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ABSTRACT Automatic Modulation Classification (AMC) is a critical issue in electromagnetic spatial
perception. Currently traditional recognition techniques are difficult to adapt to complex signal situations.
Most existing modulation classification algorithms ignore the complementarity between different features
and the importance of feature fusion. Based on this, we proposed a method for image feature fusion for AMC
that fully uses the complementarity between different image features. The original signal is converted into an
image by the Gramian Angular Field (GAF) method, and the GAF image is used as the input to the network,
meanwhile the received signal is converted from the Inphase-Quadrature (I-Q) domain to the r-θ domain
using the Accumulated Polar Feature conversion technique, and the original signal is feature coded from
the r-θ domain and then converted into an image. The fused features of the two images are used as input
to the neural network for model training to achieve automatic modulation classification of multiple types
of signals. In the evaluation phase, the differences in the recognition effectiveness of the proposed method
by different neural networks are discussed. Experiments show that the best performance is achieved using
the Swin-Transformer network model, with a more than 90% recognition rate for the modulation method at
signal-to-noise ratios greater than 4dB.

INDEX TERMS Modulation classification, Gramian angular field, accumulated polar feature, feature fusion.

I. INTRODUCTION
With the rapid development of wireless communication tech-
nology, the limited spectrum resources can not meet the
increasing demand for wireless communication devices. Cog-
nitive Radio (CR) technology can improve spectrum uti-
lization efficiency by adjusting transmission parameters in
Real-time through intelligent learning and aware-ness of the
spectrum environment. AMC is one of the basic schemes in
CR, which can identify multiple modulations from unknown
signals and is an essential component of non-cooperative
communication systems. With the increase in the number of
transmitter types and interference sources and the influence
of complex wireless environments on the transmitted signals,
the identification algorithm in a single scenario is no longer
applicable. Therefore, it is necessary to develop modulation
classification algorithms adapted to the complex environment
of wireless communication, which can not only automatically
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extract deep features of the signal to improve accuracy but
also have high recognition accuracy with a low signal-to-
ratio [1], [2].

There are two main methods for the current modulation
classification algorithm. The first is simple manual calcu-
lation classification algorithm. The second is deep learning
based automatic modulation classification algorithm [3], [4].
Manually computed classification algorithms in modulation
classification are divided into Likelihood ratio-Based (LB)
and Feature extraction-Based (FB)methods. The LB [5] algo-
rithm calculates and compares the likelihood function value
between signals. Although apparent classification accuracy
can be obtained, the likelihood function is very complex,
resulting in a considerable amount of calculation, which is
extremely difficult to deal with some complex signal types.
The FB [6] algorithm makes up for the shortcomings of
the LB algorithm, the calculation amount reduces a lot,
and the extraction of signal features also achieves good
results. However, the FB method extracts feature based on
specific signal samples and then sets the decision-making
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method. Hence, it is easy to make mistakes in a poor channel
environment.

In recent years, the rapid development of Deep Learn-
ing (DL) techniques has led to remarkable achievements in
areas such as computer vision [7], natural language pro-
cessing [8], and information resource allocation for mobile
networks [9], [10]. The development of DL techniques in
the field of communication is also attracting more and more
attention. Compared with the two previously mentioned man-
ual computational classification methods, DL automatically
learns radio features in the I/Q data in the signal and classifies
the signal modulation based on these features, so DL tech-
niques have been widely used in the field of automatic mod-
ulation classification. The two most basic network structures
of DL technology are Convolutional Neural Network (CNN)
and Recur-rent Neural Network (RNN). In order to adapt
to the complex communication environment, some enhanced
network structures like Convolutional Long term Deep Neu-
ral Network (CLDNN) and Residual Network (ResNet) are
also applied to AMC.

A. RELATED WORK
Use of deep learning techniques to achieve modulation clas-
sification has become the mainstream direction of the sub-
ject. Modulation classification of signals using deep learning
requires a large amount of communication signal data to train
the neural network architecture, and communication signal
data is readily available on the receiver side. Thus deep
learning techniques have a lot of exploration value in the
wireless communication field.

For example, the literature [5] proposes converting the
signal domain into a graph domain, identifying the modu-
lation type using the geometric relationship of the constel-
lation graph, constructing constellation graphs of different
signals, and directly extracting image features using a simple
neural network. The classification of signals using simple
convolutional neural networks was proposed in [11] and [12],
and this method directly performs feature extraction on the
original data signal with fast classification and small net-
work models, which can be directly applied to hardware
devices. However, the disadvantage of low recognition rate
and significant error brought by the simple network model
cannot be ignored. The literature [13] proposed a CLDNN
structure for signalmodulation for classification and achieved
excellent results.

In order to train deeper networks, ResNet is widely used in
the field ofmodulation classification. In addition to the recog-
nition of raw I/Q data, considering that CNN is proposed in
the field of image recognition, [14] proposed to transform the
signal into a two-dimensional image by Spectral Correlation
Function (SCF) and extract complex features from the SCF
image of the received signal by CNN network. This method
takes full advantage of convolutional neural networks, but the
recognition accuracy of a single feature is always weaker than
that of multiple features.

When using neural networks to classify signal modulation,
many scholars have considered preprocessing and manual
feature descriptions of the original signal in an appropriate
form to improve the correctness of the features extracted by
the neural network [15]. The uniform drawback of the work
mentioned above is that it only considers the extraction of
a single feature, ignoring the complementarity between dif-
ferent features. Multimodal approaches have been proposed
in computer vision to recognize images, and a multimodal
fusion model is proposed in the field of automatic modulation
classification [16], [17] to further improve the classification
performance in order to solve the problem of degraded clas-
sification performance in a low signal-to-noise environment
caused by a single feature.

Automatic modulation classification combined with mul-
tiple features has an excellent performance, for example,
the combination of two images: a circular spectrum image
and a constellation diagram [18], a time frequency diagram
and a transient autocorrelation image [19], and two time
frequency diagrams of the signal combining Smooth Pseudo
Wigner-Ville Distribution (SPWVD) and Born-Jordan Distri-
bution (BJD) images [20]. The methods for combining signal
features and sequences are higher-order accumulation and
IQ sequences [21]. Two methods of combining sequences:
Discrete Orthogonal S-Transform (DOST) sequences and
IQ sequences [22].

Although the above methods fuse multiple features, they
have a common limitation: they do not consider the comple-
mentarity between different image features and do not inte-
grate them with an appropriate fusion mechanism. Most of
the existing DL frame-work-based AMCmethods mentioned
above try to characterize the original modulated signal, but
rarely consider the relationship between the signal features
and the network structure, and the recognition effect of dif-
ferent deep learning methods on the signal varies greatly.
Therefore, this paper uses a variety of networks to recognize
the transformed images in order to investigate which network
is the most superior for signal classification.

B. CONTRIBUTION
The innovation of this study can be summarized as follows:

Fully considers the complementary nature of the two sig-
nals image features, encodes the signal as a two dimensional
image by the Gramian Angular Field method, and simultane-
ously maps the complex symbols onto the polar coordinate
image using the cumulative polar coordinate feature trans-
form. Features are extracted from both images simultane-
ously using a neural network structure. The extracted features
are fed into a neural network classifier using the Multi-task
Multi-sensor Fusion (MMF) fusion method.

The stage of experimental simulation firstly used two
convolutional neural networks and two Transformer vision
networks to extract features from two images and found that
the classification accuracy of the Transformer vision network
was better than that of the convolutional neural network.
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Compared the classification accuracy among seven Trans-
former vision networks. The Swin-Transformer network was
found to achieve the best results.

After introducing the related work and the paper’s con-
tribution, Section II presents the modulation method of the
signal, the principle of GAF, and the cumulative polar co-
ordinate constellation image. Section III presents the selected
neural network characteristics and the image feature fusion
method after signal conversion. Section IV presents the data
set used in this paper and the results of simulation experi-
ments. A summary and discussion of the proposed method
are carried out in Section V.

II. METHOD
A. SIGNAL MODEL
Automatic modulation classification is the link between
signal demodulation. The module that handles modulation
classification is usually deployed on the receiving side of
the overall communication system, transmitting the received
modulation information to the demodulator, which then
demodulates it.

FIGURE 1. Cognitive radio receiver operation.

In a wireless communication system, the received signal is
expressed as:

q (t) = a (t) ∗ z (t)+ w (t) (1)

The a (t) represents the signal that is modulated for trans-
mission, and z (t) the represents the impulse response to
external variations in the wireless channel. w (t) is the most
basic noise and interference model: additive Gaussian white
noise. This model increases broadband noise with constant
spectral density and Gaussian distributed amplitude. q (t) is
the signal received by the receiving end, which generally
represents information in I/Q format and is sampled n times
by the analog-to-digital converter at a specific rate, where the
real and imaginary parts denote the I, Q vectors, respectively.
By specific expansion, q (t) is also expressed as:

q (t) = s (t) ej(2π f0+θ0(t))a (t)+ w (t) (2)

The s (t) represents the Rayleigh fading channel in the
wireless communication channel environment. f0 represents
the different Local Oscillators (LO) changing the signal fre-
quency. θ0 (t) represents the phase shift of the signal due to
the Doppler effect. Digital modulation technology has three
primary forms: Amplitude Shift Keying (ASK), the amplitude
of the carrier is modulated by the message signal to take
different values, susceptible to gain changes. Frequency-Shift
Keying (FSK), the frequency of the carrier, takes different
values according to the signal data, well anti-interference but
occupies a large bandwidth. Phase Shift Keying (PSK), the
phase of the carrier is changed, and it can also be used as
timing information to synchronize the clock. Various other
modulation methods are improvements or combinations of
the above methods, and different modulation methods have
different mathematical expressions. a (t) can be expressed as:

a (t) =
[
Em
∑

n
rnd (t − nTS)

]
× cos (2π (fc + fm) t + ϕ0 + ϕm) (3)

The Em represents the modulated amplitude, rn represents
the symbol sequence, and d (t − nTS) represents the signal
pulse. fm represents the modulation frequency, and fc repre-
sents the carrier frequency. ϕ0 represents the initial phase, and
ϕm represents the modulation. Quadrature Amplitude Modu-
lation (QAM) is a combination of amplitude modulation and
phase modulation. It has two orthogonal carriers modulated
rn and vn, so that a (t) can be expressed as:

s (t) =
[
Am
∑

n
rng (t − nTS)

]
cos (2π fct + f0)

+

[
Am
∑

n
vng (t − nTS)

]
sin (2π fct + f0) (4)

B. SIGNAL CONVERSION
1) GAF BASED TWO DIMENSIONALIZATION OF TIME SERIES
SIGNALS
Using the existing knowledge of communication experts, it is
possible to transform the I/Q domain into the r/θ domain
before deep learning to classify the signals. We can deal with
channel fading directly in the r/θ domain. The amplitude can
be mapped to the r-axis and the phase can be represented by
the theta-axis. It is easier to learn the modified parameters
(1r, 1θ ) to eliminate the channel fading in the r/θ domain.

The coordinate system generally used to represent a time
series is the Cartesian coordinate system, which intersects
two number axes at the origin, constituting a planar affine
coordinate system, and the common two-dimensional coor-
dinate system position is determined by a pair of numbers.
A polar coordinate system is one in which a certain point in
the plane, called the pole, is taken, a ray, called the polar axis,
is drawn, and a unit of length and the positive direction of the
angle are selected. The Gramian Angular Field (GAF) uses
a polar coordinate system to represent the time series, and in
the GAF matrix, each element is the cosine of the sum of the
angles [24], [25].

Suppose a time series T = {t1, t2, t3, . . . .., tn}, each time
has a definite value. The time series T is transformed by the
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Piecewise AggregationApproximation (PAA)method, which
converts long series data into short series data by averaging
the time series into multiple segments and each segment is
represented by its corresponding mean value. Reduce all the
values in the transformed time series T to between [0,1] by
the following equation.

tx =
tx −min (T )

max (T )−min (T )
(5)

Reduce all the values in the transformed time series T to
between [−1,1] by the following equation.

tx =
(tx −max (T )+ (tx −min (T )))

max (T )−min (T )
(6)

The time series T̂ is obtained after the reduction. The val-
ues are then encoded as angular cosines and the timestamps
as radii, so that T̂ can be expressed in polar coordinates with
the following equation.

8 = arccos
(
tx
)
, 0 ≤ tx ≤ 1, tx ∈ T̂

r =
gi
N

(7)

where gi is the time stamp, r is the radius, and the interval
is divided into N equal parts to regulate the span in the polar
coordinate system.

The method described above is a new way of represent-
ing time series whose corresponding values change between
different angles within the circle of polar coordinates as the
time series increases. The conversion of the normal time
series values in equation (7) has two important properties.
The first property is that it is bijective because when Φ ∈
[0, π] , cos (Φ) are monotonic, a time series transformed pro-
duces one and only one result in polar coordinates with a
unique inverse mapping; the second property is that unlike
the Cartesian coordinate system, the polar coordinate system
preserves the absolute time relationship [26].

In the cosine function y = cos x. The value field is [0,1],
which corresponds to the definition field [0, π/2], and when
the value field is [−1,1], which corresponds to the definition
field [0, π]. This indicates that rescaled data in different
intervals have different angular constraints, which provides
different Gramian Angular Field information granularity for
the classification task. Gramian Angular Difference (GADF)
has a precise inverse mapping to convert the information in
the polar coordinate system into images.

There are two categories of Gramian Angular Field:
The Gramian Summation Angular Field (GASF) and The
Gramian Difference Angular Field (GADF). Both meth-
ods are used to determine the temporal correlation of dif-
ferent time intervals by the triangular sums or differences
between each point after converting the time series to a polar
coordinate system. The equations for both categories are

as follows.

GASF = [cos (Φa +Φb)]

= cosΦa · cosΦb − sinΦa · sinΦb

= cos arccos
(
ta
)
· cos arccos

(
tb
)

− sin arccos
(
ta
)
· sin arccos

(
tb
)

= ta · tb −
√
1− ta

2
·

√
1− tb

2 (8)

GASF = [sin (Φa −Φb)]

= sinΦa · cosΦb − cosΦa · sinΦb

= sin arccos
(
ta
)
· cos arccos

(
tb
)

− cos arccos
(
ta
)
· sin arccos

(
tb
)

=

√
1− ta

2
· tb − ta ·

√
1− tb

2 (9)

After converting the normal time series into a polar coor-
dinate system, the time series of each time step is used as
a one-dimensional metric space. The metric space is a set
with a distance function that defines the distance between
all elements in the set. This distance function is called the
metric on the set. What is described in the article is the
representation of the distance in the polar coordinate system
after the conversion of the I/Q domain to r/θ .

Using the GASF method as an example, T̂ can then be
converted to matrix G:

[G (T {t1, t2, t3, . . . , tn})]

=

 cos(81 +81) cos(81 +82) . . . cos(81 +8n)
...

. . .
...

cos(8n +81) cos(8n +82) · · · cos(8n +8n)


The Gramian Angular Field provides a way to preserve

temporal dependence, with time increasing with position
from the top left to the bottom right. From the main diagonal,
we can reconstruct the time series from the high level features
learned by the deep neural network.

FIGURE 2. Overall Gramian Angular Field conversion method.(a)original
signal. (b) The images obtained after GASF.

2) ACCUMULATED POLAR FEATURE CONVERSION
In digital communication systems, viewing the signal wave-
form directly in a right-angle coordinate system needs to
be a clearer understanding of its modulation. Displaying the
signal information on the complex plane provides an intuitive
representation of the modulation type of the original signal,
and this method is the principle of a constellation diagram.
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Some literature [23] used CNN to identify constellation dia-
grams and thus achieve the purpose of identifying modulated
signals. The identification process is simple. However, much
temporal information is lost in the planar images, in addition
to Quadrature Phase Shift Keying (QPSK) images are also
easily misidentified as 8PSK and 16QAM images are also
easily misidentified as 64QAM when the noise is too large.

The signals sent to the neural network are converted into
more straightforward classifications before entering them for
recognition. The proposed method of accumulated polar fea-
tures includes three steps, the first step converts the signal
from the I/Q domain to the r/θ domain, the second step
converts the information on the coordinate axes into a gray
image, and the third step converts the gray image into a color
image to better utilize the neural network to extract features.

Step1: Similar to the approach proposed by GAF above,
we similarly convert the signal from a cartesian coordinate
system to a polar coordinate system. The specific knowledge
in the communication system is learned in the polar coordi-
nate system. Signal conversion by polar coordinate system
features can improve the feature extraction part of the neural
network with better performance [27].

The I/Q domain of the signal is converted to the r/θ domain
before the neural network learning, which corresponds to the
conversion of the I/Q axis to the r/θ axis obtained on the
coordinate axes, where I, Q represent the real and imaginary
parts of the complex symbols. r, θ represents the radius and
polar position after conversion to the polar coordinate system,
and L is the symbol length.

r =
√
x2 + y2 θ = arctan(

y
x
) (10)

FIGURE 3. Conversion between I/Q axis and r/θ axis.

Step2: Now the information in the signal is still on the
coordinate axes, and the next step is to convert the trans-
formed symbols on the r/θ axis into a two-dimensional image.
The conversion process can be represented by algorithm 1,
where the range of r-axis is represented by r0, r1, the range of
θ -axis is represented by θ0, θ1, and ur , uθ represents the
image resolution of r-axis and θ -axis respectively.

First, the grid interval 1kr , 1kθ of r-axis and θ -axis is set
according to the input. Then, the transformation symbols on
r-axis and θ-axis are mapped to a point on the image, and
[x, y] denotes the coordinates of r-axis and θ -axis, respec-
tively. Finally, if no symbol is mapped to a point in the image,
the pixel value of the grid-like image Ṁ is set to 1.

Therefore, we obtain the binary image Ṁ with its value set
to 0 or 1. Figure 4 (b) shows the transformed image based on
the polarity feature.

Step3: After the previous transformation, the information
on the polar axis is mapped to a two-dimensional image, but
the image is gray. The historical information of the symbols is
accumulated by adding a time axisT. The accumulated image
is converted from gray to color, and different colors indicate
that the symbols have different probabilities of appearing at
that point. The additive gaussian white noise generated in
the signal passing through the channel can be considered a
random process, which causes a decrease in the accuracy
of the modulation classification, but the symbols with noise
will have a high probability of appearing near the original
point. Using the information in the accumulated symbols,
the higher the probability of appearing in the image, the
darker the color will be, as in Figure 4(c). Finally, Ṁ is
the data input to the neural network. In summary, converting
the signal to polar coordinate representation and then to gray
images finally accumulated into color images improves the
classification accuracy and increases the convergence speed,
significantly reducing the offline training overhead of deep
learning.

Algorithm 1 Calculation Methods for Images
Input r, θ, r0, r1, θ0, θ1, ur , uθ

Initialize Image Matrix Ṁ = 0
Calculate grid interval of r axis (r1 − r0) /ur ← 1kr
Calculate grid interval of θ axis (θ1 − θ0) /uθ ← 1kθ
for n = 0 : N-1 do
Coordinate conversion r axis

[
r[n]−r0

1kr

]
← x

Coordinate conversion θ axis
[

θ [n]−θ0
1kθ

]
← y

if polar feature then Calculate pixel value of black and white
image Ṁ ← [i, j]
else if accumulated polar feature then Calculate pixel value
of grayscale image Ṁ [x, y]+ 1← Ṁ [x, y]
end if
end for
return Ṁ

III. MODULATION CLASSIFICATION SCHEME
The scheme proposed in this paper for the modulation
classification of signals can be divided into three steps:
The first step, the original signal is preprocessed and con-
verted into an image to represent the signal features. The
second step is extracting the classification features using
a neural network. The third step is to fuse the features
extracted from the two images and then input them to the
fully connected layer in the neural network to classify the
signal modulation type. The principle of converting the sig-
nal to an image has been described in Section II. In the
following, the network for feature extraction of the sig-
nal and the basic theory of fusion of the two features are
described.
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FIGURE 4. Three different conversion images of the four signals when
SNR = 18dB. (a)The constellation diagram after the standard I/Q
conversion. (b) Grayscale image when the signal is converted to polar
coordinates. (c) Color image after adding time accumulation.

FIGURE 5. Overall block diagram of the proposed solution.

A. SIGNAL FEATURES EXTRACTION
Machine learning is an approach to artificial intelligence
that continuously learns and predicts data from reality. Deep
learning is a neural network algorithm used bymachine learn-
ing to simulate the human brain for learning, which requires
high power computing power to support. Deep learning-based
methods are capable of automatically learning multi-level
representations of high-dimensional data. CNN and Trans-
former have been found to have better results than other
models in the field of classification and detection. In this
paper, the neural network model uses two different visual
neural net-works to recognize the proposed method. One is
the Deep Convolutional Neural Network, and the other is the
Transformer network model.

Deep convolutional neural networks are mainly modeled
by ResNet and (Convolutional Neural networks) ConvNeXt.
ResNet proposes residual learning to solve the problem of
network training degradation in deep learning. The most
significant difference between residual networks and previ-
ous networks is that there is an additional network shortcut
branch. Because of the existence of this branch, when the net-
work is back propagated, the loss can be directly transmitted
to themore forward network through this shortcut. ConvNeXt

is a recently proposed network structure with powerful clas-
sification capabilities. The ConvNeXt network demonstrates
that traditional convolutional networks still have room for
exploration in image recognition, and batchnorm is an essen-
tial component of ConvNeXt because it improves conver-
gence and reduces overfitting. Using these two convolutional
neural networks for feature extraction and classification is
suitable for the proposed image feature fusion method.

The Transformer adopted Swin-Transformer and Twins-
PCPVT as the main models. Swin-Transformer is a
Transformer-based deep learning model that achieves the
state of the art performance in vision tasks. Using a hierar-
chical Transformer and moving windows brings higher effi-
ciency by limiting the use of self-attention within windows.
Moving allows interaction between two adjacent windows
and cross-window connections between upper and lower lay-
ers, thus achieving a global modeling effect in disguise.

B. FEATURES FUSION
In the subject of automatic signal modulation identification,
most of the methods usually identify and classify single fea-
tures, such as cyclic power spectrum features of the signal,
constellation diagram of the signal, higher-order accumula-
tion of the signal, time-frequency conversion of the signal
into a time-frequency diagram and then feature extraction.
However, the effect of poor classification due to the extraction
of a single feature is worthy of attention. Multi-feature fusion
will achieve complementary advantages between different
features and still have good classification results when the
channel environment is complex. The literature [36] achieved
significant results by converting the original signal into color
time-frequency images by SPWVD and BJD time-frequency
conversion methods, combining the features of both images.
Based on this, in this paper, the MMF method is used for
feature fusion of the two images converted from the orig-
inal signal proposed earlier, which reduces the complexity
by connecting all features of all modes and adding penalty
terms between eachmodal feature and the connected features.
It con-siders not only the features of individualmodes but also
the relationship between the two feature images is considered.
During training, penalty terms are added between the two
image feature labels to reduce the complexity of the network
and improve the classification accuracy of the signal by deep
learning.

MMF is proposed because the input contains two features
of the same information and the penalty between the two pre-
dicted labels needs to be considered. Amethod for probability
distributions, called Kullback-Leibler scatter (KL) [28], [29]
was first introduced. KL scatter originates in information the-
ory, where the main goal is to quantify howmuch information
is in the data. The most critical metric in information theory
is called entropy. Entropy is defined as:

H = −
∑N

i=1
p (xi) log p (xi) (11)
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The Kullback-Leibler scatter is only a slight modification
of our entropy formula. Bringing the actual distribution of
the data p and the theoretical distribution of the data q into
KL is to derive the asymmetry of the difference between the
two probability distributions. Check the difference for each
logged value.

DKL (p ∥ q) =
∑N

i=1
p (xi) (log p (xi)− log q (xi)) (12)

More common ways to view KL dispersion:

DKL (p ∥ q) =
∑N

i=1
p (xi)

(
log

p (xi)
q (xi)

)
(13)

KL scatter has two essential properties: non-negativity and
asymmetry. In deep learning, the training distribution q keeps
approaching p, and when the fitted distribution tends to 0,
the KL scatters to infinity, and the fitted distribution tends
to cover all the ranges of the theoretical distribution when
the distance between the minimum fitted distribution, and the
actual distribution is used for forwarding KL scatter.

The Jensen-Shannon divergence (JS) [30], [31] scattering
constructs a symmetric scattering formula that takes values
between 0 and 1.

u =
p+ q
2

DJS (p ∥ q) =
1
2
KL (p ∥ u)+

1
2
KL (q ∥ u) (14)

Substitution into the above equation yields:

DJS (p ∥ q) =
1
2

∑N

i=1
p (x) log

p (x)
p (x)+ q (x)

+
1
2

∑N

i=1
q (x) log

q (x)
p (x)+ q (x)

+ log 2

(15)

By denoting zri as the distributed features of the two image
features at the moment i, r as the first image feature or the
second image feature, and zci as the feature after the con-
catenation of the two image features at the moment i. β =

{θc, θ r } as the model parameters obtained after the neural
network training, then the loss function of the whole feature
model can be written as:

L (β) =
1
N

∑N

i=1
JS
(
ti ∥ pθc

(
zci
))

+
1
N

∑2

r=1

∑N

i=1
JS
(
pθc

(
zci
)
∥ pθ r

(
zri
))

+
u
2
∥ θc ∥2 +

µ

2
∥ θ r ∥2 (16)

where ti represents the actual probability distribution of the
type of signal modulation, N represents the training samples
before input to the neural network, and µ is a parameter
set before the neural network starts learning, not obtained
through network learning. The third and fourth parts of the
above equation are the regularization used to avoid overfitting
so that each variable has a little effect on the prediction.

Where the probability distribution pθ (zi) is obtained by
bringing into the softmax function, the multilayer neural net-
work in the penultimate layer output is not easy to regularize
the results are challenging to handle. Normalization using the
softmax function leads to:

pθ (zi) = soft max (zi) =
1∑K

k=1 e
θTK zi

×

[
eθ

T
1 zi , eθ

T
2 zi , · · · , eθ

T
k zi
]T

(17)

K in the above equation represents the sum of the modu-
lation types of the signal. In the process of model parameter
learning, the gradient descent method is used to continuously
deoptimize and repeatedly update the model parameters until
convergence to achieve the purpose of optimizing the model.
Putting (16) performing gradient descent method derivation
yields.

∂L (β)

∂θc
=

1
N

∑N

i=1

∂JS
(
ti ∥ pθc

(
zci
))

∂θc
+ µθc

+
1
N

∑2

r=1

∑N

i=1

∂JS
(
pθc

(
zci
)
∥ pθ r

(
zri
))

∂θc

∂L (β)

∂θ r
=

1
N

∑2

r=1

∑N

i=1

∂JS
(
pθc

(
zci
)
∥ pθ r

(
zri
))

∂θc
+ µθ r

(18)

The solution can be brought in for the calculation of
∂JS(pθc(zci )∥pθr (zri ))

∂θc
using the KL formula(19).

∂
∑K

K=1 JS
(
pθc

(
k| zci

)
∥ pθ r

(
k| zri

))
∂θcjl

=

K∑
k=1

ln

(
2pθc

(
k| zci

)
pθc

(
k| zci

)
+ pθ r

(
k| zri

)) ∂pθc
(
k| zci

)
2∂θcjl

(19)

where θcj and θcjl denote a sub-vector of θc and the l − th ele-
ment of θcj respectively. The model parameters β = {θc, θ r }

need to be updated each time the neural network undergoes
training iterations to derive them because the communication
signal dataset is extensive, and small batches are used to
speed up the learning of model parameters. G1 and G2 are
set as different features of the signal after conversion into
an image. In order to obtain the feature fusion results, the
two original signal datasets are randomly divided into small
batches for network training so that two different features
G1 and G2 are connected to obtain Gc, first give the model
parameters β = {θc, θ r }a random value, randomly select
small batches of G, use the previously mentioned gradient
descent method to continuously update the parameters and
loss function (18), as the parameters are constantly updated,
(16) is also constantly updated. Finally, the above process is
repeated until the optimal solution is reached.

In the prediction process after network training, the final
probability distribution can be obtained using the following
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equation, where p is the expected label distribution.

min
p
L
(
p| pθ1 , pθ2

)
=

∑2

m=1

∑K

K=1
p (k) ln

(
p (k)
pθm (k)

)
s.t.

∑K

K=1
p (k) = 1 (20)

Finally, the Lagrangian function is constructed by
equation (21) to obtain the classification probability of the
model for various types of modulated signals.

p(k) =

√∏
mpθm (k)∑ 10

j

√∏
mpθm (j)

(21)

The experimental results show that the recognition effect
after feature fusion is significantly higher than the method
without feature fusion.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASET
1) THE GAF IMAGE DATA
The RadioML(RML) 2016.10a dataset was used. The dataset
was generated based on the GNU Radio environment and
contained 11 modulation signals, each modulation signal
includes 20 SNRs. Each SNR has 1000 samples, each sample
has two signals: I and Q, and each signal contains 128 sam-
ples. The modulated signal volume in RadioML2016.10a is
220,000, including signals with SNR ranging from -20dB
to 18dB. Complex channel simulations were performed to
resemble the natural channel environment.

The datasets were converted into images using the GAF
transformation method, and the training, validation, and test
sets were randomly selected in a 7:2:1 ratio under each SNR.
All experiments were implemented using an architecture
with a Pytorch backbone and trained on a computer with
an NVIDIA RTX 3080 GPU. The training phase was set to
100 stages for the first experiment and 200 for the second
round of experiments.

In the training of the neural network on the signal trans-
formed image, the epochs are set at 100 or 200 in the
beginning. In order to keep the loss function decreasing, the
learning rate is multiplied by 0.01 to improve the accuracy
of network recognition if there is no decrease in the training
set period, and the loss function is kept decreasing. If the
loss does not decrease within the set period, training will be
stopped. As in standard neural network training, the recogni-
tion accuracy of the network is calculated by comparing the
actual labels of the signal categories with the predicted labels
during the training process.

First, the RML2016a file is converted into a file in .mat
format, the original file format of RML2016 is .pkl format.
After the conversion is completed, useMatlab to open the mat
format file so that you can see the specific values of I-Q two-
way signals in each signal at different signal-to-noise ratios
and convert the values in each signal into .csv file format.
1000× 2× 128 mat format in RML2016 signal, each signal
has a total of 128 groups at one signal-to-noise ratio, and each
group of signals has 1000 sampling points, divided into two

signals. Each signal produces a total of 128 pictures under
each signal-to-noise ratio. The signal-to-noise ratio range in
the dataset is (-20,18), which means that there are a total of
4864 pictures for each signal, and the RML2016a dataset is a
total of 11 signals with a total of 53504 images.

The GAF conversion method requires csv files to be con-
verted so that RML 2016 can be converted into images
and then trained with a neural network to detect the
images. Figure 6 shows the time domain waveforms in the
RadioML 2016.10A dataset at SNR=10dB.

FIGURE 6. Selected signal waveforms of the RML2016.10A dataset. (a)The
time domain waveform of WBFM. (b)The time domain waveform of QPSK.
(c)The time domain waveform of QAM16. (d)The time domain waveform
of GFSK.

When SNR= 12 convert the RML2016a dataset into GAF
images as in Figure 7.

FIGURE 7. Image of data after GAF conversion. (a)The AM-DSB image.
(b)The BPSK image. (c)The QAM16 image. (d)The WBFM image. (e)The
QPAK image. (f)The PAM4 image.
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2) ACCUMULATED POLAR FEATURE CONVERSION
Accumulated Polar Feature plots are first projected from the
I-Q data into cumulative polar coordinates. Signal parameters
were set as follows: sampling frequency and carrier frequency
were the same as in the RML2016 dataset, channel envi-
ronment was additive Gaussian white noise, selective fading
(Rice and Rayleigh distributions), center frequency offset,
sample rate offset, and each example contained 512 samples.
All signal sources were created inMatlab 2020b. For training,
1000 sets were generated for each modulation type under
the same SNR conditions. The process of developing the
signals was repeated seven times, where the SNR ranged from
−20 to 18 dB with 2 dB intervals.

Using Matlab to create the dataset, a similar RF dataset
was generated using Matlab’s Communication Toolbox that
has the same modulation type in radioML, this time with
2 × 1024 points per data sample, but still roughly the same
sign rate, with 1000 samples each (mod, snr).The general
workflow for generating I/Q samples is shown below. Raw
information: Generate random symbols from 0 to M-1 in a
uniformly distributed manner. Convert to I/Q complex form
using the built-in modulation function in Matlab Communi-
cation Toolbox. Up-sample each symbol to obtain 8 samples.
Have a rising cosine filter. Apply channel effects. Normalize
and extract 1024 samples.

Figure 8 shows the cumulative plot of the polar domain
constellations in the dataset when SNR=18dB.

B. CLASSIFY SIGNALS USING FOUR NETWORKS
1) USE TWO TYPES OF CONVOLUTIONAL NETWORKS AND
TWO TYPES OF TRANSFORMER NETWORKS
ResNet and ConvNeXt have the following network param-
eters, size = 224, in_channels = 1024, batch_size = 32,
Optimizer = SGD, weight_decay = 1e-4, lr = 0.1∗32/256.
SwinT and TwinsT have the following network parameters,
size= 224, in_channels= 768, batch_size= 32, Optimizer=
AdamW, weight_decay = 0.005, lr = 5e-4∗32/64. Four net-
work models were used to train and evaluate 11 signals at
SNR = 18, epoches = 100, two convolutional neural net-
works, and two Transformer visual neural networks. Initially,
four networks are used to train and predict the ten signals in
the dataset.

The above pictures and the table clearly show the recogni-
tion effect of the neural network after the fusion of the two
images. It is easy to see that for AM-DSB, four networks
are able to recognize accurately with a recognition rate of
up to 100%, followed by a higher recognition of the PAM4
signal and a lower recognition rate of the signals QPSK and
CPFSK respectively.

It can be found that Swin-Transformer network model has
the best recognition effect. Basically, each signal recognition
rate can reach more than 94%, and the multiple signals recog-
nition rate is 100%. In the Twins-T network, three signals
have the highest recognition rate, while the QPSK signal has
the lowest recognition rate among the four networks, which

FIGURE 8. (a)The RML2016 constellation diagram. (b) Image of data after
Accumulated Polar Feature conversion.

can be explained by the dataset, whose images are similar
to each other, and the main error is the misidentification of
QPSK as BPSK.

Classification accuracy improves significantly with the
increase of signal-to-noise ratio and achieves similar perfor-
mance to other methods at high signal-to-noise ratio. More-
over, convolutional recognition results are considerably lower
than Transformer vision network structure.

2) USE TWO TYPES OF CONVOLUTIONAL NETWORKS AND
TWO TYPES OF TRANSFORMER NETWORKS
Training and evaluation of 11 signals using four network
models at SNR= 10, epochs= 200, two convolutional neural
networks and two Transformer visual neural networks.

The above graph shows that after more training times than
in the previous experiment, the Swin-Transformer network
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FIGURE 9. Test accuracy and train loss values when Epoch equals 100.

model is still found to perform better, and the recognition
effect of ResNet and ConvNeXt is also better than in the

TABLE 1. Prediction accuracy of each signal.

previous round of recognition, but it is not as apparent as
Swin-Transformer, and Swin-Transformer only uses small
size and did not use a larger base or large size. The fusion
mechanism is beneficial for the feature extraction of the net-
work model. Except for SwinT, which classifies every signal
very well, the remaining three networks are less effective in
classifying 8PSK, especially ResNet50, a network structure
where the recognition accuracy is only 43.64%. Considering
that the size of the SwinT network is larger than the other
three networks, it can be inferred that it is the other three
networks that do not extract the features of 8PSK deeply
enough. It is unrealistic to increase the number of network
layers to improve the classification accuracy, and the hard-
ware memory of the signal receiver is minimal.

C. CLASSIFICATION EFFECTS OF SEVEN TRANSFORMER
NETWORKS
Since the Transformer optical network performs well, the
next step is identifying the signals in the dataset with different
Transformer network models at SNR=6. It can be seen that
the Swin-Transformer network is still the best performer, and
the recognition results are shown in the figure below.

During the experiments, it was found that the recogni-
tion effect of the Transformer network is significantly better
than that of the convolutional neural network, especially the
Swin-Transformer, which is based on the idea of the ViT
model and innovatively introduces the sliding window mech-
anism, allowing the model to learn the information across
the window and by down sampling layers, it enables the
model to handle super-resolution images, saving computa-
tional effort as well as being able to focus on global and local
in-formation.

The sliding window operation has a very significant accu-
racy for feature extraction of both images, including non-
overlapping local windows and overlapping cross windows.
When computing image attention for GAF images or cumula-
tive polar coordinate images, the computational effort can be
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FIGURE 10. Test accuracy and train loss values when Epoch equals 200.

significantly reduced by restricting to a window of fixed size.
The hierarchical design of down sampling gradually increases

TABLE 2. Prediction accuracy of each signal.

FIGURE 11. The average recognition accuracy of seven Transformer
neural networks with SNR =6 for eleven signals after 100 epochs of
neural network training.

the perceptual field, thus allowing the attention mechanism to
notice global features.

The whole model adopts a hierarchical design, containing
four stages, except for the first stage. Each stage will first
reduce the resolution of the input feature map through the
PatchMerging layer and perform the down sampling opera-
tion to expand the field of perception layer by layer like CNN
to obtain the global information. This measure has dramati-
cally improved the recognition accuracy of the proposedGAF
images and cumulative polar coordinate transformed images.

D. COMPARISON OF THE AVERAGE RECOGNITION
ACCURACY OF SWIN-TRANSFORMER AT EACH
SIGNAL-TO-NOISE RATIO
In the overall framework of the Swin-Transformer network,
firstly, the converted images of both signals are input to
the PatchPartition layer for a chunking operation and then
sent to the Linear-Embedding module for channel number
channel adjustment. Finally, the final prediction results are
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FIGURE 12. Structure of Swin-Transformer network.

obtained through the feature extraction and downsampling of
Stage1,2,3,4, and the image size will be reduced to 1/2 of the
original size, and the channel will be expanded to twice the
original size after each stage, similar to the convolutional neu-
ral network. The Swin-Transformer-Block in each Stage con-
sists of two connected Transformer-Blocks, which contain
two base networks, Window Multi-head Self-Attention (W-
MSA) and Shifted Window Multi-head Self-Attention (SW-
MSA), as shown in figure13. These two networks improve the
computational performance through the Window mechanism
of the visual Transformer and the ShiftedWindow mecha-
nism. The whole Swin-Transformer-Block structure contains
two Window-Attention, where the first Attention mechanism
is also known as Attention operation within each Window,
and the second Window-Attention models the global data to
extract features.

In order to reduce the computational complexity, Swin-T
divides the input image into non-overlapping windows, and
then performs self-attention calculation in different windows,
each window containsM×Mpatches. TheW-MSA is divided
into several fixed windows, and the pixels in each window
can only be inner-product with other pixels in that window to
obtain information, which greatly reduces the computational
effort and improves the efficiency of the network.

In the SW-MSAmodule, although theW-MSA reduces the
computational effort by dividing the windows, the accuracy
of the network is affected by the fact that the windows cannot
interact with each other to obtain more globally accurate
information.

In order to realize the information interaction between
different windows, the windows are slidable, the windows
are offset to contain different pixel points, and then the
W-MSA calculation is performed, and the results of the two
W-MSA calculations are connected to combine the informa-
tion contained in the pixel points of two different windows to
realize the information common between the windows. The
SW-MSA mechanism completes the MSA calculation of the
pixel points of the offset window and realizes the information
exchange between different windows, thus indirectly expand-
ing the ‘‘field of perception’’ of the network and improving
the efficiency of information utilization.

The core of the Transformer model is the self-attention
mechanism, while the core of the CNN model is convolution
and pooling. the Transformer model can learn the correlation
between the data, and the images generated by transformation

FIGURE 13. Swin-Transformer blocks.

in the dataset RML2016A used in this paper have a strong cor-
relation between the before and after information, and in this
particular aspect Swin Transformer is more effective than the
normal ResNet. The CLDNNnetworkmodel is more accurate
than CNN or LSTM alone in modulated signal classification
using deep learning because the advantages of the latter two
networks are fitted together, and Swin Transformer achieves
excellent results by combining the advantages of both CNN
and Transformer.

As shown in figure 14, all signal-to-noise ratios of signals
in the entire dataset are classified using Swin-Transformer.
The results show that the classification accuracy can reach
more than 90% at more excellent signal-to-noise ratios
than 2 dB. Using the method proposed in this paper can bring
the same results as the mainstream methods. However, one
of the drawbacks is the large size of the network model,
the ample memory space it occupies, and the long classifi-
cation time of the extensive network model. We have used
simple neural networks such as MobileNet and MobileVIT
to classify the proposed method, but the results are poor.
Maintaining accuracy while keeping the network size small
is a problem that we will continue to explore.

The classification accuracy of the Swin-Transformer
model was tested using validation samples. 92% accuracy
was achieved at SNR=18, and 87% accuracy was achieved
at SNR=0, which is still a good performance at a low signal-
to-noise ratio. However, the recognition accuracy of WBFM
signals is still lacking, and the classification accuracy of this
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FIGURE 14. The average recognition accuracy of Swin-Transformer for
eleven signals with different signal-to-noise ratios.

FIGURE 15. Comparison of the average recognition accuracy of eleven
signals using feature fusion and without feature fusion.

signal type will be improved separately in the subsequent
work.

E. PROVE THE EFFECTIVENESS OF FEATURE FUSION
The model proposed in this paper outperforms the other two
models, especially at low SNR. Considering the poor signal
transmission conditions in real communication environments,
it is more valuable to have high classification accuracy at
low SNR states. We can also find that Swin-Transformer
performs better than other networks in various types of signal
classification, especially in DSB, GFSK, PAM4 and BPSK;
that is because GAF images and cumulative polar coordinate
contain more information than IQ sequences. Moreover, the
above results further reflect that GAF is the advantage of GAF
in modulated signal characterization.

Signal feature classification using Swin-Transformer for
three methods. The figure shows that when SNR=0, the
average recognition rate is only 77.59% for GAF images
and 83.81% for cumulative polar charts. Still, when the two

FIGURE 16. Confusion matrix of three methods.

features are fused and the neural network is used to recog-
nize them, the recognition rate is as high as 87.82%. When
SNR=18, the average recognition rate for GAF images is
82.98%, while the average recognition rate for cumulative
polar maps is 86.314%, and the recognition rate after the
fusion of two features reaches 92.94%. Compared with the
results of neural networks for single signal feature classifica-
tion, the fused image feature classification using neural net-
works for both signal transformations significantly improves
accuracy.

The prediction results of the three classification network
models for various types of modulated signals can be visu-
alized in Figure 16. Each column of the confusion matrix
represents the true category and each row represents the
predicted category. The results show that the Feature fusion
classification model has high recognition accuracy for all
types of signals and good robustness in a low signal-to-noise
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environment. The advantages of the proposed method are
mainly reflected in two aspects: one is the complementary
advantages achieved in the extraction of two image features;
the other is the role of the feature fusion mechanism.

The image-based representation method represents the
received signal as an image, combines the DL framework
for automatic feature extraction, and converts the sequence
signal recognition into recognition of the image. The method
proposed in this paper fully considers the features of both
images, and the experimental results show the value of the
method in the field of AMC.

F. COMPARISON WITH EXISTING METHODS
In this section, a series of comparative experiments based on
the dataset are performed onmodulated signals to evaluate the
performance of our method. Themethod using single features
in AMC is analyzed and compared with the dual-mode fusion
method proposed in this paper to demonstrate the advantages
of feature fusion using GAF images and cumulative polar
coordinate images. The fusion mechanism proposed in this
paper has apparent advantages over the single-feature AMC
method.

As shown in figure 17, the proposed method in this paper is
compared with existing methods that perform feature extrac-
tion directly on sequences [32]. The proposed method has a
clear advantage at low signal-to-noise ratios, with an average
of 10% higher accuracy than the network with the worst
recognition accuracy and a maximum recognition accuracy
at high signal-to-noise ratios.

Sequence representation-based methods are common in
AMC, although the sequence representation method directly
performs I/Q sequence or AP sequence feature extraction
and recognition on the received signal, which has the advan-
tage of being computationally small and fast. However, the
method proposed in this paper combines the features of
both images to extract complex features of the signal, and
the classification effect is better than that of the sequence
representation-based method. Therefore, the sequence repre-
sentation method requires a practical and reasonable CNN
network or RNN network according to the signal charac-
teristics. If the network structure is very simple or unrea-
sonable, the modulation classification will obviously show a
poor result. The performance of the method decreases at a
low signal-to-noise ratio, so different representation methods
need to be selected according to the noise environment.

As shown in figure 18, the proposed method is compared
with the direct use of deep learning for constellation images.
The proposed method has significant advantages in both low
and high signal-to-noise ratios [33]. The method using con-
stellation diagrams has existed for a long time, although it is
simple, it has obvious drawbacks and weak anti-interference
ability in the case of complex channel environments. Based
on the constellation diagram representation, the received sig-
nal is represented as a constellation diagram and combined
with the DL framework for automatic feature extraction.
Converting sequence signal identification to constellation

FIGURE 17. Comparison with sequence-based method.

FIGURE 18. Comparison with constellation method. Converting I/Q time
series to constellation charts, Generate four types of image datasets with
different resolutions.

diagram has better performance than feature representation
and sequence representation methods. However, using indi-
vidual image methods alone also has limitations because
hierarchical image information requires deeper and more
complex CNN to achieve the feature extraction task.

To solve these problems, feature fusion mechanism is
designed to avoid the drawbacks of single feature represen-
tation. GAF image and cumulative polar coordinate image
extraction features are implemented by Swin-Transformer to
reduce the complexity of the network by adding penalty terms
between the two features, and JS scatter is used to transform
the classification problem mapping to a probability problem.
Also, in training a regularization term is added to the loss
function to avoid overfitting avoid overfitting to improve the
classification model’s convergence speed during training.

DL-based modulation classification algorithms represent
raw signals in various formats. Obviously, the original mod-
ulated signal is represented by a combination of multiple
features, images or sequences, which can integrate the advan-
tages of various features and obtain better classification per-
formance. In contrast, classification methods that use a fusion
of features from different modalities have a clear advantage
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in the case of low signal-to-noise ratios. It also shows that the
use of uncorrelated and different image combination features
will improve the performance of AMC. The classification
accuracy of the image feature fusion method is better than
that of the sequence feature fusion method. The image feature
fusion method combined with Swin-Transformer [34] has
better classification performance than ResNet at low SNR.
Therefore, it can be assumed that a deeper network structure
will lead to better classification performance. In the method
of [20], SPVD and BJD images are used for modulated signal
characterization, with the disadvantage that the correspond-
ing classification networks are not designed for different
types of images.

In summary, the feature combinations need to be selected
reasonably according to the fusion mechanism of AMC. The
Transformer network has achieved remarkable results in deep
learning and has contributed to many researches, and the
Swin-Transformer network has also achieved many SOTAs
machine vision. The feature fusion method proposed in this
paper combines image features with significant differences
and complementarities. Comparedwith other advancedmeth-
ods, this method shows good robustness in different SNR
environments and excellent performance in AMC classifica-
tion accuracy.

V. CONCLUSION
In this paper, we propose to convert the received raw mod-
ulated signals into GAF and cumulative polar coordinate
images, input these two images into a neural network for
feature recognition, and use a feature fusion method to fuse
the extracted features and in-put them into a neural network
classifier for modulation classification. The results show that
the Swin-Transformer network model has the highest classi-
fication accuracy and can achieve more than 90% recognition
accuracy at high signal-to-noise ratios. By comparing the
method that does not take fusion with the method that uses
neural networks to recognize I/Q signals directly, the method
proposed in this paper still has advantages.

The method proposed in this paper is valuable in terms
of classification accuracy, but it is much slower in terms
of detection time than the method that directly performs
feature extraction on the signal. The next step is to explore
a lightweight network that not only has high accuracy but
also has a short detection time to classify signals. In addition,
using deep learning is a good solution in the field of automatic
modulation classification, how-ever the method requires a
large number of high quality signal datasets, based on how
to extend the dataset and how to improve the recognition
performance by using small samples is a pressing issue.
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