score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(3)

• Accuracy: It measures how accurate the model is in
providing correct predictions.

Accuracy =
Number of correct predictions
Total number of predictions

(4)

V. RESULTS AND DISCUSSION
This section presents and discusses the results of the different
implemented models.

A. FACE-BASED DROWSINESS DETECTION APPROACH
The training dataset used to train the proposed face-based
drowsiness detection model is extracted from 16 subjects on
the NTHU dataset. The model is validated on a randomly
selected 20% of the training set and tested on a testing subset
of the NTHU dataset. The best detection results are achieved
using 256 neurons in the FC layer, with RMSprop and Adam
optimizers using a learning rate of 0.0005 for the raw face
and pre-processed face frames scenarios, respectively. Both
models were trained using a batch size of 64 and 10 epochs.
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TABLE 2. Implementation Parameters.

TABLE 3. Results of Face-based/ROI-based Drowsiness Detection Model.

The results of the face-based model are demonstrated in
table 3 for the two input data scenarios, namely face-based
and ROI-based detection. As seen in table 3, the ROI-based
detection outperforms the Face-based detection due to the
noise introduced from the area surrounding the face in the
case of the Face-based scenario. However, the ROI-based
frames are not performing well enough to employ this
drowsiness detector in the final architecture due to the size
of the dataset.

B. EYE AND MOUTH ROI-BASED DROWSINESS
DETECTION APPROACH
1) EYE AND MOUTH CLASSIFIER
The training set of the Kaggle eye and mouth dataset [27]
is randomly split into training and validation subsets to train
and validate the model, which is then tested on Kaggle and
NTHU datasets. The best classification results are achieved
by training the model over 30 epochs with 16 batches with
a learning rate of 0.0005 using Adam optimizer for eye
training and RMSprop optimizer for mouth training. It is
clear that the best classification accuracy is achieved for
both eye and mouth using Kaggle dataset than the NTHU
dataset. As previously explained, the Kaggle dataset contains
two subsets: eye ROI and Mouth ROI which facilitate the
learning process of the algorithm and reduce the loss function.
However, for the NTHU dataset, the learning process is built
from scratch, and processing the videos requiremore time and
high computing performances which may lead to more loss.

TABLE 4. Results of the Eye and Mouth Classifiers.

TABLE 5. Results of LSTM Training on Different Sequence Lengths.

Figures 5 (a) and 6 (a) illustrates the accuracy perfor-
mances in the training and validation phases. As shown, CNN
increased the training and validation accuracy rapidly over the
number of epochs. This demonstrates that the model reached
an optimal accuracy of 98 % and 97 % for eye and mouth
detection, respectively, which proves that the model is well-
trained. However, loss function performance is presented
in figures 5 (b) and 6 (b). While training and validating
the CNN model, the loss function decreased to achieve the
lowest possible value, arriving at 5 % and 10 % for eye
and mouth detection, respectively, where they converge at
30 epochs.

In contrast to the NTHU dataset, where the eye and
mouth classification proceed independently, Kaggle datasets
have pre-processed ROI that is automatically used to assess
driver drowsiness. As a result, training the eye and mouth
separately can lead to misbehaving in the model operations
and reduce its performances by providing low detection
accuracy, as confirmed in table 4. However, training the
whole ROI, as in the case of the Kaggle dataset, can improve
the model performance and increases the detection accuracy
as illustrated in table 4

C. DRIVING BEHAVIOUR CLASSIFICATION- DROWSINESS
CONFIRMATION MODEL
To select the best parameters, multiple simulations are run
using input sequences of different lengths as shown in table 5.
As a result, the trained model’s best accuracy is obtained at
the sequence of length equal to 16 and with the minimum
records, where it reached 93%. For the final detection of
drowsiness, LSTM achieved high performance in terms of
precision, recall, and F1-score. Figure 7 shows that the model
provides a detection precision of 93% and 92% for the not
drowsy and drowsy classes respectively. Similarly, the not
drowsy classes achieved high recall and F1-score of 98% and
95% respectively compared to the drowsy class that achieve
81% and 86% for recall and F1-score. Figure 8 presents the
Macro-Average and Weighted-Average are used to calculate
precision, recall, and F1-Score for each category regardless
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FIGURE 5. Training vs. Validation Accuracy and Loss for Eye Detection.

FIGURE 6. Training vs. Validation Accuracy and Loss for Mouth Detection.

FIGURE 7. Prediction Performances of Driving Behaviour Classification.

FIGURE 8. Average metrics of Driving Behaviour Classification.

of their proportion in the dataset. Both metrics achieved
similar precision of 93%while they are different for recall and
F1-score where macro-avg is lower than weighted-avg.

VI. CONCLUSION AND FUTURE WORK
This paper proposes a drowsiness detection system that
can provide accurate drowsiness detection. It is deployed
on a distributed architecture, allowing it to overcome the
drawbacks of deploying critical systems on centralized
architectures. The drowsiness detection is implemented using
two-stage detection: local detection through facial expression
and global detection through the fusion of local and driving
behavior detections. Using CNN models for eye and mouth
classifiers achieve 97.3% and 98.2%, respectively. The
overall drowsiness status is determined based on the output
of the two classifiers and the car’s accelerometer readings.
the driver behavior classification model confirmed that driver
drowsiness detection is processed at the edge level using
LSTM algorithm, which achieved 93% accuracy. In future
work, more parameters will be considered as heart rate and
sensor body readings to confirm the drowsiness of the driver.
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