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ABSTRACT Deep learning models need sufficient training samples to support them in the training process;
otherwise, overfitting occurs, resulting in model failure. However, in the field of smart agriculture, there are
common problems, such as difficulty in obtaining high-quality disease samples and high cost. To solve this
problem, this paper proposed a high-quality image augmentation (HQIA)method for generating high-quality
rice leaf disease images based on a dual generative adversarial network (GAN). First, the original samples
were used to train Improved Training of Wasserstein GANs (WGAN-GP) to generate pseudo-data samples.
The pseudo-data samples were put into the Optimized-Real-ESRGAN (Opt-Real-ESRGAN) to generate
high-quality pseudo-data samples. Finally, the high-quality pseudo-data samples were put into the disease
classification convolutional neural network, and the effectiveness of the method was verified by indicators.
Experimental results showed that this method can generate high-quality rice leaf disease images, and the
recognition accuracy of high-quality rice disease image samples augmented by this methodwas 4.57%higher
than that of using only the original training set on ResNet18 and 4.1% higher on VGG11. Compared with
the data augmentation method only by WGAN-GP, the accuracy of ResNet18 increased by 3.08%, and the
accuracy of VGG11 increased by 3.55%. The results demonstrate the effectiveness of the proposed method
with limited training datasets.

INDEX TERMS Rice leaf disease, data augmentation, generative adversarial networks, deep learning, image
super-resolution.

I. INTRODUCTION
Rice is the main food crop for nearly 50% of the world’s
population [1]. Disease is one of the main factors that
directly causes a large reduction in rice production, which
can lead to a reduction of 40–50% or even no grain yield
in severe cases [2]. Therefore, timely detection and deter-
mination of disease types is of great significance to ensure
rice production. The diagnosis and prevention of frequent rice
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diseases are usually based on characteristic disease symp-
toms, requiring field knowledge and experience. For non-
professional researchers, especially farmers, who are not
familiar with the occurrence period and symptoms of rice dis-
eases, artificial misjudgment often occurs, efficiency is low,
and expert dependence is high, making it difficult to accu-
rately and timely treat the disease, resulting in rice production
reduction [3].

To solve this problem, domestic and foreign scholars began
to use automatic image recognition technology for crop dis-
ease diagnosis very early. The earliest date can be traced back
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to 1973, when Indian researchers used remote sensing tech-
nology to obtain rice field images near Mumbai and pattern
recognition technology to identify rice bacterial blight [4].
Later studies focused on using pattern recognition technology
or ma-chine learning technology to classify processed images
of rice plant leaves or panicles for disease image recogni-
tion in rice. Among them, the representative studies include:
Liu et al. [5] applied a support vector machine (SVM) for the
classification and recognition of 15 major diseases on rice
leaves; Charlie Paul et al. [6] realized the extraction, classifi-
cation, and recognition of color, shape, and other features of
disease images based on feature matching (FM) technology;
Anthony et al. [7] also performed disease image recognition
of rice by adopting the membership function (MF) technol-
ogy. This type of research can be divided into two steps. First,
image processing technology is used to extract the feature
information of rice images, and then the extracted features
are classified and recognized through pattern recognition or
machine-learning technology. As image features are the basis
of subsequent recognition steps, the quality of features has
a crucial impact on the generalization performance of the
method. In the early research on disease image recognition,
which features to extract and in which way to extract fea-
tures were determined manually. Therefore, researchers are
required to have a high level of domain knowledge.Moreover,
when there are many kinds of dis-eases, the relationship
between image features is extremely complex, making it dif-
ficult to distinguish effective features and set feature weights,
which inevitably limits the performance of disease image
recognition methods to a certain extent.

In recent years, deep learning technology has developed
rapidly, especially in the fields of image processing and
natural language processing, and has achieved many results.
Unlike traditional machine learning methods, deep learning
learns data features through a large sample dataset, can auto-
matically extract and represent the features of input data
(images or text), and can describe the intrinsic information of
data more accurately and richly. In many fields, deep learning
has shown better performance than traditional methods. In the
research field of rice disease image recognition, some excel-
lent research results have also emerged in recent years. For
example, Liu et al. [4] from the Chinese Academy of Agri-
cultural Sciences realized the recognition of rice leaf blight
images based on convolutional neural networks (CNNs), and
the accuracy rate was over 90%. Huang et al. [8] used the
GoogleNet model of deep CNNs to detect rice blast disease,
and the prediction accuracy reached 92%. Tan et al. [9] used
a deep CNN to realize the image recognition of eight rice
diseases, and the accuracy rate was between 54% and 93%.
Shreyasi et al. [10] applied CNNs to achieve 94% accuracy in
the recognition of individual rice leaf diseases. The proposed
method achieved an accuracy of 78.44% for multi-type rice
leaf disease recognition. These studies are based on deep
learning models, which realize automatic feature extraction
of rice disease images and improve the accuracy of recogni-
tion to a certain extent.

Due to the deep network structure and strong expression
ability compared with traditional models, the model con-
structed by the deep learning method requires a large bal-
anced sample dataset as training support; otherwise, it will
lead to overfitting [11]. Overfitting means that the model is
very effective in training data, but the effect is greatly reduced
when encountering test data, invalidating the model at this
time. Scholars from Cambridge University and Carnegie
Mellon University discussed the number of training sam-
ples required for the CNN model commonly used in the
depth learning method through hypothesis, proof, and ver-
ification [12], and concluded that when the input data is
d-dimensional, the m-dimensional convolutional filter is acti-
vated linearly to achieve prediction error ε. The number
of samples required is Õ(m/ε2)

1
; the number of samples

required for training the full connection layer should be at
least �(d/ε2). To learn a linear activated single hidden layer
CNN model (the output weight dimension is r), the num-
ber of training samples required should be Õm + r)/ε2).
However, in practical applications, researchers often face
the problem of scarce sample data [13]. The number of
samples is too small, or the number of samples of each
type is unbalanced, so an effective deep model cannot be
trained, but it is difficult and costly to collect enough effective
samples. For disease image recognition based on individual
leaves, it is necessary to collect enough training samples
by shooting leaf by leaf, and the acquisition cost is diffi-
cult to predict. Moreover, in the face of a multi-category
disease image recognition problem, to ensure the balance
of training samples, it is also necessary to ensure that the
number of samples of each type of disease is consistent,
making the cultivation of diseased plants and the collection
of images extremely expensive in time, capital, and labor
costs.

In response to these problems, this paper proposes a high-
quality image augmentation (HQIA) method for generating
high-quality rice leaf disease images based on a dual gen-
erative adversarial network (GAN). This method first uses
the image generation GAN network to generate the initial
image and then uses the image super-resolution GAN net-
work to enhance the image quality of the generated ini-
tial image. This method combines image generation and
image super-resolution GAN networks and finally generates
high-quality rice leaf disease images.

The contributions of this paper include the following three
aspects:

1) The proposed method used two GAN networks to gen-
erate high-quality images of rice leaf disease. The first
GAN network, WGAN-GP, was responsible for gener-
ating the initial image, and the second GAN network,
an optimized Real-ESRGAN network (named Opt-
Real-ESRGAN), was responsible for super-resolution
enhancement of the generated image to achieve image
clarity improvement. Through the combination of the
two GAN networks, high-quality rice disease image
samples were generated, and the fine-grained features
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of the disease image were generated to the maximum
extent.

2) When applying the Opt-Real-ESRGAN network for
super-resolution enhancement, the network structure
was optimized, network stability was enhanced, the
image super-resolution generation speed was acceler-
ated, and the generated samples were more suitable for
rice disease image recognition.

3) Experiments were carried out on the real dataset and
the image sample dataset generated by the proposed
method using the VGG11 and ResNet18models, which
are commonly used in the field of disease image recog-
nition research. The effectiveness of the image data
samples generated by the proposed method was veri-
fied. These samples effectively expanded the training
sample dataset of the disease image model, thereby
improving the performance of the disease recognition
model.

II. RELATED WORKS
With the wide application of deep learning, scholars are
increasingly using the CNN model commonly used in deep
learning methods for the identification of crop diseases and
pests, but the identification of diseases and pests requires a
large number of datasets for model training. However, most
existing datasets in the research field of diseases and pests
have a small sample size. The unbalanced distribution of
disease samples and the collection and labeling process are
time-consuming and have a high economic cost, mainly
because of the lack of and high cost of dataset samples, which
hinders research in this direction. Therefore, data augmen-
tation technology has begun to appear. Data augmentation
occurs mainly with the existing small datasets through vari-
ous algorithms, so that the dataset is expanded into a sufficient
number of reasonable and balanced data samples.

Traditional disease image recognition research usually
uses simple image transformation algorithms for data aug-
mentation in cases of insufficient samples. For example,
Sun et al. [14] used scale transformation and other methods
to balance the number of samples of each plant disease.
Huang et al. [8] used random color transformation to expand
the number of rice disease samples. Ma et al. [15] used
rotation transformation and other methods to expand the
cucumber disease dataset. Bao et al. [16] expanded the apple
disease dataset by adding noise. These data augmentation
methods, such as rotation transformation, mirror transfor-
mation, scaling transformation, translation transformation,
scale transformation, color contrast transformation, and noise
transformation, are based on simple changes of the original
single image sample, and the difference between the gen-
erated image and the original image is small, which cannot
improve the diversity and generalization ability of the dataset.
In 2014, Goodfellow et al. [17] proposed GANs, which can
be divided into two parts: generator and discriminator. The
generator obtains the potential distribution of real data sam-
ples and generates new data samples. The discriminator is

responsible for determining whether the input is real data or
generated data, and the two compete with each other to finally
reach a Nash equilibrium [18]. To improve the problems
existing in traditional image augmentation, researchers began
to introduce GAN into the field of crop disease image recog-
nition for data augmentation. Hu et al. [19] compared the
accuracy of model recognition of different data augmentation
methods on the tea dataset: C-DCGAN [20], traditional data
augmentation, and no data augmentation. The results showed
that traditional data augmentation improved the accuracy of
the model, and the accuracy results of the C-DCGAN model
based on GAN were better than those of traditional data
augmentation, demonstrating that GAN effectively improved
the diversity and generalization ability of the dataset and the
accuracy performance. Subsequently, many researchers have
conducted similar verifications. For example, Wu et al. [21]
used DCGAN [22] to verify the tomato disease dataset
in 2020. Bird et al. [23] used conditional GAN [24] to validate
a fruit dataset. By learning the overall distribution of the
dataset samples and generating an extended dataset consistent
with the sample distribution of the original dataset, GAN can
avoid the problems of insufficient generalization ability based
on a single image change in traditional data augmentation.

Crop disease recognition is essentially fine-grained. Unlike
ordinary image classification tasks, the signal-to-noise ratio
of fine-grained images is very small, and information contain-
ing sufficient discrimination often only exists in a very small
local area. High-quality datasets can bring higher recognition
rates to disease recognition models [25]. Existing research
on GAN-based disease image data augmentation is as fol-
lows: Zeng et al. [26] based crop disease image sample
augmentation onCycleGAN, andRongcheng et al. [27] based
plant disease image sample augmentation on DCGAN. These
disease image sample augmentation studies generally have
problems, such as a small image size and poor image quality,
which obviously do not meet the requirements of high-quality
datasets. To some extent, these issues limit the performance
of existing disease image recognition models.

Wang et al. [28] proposed a deep blind image super-
resolutionmodel (TrainingReal-World blind super-resolution
with Pure Synthetic Data, Real-ESRGAN). The transforma-
tion from a low-quality image to a high-quality image in a real
scene is realized. Inspired by this, this paper attempted to use
image super-resolution technology to improve the existing
GAN image generation algorithm, which has the problems
of a small image size and poor image quality. Image super-
resolution (SR) is the process of using algorithms to restore
degraded images from low resolution (LR) to high resolu-
tion (HR), which is an important technology in computer
vision and imaging. It has a wide range of applications in
medical imaging, image processing, satellite remote sensing,
and other fields. For example, in 2018, Gao et al. [29]
used DR-GAN to perform super-resolution reconstruction
of low-resolution medical images, and the reconstructed
high-definition medical influence helped doctors make the
correct diagnosis. In 2019, Li et al. [30] used ISRGAN
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FIGURE 1. Overview of the high-quality image augmentation (HQIA) method.

to perform super-resolution reconstruction of remote sens-
ing images, and the reconstructed high-definition satellite
images contained more information, improving meteorolog-
ical monitoring and geological exploration. However, there
is no related research in the field of crop disease image
recognition.

To solve the problems of the scarcity of existing crop dis-
ease image recognition samples and the low quality of sample
images generated by existing image augmentation methods.
In this paper, the HQIA method was proposed for generating
high-quality rice leaf disease based on a dual GAN. This
method uses the data augmentation GAN network to generate
a batch of pseudo data samples, and uses the super-resolution
GAN network to enhance the generated pseudo data samples.
Through this method, higher quality disease image samples
were generated compared with traditional research, expand-
ing the training space of the disease recognition model and
improving recognition performance.

III. METHODOLOGY
A. OVERVIEW OF THIS METHOD
In this paper, we proposed the HQIA method, a dual-GAN-
based method for high-quality rice leaf disease generation.
This method used a WGAN-GP network to generate image
samples, and then used an optimized Real-ESRGAN (named
Opt-Real-ESRGAN) network for super-resolution to enhance
the generated image samples. The basic framework is shown
in Fig. 1. In this chapter, the implementation process and
implementation of HQIA are introduced in detail.

The basic implementation process of HQIAwas as follows:
1) The real rice disease image sample dataset ImgA was

inputted into WGAN-GP for training, and the pseudo
image data sample set ImgGene was generated.

2) IMGH+ training Opt-Real-ESRGAN was used to
obtain the trained-Opt-Real-ESRGAN. ImgGene was
inputted to the trained-Opt-Real-ESRGAN generator,
and the output ImgH−Q had super-resolution.

3) The dataset ImgH−Q was inputted into the image recog-
nition model for training, and the trained image recog-
nition model ModelTrained−Classification was obtained.

4) When a new disease image appeared, the image was
inputted into ModelTrained−Classification to obtain image
recognition results.

B. DATA SAMPLE GENERATION BASED ON THE WGAN-GP
The first step of HQIA was to input the real disease sample
dataset ImgA into the WGAN-GP. Through iterative training
of the generator and discriminator, a trained

WGAN-GP generator was used to generate the initial data
augmented sample ImgGene.

1) NETWORK ARCHITECTURE
As shown in Fig. 2, theWGAN-GP based on a neural network
was divided into two parts: generator (G) and discrimina-
tor (D). The general learning process was as follows: as the
input of G, z was noise, which could be Gaussian noise, usu-
ally uniform noise. G generated new data samples with given
noise by learning the mathematical distribution state of real

VOLUME 11, 2023 21179



Z. Zhang et al.: High-Quality Rice Leaf Disease Image Data Augmentation Method Based on a Dual GAN

FIGURE 2. WGAN-GP’s generator (top) and discriminator architecture (bottom).

data samples. D also learned the mathematical distribution
state of real data samples and then identified the data samples
generated by G as real or generated data samples. According
to the judgment results of D, D, and G improved their model
parameters. They competed with each other and eventually
reached Nash equilibrium.

2) OBJECTIVE FUNCTION
WGAN-GP was selected as the data augmentation net-
work for HQIA. WGAN-GP was based on WGAN to
increase the gradient penalty mechanism. To better under-
stand WGAN-GP, we first introduced the objective function
of the WGAN [31]. This is shown in Eq. 1 below:

WGAN =
min
G

max
D ∈ D =

E
x ∼ Pr

[D (x)] −
E

x̃ ∼ Pg
[
D (x̃)

]
,

(1)

where D is a set of 1-Lipschitz [32] functions, x is real data
or real pictures, E is mathematical expectation, Pr is the
probability distribution of x, x̃ is the random noise of the
input, and Pg is the probability distribution of x̃.

WGAN is prone to the problem of gradient explosion.
Thus, the gradient penalty GP term [31] was added to the

discriminator loss function of the WGAN-GP network
instead of weight clipping to enforce Lipschitz constraints
to avoid gradient explosion. The objective function of the
gradient penalty mechanism is given as Eq. 2 below:

GP = λ
E

x̂ ∼ Pg

[
(||∇x̂D

(
x̂
)
||2−1)2

]
, (2)

where x̂ represents random interpolation sampling on the line
connecting Pr and Pg.

TheWGAN-GP network objective function after introduc-
ing the gradient penalty mechanism is shown in Eq. 3:

WGAN − GP = E
x̃∼Pg

[D(x̃)] − EE
x∼Pr [D(x)]︸ ︷︷ ︸

Original critic loss

+ λE
x̂∼Pg

[(∥∥∇x̂D(x̂)
∥∥
2 − 1

)2]︸ ︷︷ ︸
Our gradient penalty

. (3)

C. IMAGE SAMPLE SUPER-RESOLUTION ENHANCEMENT
BASED ON OPT-REAL ESRGAN
The second step of HQIA was to adopt the Opt-Real-
ESRGAN network for the super-resolution of the generated
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FIGURE 3. Opt-Real-ESRGAN network structure diagram.

image. The super-resolution training dataset IMGH+ was
used to train Opt-Real-ESRGAN, and the trained-Opt-Real-
ESRGAN model was finally obtained through continuous
iterative training. The data augmentation sample ImgGene
obtained in the previous step was inputted into the generator
network of the trained-Opt-Real-ESRGANmodel to generate
the high-quality disease dataset ImgH−Q.

1) NETWORK ARCHITECTURE
Opt-Real-ESRGAN was divided into two parts: G and D.
According to the mapping relationship between the high-
resolution image and the low-resolution image, G used the
input low-resolution image through a series of operations,
such as Conv2D, AvgPool2d, LeakyRelu, and Upsampling,
and finally output the high-resolution image. Dwas the U-Net
discriminator based on spectral normalization (SN). It dif-
fered from the traditional discriminator in that it needed to
produce gradient feedback of accurate local texture rather
than simply judging the global style. The output was the
probability that each pixel was correct and provided detailed
pixel-by-pixel feedback to the generator. Finally, results G
andDwere fed back and optimized according to the judgment
of D.

The Opt-Real-ESRGAN network structure designed in this
paper is shown in Fig. 3. Compared with the Real-ESRGAN

model designed by Wang et al. [2], the Opt-Real-ESRGAN
model in this paper added aAvgPooling layer before the Basic
Block module of the generator because the Real-ESRGAN
model was too large. This costs a lot of time and machine
performance in image super-resolution. Increasing the Avg-
Pooling layer reduced the size of the image, enhanced the
generalization ability, reduced the number of neurons, and
reduced the calculation amount of the network model while
retaining the characteristics of the original image. We verify
this statement in the experimental section.

2) IMAGE DEGRADATION
In the process of image generation, storage, processing
and transmission, the imperfection of the imaging system,
recording device, transmission medium, and process-
ing method lead to the degradation of image quality,
called image degradation. The image super-resolution net-
work realized the restoration of images from low to
high resolution by learning the mapping relationship
between high-resolution images and degraded low-resolution
images. The image super-resolution network realized the
restoration of images from low to high resolution by learning
the mapping relationship between high-resolution images
and degraded low-resolution images. The image degradation
process of Opt-Real-ESRGAN mainly included four steps:
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FIGURE 4. Image degradation process.

Blur, Resize, Noise, and JPEG Compression. Blur used
Gaussian and 2D sinc filters. The down-sampling factors used
by Resize were bicubic, bilinear, and area. Noise was
used for Gaussian noise, Poisson noise, Color noise, and Gray
noise, and Compression was JPEG Compression. Opt-Real-
ESRGAN uses a high-order degradation model. A high-order
degradation model means that the image is degraded n times
(Eq. 4), whereas the classical degradation model (Eq. 5) is
used for each degradation process. However, Blur, Resize,
Noise, and JPEG Compression were random at each step.

x = Dn(y) = (Dn ◦ · · · ◦ D2 ◦ D1)(y). (4)

x = D (y) =
[(
y k

)
↓r +n

]
JPEG , (5)

where y is the original image, k is the blur kernel, ↓r is the
down-sampling factor, n is the noise, and JPEG is the JPEG
compression. These degradation modes are widely used in
real-world images. One degradation process of the image is
shown in Fig. 4.

3) OBJECTIVE FUNCTION
The graph super-resolution GAN network is different from
the image generation GAN network, which needs to per-
ceive the subtle differences between low-resolution images
and high-resolution images. In the Real-ESRGANS network,
L1 loss, perceptual loss, and GAN loss were used. The objec-
tive function is defined as in Eq. 6:

Ltotal = w1Lperceptual + w2L1 + w3LGAN , (6)

where Lperceptual represents Perceptual loss, L1 represents
L1 loss, LGAN represents GAN loss, and w1, w2, w3 represent
the weights corresponding to their respective loss functions.
Lperceptual uses this loss function to improve the perceptual

quality of the image and reconstruct the texture and details of
the image. The objective function is defined as in Eq. 7:

Lperceptual =
1

CiHiWi
∥Di (G (x)) − Di(y)∥22, (7)

where Di is the ith layer of the discriminator subnetwork,
Ci is the number of channels corresponding to the ith layer,

Hi and Wi are the length and width of the ith layer feature
map, respectively.

The L1 loss function is also a commonly used loss func-
tion in super-resolution networks, which can calculate the L1
distance between the output image and the real image. The
objective function is defined as in Eq. 8:

L1 = EILR ∥ G (ILR) − IHR ∥1, (8)

where ILR is the low-resolution image, and IHR is the high-
resolution image.
LGAN recovered the high-frequency detail information

in the low-resolution image so that the generated high-
resolution image passed the discrimination of the discrimi-
nator with the maximum probability. The objective function
is defined as in Eq. 9:

LGAN =
min
G

max
D

= [log (D)]+[log (1 − D (x̃))], (9)

where G is the generator, D is the discriminator, and x̃ is the
super-resolved image.

D. TRAINING IMAGE RECOGNITION MODELS ON
REAL-GENERATED DATA
The ImgH−Q disease data sample generated in the previ-
ous step was merged with the real disease data sample
ImgA, and the merged disease dataset was sent to the dis-
ease classification model ModelClassification. After training,
we finally obtained the trained disease classification model
ModelTrained−Classification. The process is shown in Fig. 5.

FIGURE 5. Disease classification model training.
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E. DISEASE IMAGE RECOGNITION
When a new disease image was obtained, the disease image
was inputted into ModelTrained−Classification in the previous
step, and the model output was the disease type of the image.
The process is shown in Fig. 6.

FIGURE 6. Recognition of disease images.

IV. EXPERIMENTS
A. EXPERIMENTAL DATASET
Three representative rice diseases were selected for the
dataset in this paper: brown spot, leaf blast, and bacterial
blight. Brown spot and leaf blast disease datasets were previ-
ously used in [33], and bacterial blight disease datasets were
obtained from the Hefei Institute of Intelligent Machinery,
Chinese Academy of Sciences [34]. Fig. 7 is an example
diagram of these three diseases. To avoid the poor diversity
of model recognition caused by the different numbers of sam-
ples of each disease, the number of samples of each disease
type was balanced, and 846 rice disease leaf samples were
selected for each disease, and a total of 2538 rice disease leaf
samples were selected. The images were stored in jpg format,
and the size was normalized to 300∗300 pixels. Table 1 shows
the basic situation of the dataset.

TABLE 1. The rice leaf dataset.

FIGURE 7. Leaf disease image samples in the dataset.

The disease dataset Img was divided into a training set ImgA
and test set ImgB with a 1:1 ratio, and the relationship between

the two was as follows:

Img = (ImgA, ImgB). (10)

ImgA ∩ ImgB = ∅. (11)

ImgA ∪ ImgB = Img. (12)

B. PERFORMANCE METRICS
Many researchers use accuracy, precision, recall, and
F1-measure as indicators to evaluate classification perfor-
mance and select the best round for evaluation. In this paper,
they were selected as criteria for the recognition performance
of disease images. They are defined as follows:

Accuracy =
tp+ tn

tp+ fp+ tn+ fn
, (13)

Precision =
tp

tp+ fp
, (14)

Recall =
tp

tp+ fn
, (15)

F1 − measure =
2 × Precision×Recall

Recall + Recall
, (16)

Accuracy (Eq. 13) is the ratio of the number of correctly
classified predictions to the total number of predictions;
generally speaking, the higher the accuracy, the better the
classifier. However, in the case of binary classification and
unbalanced positive and negative samples, especially when
the class is interested in a small number of samples, the refer-
ability of the accuracy index is reduced. Precision (Eq. 14) is
relative to the prediction of the model. This can be understood
as the confidence score of the model when making a new
prediction or the likelihood that the prediction is correct.
Recall (Eq. 15) is relative to the real label, which can be
understood as the proportion of positive cases predicted by
the model in actual positive cases. The F1-measure (Eq. 16)
is a metric (harmonic mean) that considers both precision and
recall and is mainly used to compare the performance of two
classifiers; a higher value is better. In the formula, tp is used to
successfully predict a positive sample as positive; tn is used to
successfully predict a negative sample as negative; fp is used
to incorrectly predict a negative sample as positive; and fn is
used to incorrectly predict a positive sample as negative.

In addition, to verify the quality of the super-resolution
image, this paper used the peak signal-to-noise ratio (PSNR),
structural similarity (SSIM), and Picture output speed (POS)
as evaluation criteria to measure the super-resolution image.

PSNR (Eq. 17) is a common and widely used objective
standard for image super-resolution tasks, but the PSNR score
cannot be completely consistent with the visual quality seen
by the human eye because the human eye is not absolutely
sensitive to errors. The perception result is affected by many
factors and changes.

PSNR = 10×log10

(
(2n − 1)2

MSE

)
, (17)

In the PSNR formula, MSE is the mean square error
between the original image and the processed image.

VOLUME 11, 2023 21183



Z. Zhang et al.: High-Quality Rice Leaf Disease Image Data Augmentation Method Based on a Dual GAN

SSIM (Eq. 18) is an index to measure the similarity of two
images. From the perspective of image composition, SSIM
defines structural information as independent of brightness
and contrast, reflecting the attribute of object structure in the
scene, and models distortion as a combination of three dif-
ferent factors: brightness, contrast, and structure. The mean
is used as an estimate of brightness, the standard deviation is
used as an estimate of contrast, and the covariance is used as
a measure of the degree of structural similarity.

SSIM (x, y) =

(
2µx × µy

) (
2σxy + c2

)
(u2x+µ2

y + c1)(σ 2
x + σ 2

y + c2)
, (18)

In the SSIM formula µx is the average of x, µy is the
average of y, σ 2

x is the variance of x, σ 2
y is the variance of

y, σxy is the covariance of x and y, c1= (k1L)2, c2 = (k2L)2

are constants used to maintain stability, and L is the dynamic
range of pixel values (k1= 0.001, k2= 0.03).
POS (Eq. 19) is the time it takes to obtain the super-

resolution of a single image. Image super-resolution is a very
time-consuming and machine performance-consuming task,
and large-scale datasets for super-resolution are sensitive to
time performance. To more intuitively react to the perfor-
mance of the model, we introduced POS.

POS =
N
T

, (19)

In the POS formula, N is the total number of processed
pictures, T is the total time of processing pictures, and the
time unit is s. The lower the POS, the better the performance.

C. EXPERIMENTAL PROCESS AND ANALYSIS
The method in this paper was verified on the above rice
dataset, which contains 3 rice diseases, 2538 images in the Img
dataset, 1264 images in the ImgA dataset, and 1264 images in
the ImgB dataset. Four main research questions were clarified
and verified in this experiment:

RQ 1: Can the data samples generated based on the
WGAN-GP be used as supplementary training for the rice
disease recognition model?

RQ 2: Can enhanced data samples based on Opt-Real-
ESRGAN further effectively improve the accuracy of image
recognition?

RQ 3: Opt-Real-ESRGAN and Real-ESRGAN were com-
pared to determine whether Opt-Real-ESRGAN was more
suitable for rice data augmentation tasks.

RQ 4: If only image super resolution technology is used
without data augmentation, can the performance achieve the
same effect as RQ2?

To answer RQ 1, we used WGAN-GP to generate the
dataset ImgGene. Separately, the ImgGene + ImgA dataset was
used to train the rice disease recognition model, and the ImgA
dataset was used to train the rice disease recognition model.
The two disease recognition models were compared and
evaluated using the disease image recognition performance
standard.

To answer RQ 2, the ImgGene dataset generated in the previ-
ous step was inputted into the Opt-Real-ESRGAN model to
output the super-resolution dataset ImgH−Q. ImgH−Q + ImgA
dataset, which was used to train the rice disease recognition
model. The answer to question 1 was compared horizontally
to verify the disease recognition performance.

To answer RQ 3, Opt-Real-ESRGAN and Real-ESRGAN
were used to enhance the dataset ImgGene, and the evaluation
criteria were used to compare the results.

To answer RQ 4, We output the super-resolution data set
ImgAH−Q on the ImgA dataset, and used the ImgAH−Q dataset to
train the rice disease recognition model, and then conducted a
lateral comparison with RQ2 to verify the disease recognition
performance.

In the experiment, VGG11 and Resnet18, which are
frequently-used in the field of crop disease image recognition,
were selected as classification models. Both VGG11 and
Resnet18 are typical classification models in recent years.
They have different structures, and are widely used in many
image recognition research fields. In this paper, two different
models are selected for experiment, mainly to verify the
universality of the proposed method. In order to ensure the
uniformity of the experiment, the disease recognition model
(VGG11, ResNet18) in this paper uses the Adam optimizer,
the learning rate is 0.001, the batch size is set 64, and the
epoch is set 100.

1) IMAGE GENERATION BASED ON THE WGAN-GP
The WGAN-GP model was trained using the ImgA dataset,
and the best hyperparameters were determined through mul-
tiple experiments, as shown in the following table.

TABLE 2. WGAN-GP hyperparameter.

WGAN-GP was trained with the above hyperparame-
ter settings, and the rice disease images generated by the
WGAN-GP after iterative training are shown in Fig. 8. The
image quality reached the best effect after 7000 epochs of
iteration, and the improvement of continued training was
limited, so the 7000 epochs model was uniformly selected.

Using the generator trained with 7000 rounds of the
WGAN-GP model, 1264 images of the ImgGene dataset were
generated. The VGG11 and ResNet18 models were trained
using the ImgGene + ImgA dataset and the ImgA dataset, respec-
tively. After training, the model was tested using the ImgB
dataset, and evaluation indicators were used to evaluate the
model. The results are shown in Table 3.
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FIGURE 8. WGAN-GP-generated images.

TABLE 3. Rice disease recognition results of the best ResNet18 model.

Table 3 shows the rice disease identification results of
the best ResNet18 model. When using ResNet18 as the dis-
ease image recognition model, the accuracy of the trained
ResNet18 model using only the ImgA dataset was 87.08%, and
the accuracy of the dataset using ImgGene + ImgA improved
to 88.57%, an increase of 1.49%. The precision, recall, and
F1-measure of the trained ResNet18 model using only the
ImgA dataset were 87.87, 87.10, and 87.48%, respectively.
When using the ImgGene + ImgA dataset, the recall, preci-
sion, and F1-measure were improved to 88.73, 88.57, and
88.65%, respectively, which increased by 0.86, 1.47, and
1.17%, respectively.

Table 4 shows the rice disease identification results of
the best VGG11 model. When VGG11 was used as the dis-
ease image recognition model, the accuracy of the ResNet18

TABLE 4. Rice disease recognition results of the best VGG11 model.

model using only the ImgA dataset was 86.68%, and the
accuracy of the dataset using ImgGene + ImgA improved to
87.23%, an increase of 0.55%. The precision, recall, and
F1-measure of the ResNet18 model using only the ImgA
dataset were 87.00, 86.70, and 86.84%, respectively. When
using the dataset of ImgGene + ImgA, the recall, precision, and
F1-measure were improved to 87.80, 87.23, and 87.52%,
respectively, which increased by 0.8, 0.53, and 0.68%,
respectively.

These experimental results can answer RQ 1. The data
samples generated based on the WGAN-GP could be used to
supplement the training samples of the disease image recog-
nition model to improve the overall recognition accuracy of
the model.

The original disease dataset Img was divided into a training
set ImgA and test set ImgB with a 1:1 ratio. We trained classi-
fication models using ImgA and ImgGene + ImgA, respectively.
Then we use ImgB to test the performance of the classification
models. Fig.9 shows the confusion matrix result on original
test dataset ImgB. In the ResNet18 confusion matrix of the
ImgA training set, the model had poor diversity and predicted
many leaf blast samples as bacterial blight samples. This
is because the two disease spots have similar colors, and
the bacterial blight lesion is larger. Therefore, the disease
samples belonging to the leaf blast were predicted to be bac-
terial blight samples. The ResNet18 confusion matrix of the
ImgGene + ImgA training set performed slightly better in terms
of model diversity. By increasing the number of training set
samples, the model learned the difference between leaf blast
and bacterial blight diseases. The VGG confusion matrix of
the ImgA training set can confirm the above inference. The
diversity of the confusion matrix of the model was also poor,
and most leaf blast samples were predicted to be bacterial
blight samples. ImgGene + ImgA training set learned the dif-
ference between the two diseases by increasing the number
of training set samples and increasing the diversity of the
confusion matrix. A new problem was also observed in the
confusion matrix shown in Fig. 9. Although the leaf blast
samples were prevented from being incorrectly predicted as
bacterial blight samples by adding disease samples to the
training set, the prediction accuracy of the brown spot sam-
ples decreased. More brown spot samples were incorrectly
predicted as leaf blast samples because brown spot and other
disease spots are smaller, and it was easier for the model to
learn large and obvious disease spots. However, the image
generated by WGAN-GP had more noise, and the imaging
quality was relatively poor, as shown in Fig. 10.

2) OPT-REAL-ESRGAN PERFORMS SUPER-RESOLUTION ON
THE GENERATED DATA SAMPLES
When training the Opt-Real-ESRGAN model, it is
necessary to use high-quality image datasets for train-
ing. Similar to Real-ESRGAN [28], this paper used com-
mon super-resolution model training datasets DIV2K [35],
OST [36], and OutdoorScene [37]. The training details are
given in Table 5.
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FIGURE 9. Confusion matrix on test set.

FIGURE 10. Comparison of samples from ImgA and ImgGene datasets.

Opt-Real-ESRGAN was trained using the hyperparame-
ter settings described above. The ImgGene dataset generated
in the previous section is input into the trained Opt-Real-
ESRGAN generator to generate the x2 upsampled ImgH−Q
super-resolution dataset.

Fig. 11 Shows the comparison of imaging effects of Opt-
Real-ESRGAN for different diseases. ImgA is the original
disease training set samples, and ImgGene is the disease train-
ing set samples generated by WGAN-GP. ImgH−Q is the
disease training set sample after Opt-Real-ESRGAN super-
resolution. The red frame is an enlarged image of the disease
spot. In the brown spot disease sample, the background of the
ImgGene disease sample was messy, the disease spot part was

TABLE 5. Real-ESRGAN hyperparameter.

fuzzy, and the edge part of the leaf was not sharp enough,
while the background of ImgH−Q was clean, the disease spot
part was clear, and the edge part of the leaf was sharp.
The image quality presented by ImgH−Q was comparable to
that of the ImgA original disease training samples. The same
problems were observed in leaf blast disease samples. ImgGene
disease samples had messy backgrounds, fuzzy disease spots,
and leaf edges that were not sharp enough, while ImgH−Q
disease samples did not have these problems. Through the
enlargement of the disease spot part, the detail was obvi-
ously better than the ImgGene disease sample. The bacterial
blight ImgA original disease sample had too many disease spot
details, while the WGAN-GP model of the ImgGene disease
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FIGURE 11. Comparison of imaging effects of Opt-Real-ESRGAN with different diseases. (a) Comparison of imaging effects of Opt-Real-ESRGAN for brown
spot disease. (b) Comparison of imaging effects of Opt-Real-ESRGAN for leaf blast disease. (c) Comparison of imaging effects of Opt-Real-ESRGAN for
bacterial blight disease.

sample had limited learning ability and was not fully learned,
limiting the super-resolution ability of Opt-Real-ESRGAN.
As a result, the image quality of ImgH−Q and ImgA original
disease samples differed, but the ImgH−Q disease training
samples formed after the super-resolution of the Opt-Real-
ESRGAN model were compared with ImgGene; the back-
ground was cleaner, and the edge of the leaf was sharper. The
quality of ImgH−Q disease samples was still better than that
of ImgGene disease samples.

According to the experimental design, the VGG11 and
ResNet18 models were trained by the ImgH−Q + ImgA
dataset. After training, the ImgB dataset is used to test the
model and the evaluation metrics are used to compare the
models.

Table 6 shows the rice disease identification results of the
best ResNet18 model. When using ResNet18 as the disease
image recognition model, the accuracy using the ImgA dataset
was 87.08%, and the accuracy of the ResNet18 model using

TABLE 6. Rice disease recognition results of the best ResNet18 model.

the ImgGene + ImgA dataset was 88.57%. The accuracy of the
dataset using ImgH−Q + ImgA improved to 91.65%. Com-
pared with the ImgA dataset, it was 4.57% higher than that
using the ImgGene + ImgA dataset, and it was 3.08% higher
than that using the ImgGene + ImgA dataset. The precision,
recall, and F1-measure of the ResNet18 model using the ImgA
dataset were 87.87, 87.10, and 87.48%, respectively. The pre-
cision, recall, and F1-measure of the ResNet18 model using
the ImgGene + ImgA dataset were 88.73, 88.57, and 88.65%,
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FIGURE 12. Confusion matrix on test set.

respectively. When using the ImgH−Q + ImgA dataset, the
precision, recall, and F1-measure increased to 92.00, 91.67,
and 91.83%, respectively, which were 4.13, 4.57, and 4.35%
higher than those of the ImgA dataset. Compared with the
ImgGene+ImgA dataset, these values were 3.27, 3.1, and 3.18%
higher, respectively.

Table 7 shows the rice disease identification results of
the best ResNet18 model. When VGG11 was used as the
disease image recognition model, the accuracy using the ImgA
dataset was 86.68%, and the accuracy of the ResNet18 model
using the ImgGene + ImgA dataset was 87.23%. The accuracy
of the dataset using ImgH−Q + ImgA improved to 90.78%,
which was 4.1% higher than that using the ImgA dataset and
3.55% higher than that using the ImgH−Q + ImgA dataset.
The precision, recall, and F1-measure of the VGG11 model
using the ImgA dataset were 87.00, 86.70, and 86.84%, respec-
tively. The precision, recall, and F1-measure of the VGG11
model using the ImgGene + ImgA dataset were 87.80, 87.23,
and 87.52%, respectively. When using the ImgGene + ImgA
dataset, the precision, recall, and F1-measure were 90.80,
90.80, and 90.80%, respectively, which were 3.80, 4.10, and
3.96% higher than those of the ImgA dataset. Compared with
the ImgGene + ImgA dataset, these values were 3.00, 3.57, and
3.28% higher, respectively.

TABLE 7. Rice disease recognition results of the best VGG11 model.

Based on these experimental results, RQ2 was answered.
The enhanced data samples based onOpt-Real-ESRGAN fur-
ther effectively improved the accuracy of image recognition.

The original disease dataset Img was divided into a training
set ImgA and test set ImgB with a 1:1 ratio. We trained classifi-
cation models using ImgA, ImgGene+ ImgA,and ImgH−Q+ ImgA,
respectively. Then we use ImgB to test the performance of
the classification models. Fig.12 shows the confusion matrix
result on original test dataset ImgB. The ResNet18 confusion
matrix of the ImgH−Q + ImgA dataset showed that the model
had the best diversity. Compared with ImgGene + ImgA, the
ImgH−Q + ImgA dataset improved the identification rate of
bacterial blight and brown spot. When ImgGene + ImgA is used
as a dataset training model, the recognition accuracy of one
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FIGURE 13. Comparison of imaging effects at each stage.

disease increaseswhile that of another disease decreases. This
is because the image quality of the super-resolution ImgH−Q
dataset was higher than that of ImgGene. Higher image quality
enabled the model to learn more disease features and further
improved the accuracy of image recognition.

Compared with ImgA, the overall disease recognition rate of
the ImgH−Q+ ImgA dataset improved, and the overall diversity
became very good. The diversity of the model became better,
indicating that the more disease features the model learns, the
better it can identify disease types and improve the overall
generalization ability of the model. This is because the HQIA
method generated high-quality rice leaf diseases; that is, the
number of disease samples in the dataset expanded, and the
quality of the expanded disease samples was higher than that
of the traditional single-image generation network, further
improving the accuracy of disease recognition and the overall
diversity of the model.

3) COMPARISON BETWEEN OPT-REAL-ESRGAN AND
REAL-ESRGAN
Opt-Real-ESRGAN was based on the improvement of Real-
ESRGAN. This paper compared objective indicators and sub-
jective effects.

Following mainstream methods, Real-ESGAN and Opt-
Real-ESRGANwere used to upsample the ImgGene dataset for
X2 super-resolution enhancement, and the generated super-
resolution result maps were evaluated for PSNR, SSIM,
and POS. Two image super-resolution processing algorithms
were compared and evaluated, and the results are shown
in Table 8.
As shown in Table 8, the Real-ESGANmodel and the Opt-

Real-ESRGAN model had advantages and disadvantages.
This is because the emphasis of the twomodels differed. Real-
ESRGAN pursues more details of generation and obtains
higher PSNR and SSIM indicators. Opt-Real-ESRGAN is
faced with generated images containing more noise, focuses
on the disease spots in super-resolution, and pursues faster
generation speed. Fig. 13 shows the disease images generated
by Real-ESRGAN and Opt-Real-ESRGAN. In comparison,
both can achieve super-resolution enhancement of the rice
disease image samples. However, as designed, Opt-Real-
ESRGAN made some choices when enhancing the image

TABLE 8. Comparison of Super-resolution models.

TABLE 9. Rice disease recognition results of the best ResNet18 model.

and only enhanced the leaf part, achieving a faster image
generation speed. The details of super-resolution were only
related to the effective features of disease image recognition.
In contrast, although Real-ESRGAN had sharper detailed
textures, it also enhanced the details of the background parts
unrelated to disease recognition, which also led to its slow
super-resolution generation speed. At the same time, these
background features interfered with the performance of the
disease image recognition model. Although Real-ESRGAN
generated more details and textures, it also enhanced many
background parts with texture details. The enhancement of
these background textures not only seriously affected the
speed of image generation but also produced a large num-
ber of noises features irrelevant to disease image recogni-
tion, which interfered with the performance of disease image
models. Therefore, Opt-Real-ESRGAN was designed and
selected for image super-resolution enhancement in HQIA in
this paper.

4) INFLUENCE OF SUPER RESOLUTION TECHNOLOGY ON
DISEASE RECOGNITION MODEL
According to RQ4, super-resolution enhancement is per-
formed on ImgA dataset to generate ImgAH−Q dataset. The
disease recognition model is trained using I_mgA dataset,
ImgAH−Q dataset and ImgH−Q+ ImgA dataset respectively. The
above model is then tested using the ImgB dataset. Verify
and answer RQ4, how does the disease recognition accuracy
change by only using super-resolution enhancement without
augmenting the dataset?

Table 9 and Table 10 show the best results for rice disease
identification using only the super resolution model. In the
experimental results, we can analyze that the performance
of disease recognition model with super resolution ImgAH−Q
data set is improved to a certain extent compared with the
original data set ImgA, but the performance is weaker than
that of ImgH−Q + ImgA data set. This is because the image
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TABLE 10. Rice disease recognition results of the best VGG11 model.

super resolution technology makes the image clear and sharp,
which makes it easier for the disease recognition model
to learn the hidden features of the disease, but does not
make the image produce more hidden features. However,
the HQIA method in this paper uses WGAN-GP for image
augmentation. The expanded new image data set provides
more hidden features for the model for training, improves
the overall training space of the model and makes the model
have better generalization ability. HQIA also combines the
advantages of super resolution to clearly sharpen the image
data set augmented by WGAN-GP, making its disease hiding
features easier to learn. Image super resolution is a full use of
the existing data set, while WGAN-GP is an extension of the
data set. Only the combination of the two can give full play
to the best performance, which also verifies the rationality of
HQIA method.

V. CONCLUSION
Rice is a staple food crop in the world, and disease is one
of the most important factors affecting rice yield. It is of
great significance to detect and determine the type of disease
in time for disease prevention and control. Relying on deep
learning for rice disease recognition is the current mainstream
direction. Deep learning models need sufficient training sam-
ples to support them in the training process; otherwise, over-
fitting occurs, resulting in model failure. However, in the
field of agriculture, there are common problems, such as
difficulty in obtaining high-quality disease samples and high
cost. To solve these problems, this paper proposed a dual
GAN network for a high-quality rice leaf disease image data
augmentation HQIAmethod. This method used aWGAN-GP
network to generate image samples and then an Opt-Real-
ESRGAN network to perform super-resolution enhancement
on the generated image samples.

The experimental results showed that the HQIA method
in this paper improved recognition accuracy by 4.57% using
ResNet18 and 4.1% using VGG11 compared to without data
augmentation. Compared with the traditional WGAN-GP
data augmentation method, the accuracy improved by 3.08%
using ResNet18 and 3.55% using VGG11.

The HQIA method proposed in this paper can also be
extended to other plant disease identification, and we hope
to reduce the impact on researchers due to insufficient data
sets. The HQIA method proposed in this paper also has
some shortcomings, and we will make improvements in the
following two aspects in the future.

1) Currently, we only study the image data augmen-
tation method based on simple background. In the
future, we will continue to study the data augmentation
method based on complex background under natural
conditions.

2) We improved the Real-ESRGAN network to reduce the
consumption of overall computing performance, but
the overall computing performance is still relatively
high consumption. In the future, we should aim to
reduce the overall algorithm complexity and realize the
lightweight deployment of the overall algorithm.
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