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ABSTRACT In this paper, we present a new sampled-data L2 − L∞ filter-based output feedback fuzzy
control design technique for active suspension systems subjected to hard constraints. The sampled-data
problem of continuous-time suspension systems is solved using an input delay approach. In this manner, the
conservatism that occurs when designing filters and controllers is effectively alleviated by using Wirtinger’s
inequality with the extended reciprocally convex combination bounding technique.We designed anL2−L∞

filter-based output-feedback fuzzy controller by using the Lyapunov–Krasovskii theorem to ensure that the
closed-loop system is robust against external disturbances and sampled noise. The results of simulations
involving different types of road disturbances and noise demonstrate the effectiveness of the proposed
approach.

INDEX TERMS Active suspension system, input delay approach, L2 − L∞ filter, sampled-data system,
Takagi–Sugeno fuzzy system.

I. INTRODUCTION
Factors involved in vehicle performance include acceleration,
braking, steering, and ride comfort, and many studies have
been conducted on improving them. Suspension systems,
which play a role in isolating passengers from vibrations due
to impact with the ground, are important not only in terms of
ride comfort but also for improving handling performance [1].
In particular, with the advent of electric vehicles, the role of
the suspension system in providing ride comfort has become
more important as the effects of engine noise and vibration are
reduced. Suspension systems can be classified into three cat-
egories depending on their structural configuration: passive,
semi-active, and active. Active suspension systems (ASSs)
provide superior performance compared to passive suspen-
sion systems through additional electronic equipment. There-
fore, many researchers have attempted to design controllers
to provide outstanding ride quality under the mechanical
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constraints of vehicle systems, such as H∞ control
[2], [3], [4], sliding mode control [5], adaptive control
[6], [7], and output-feedback control [8], [9], [10], [11].

Modeling techniques such as fuzzy systems and neural
networks have received increasing attention as descriptors for
nonlinear systems. Especially, the approximation based on
the Takagi-Sugeno (T-S) fuzzy model has become a popular
topic in modern control theory [12], [13]. Since the T-S
fuzzy method describes a nonlinear system as a set of linear
subsystems, an engineer can easily design a controller or filter
for nonlinear systems by directly applying the conventional
linear system theory [14], [15], [16], [17], [18]. For example,
linear quadratic regulator (LQR) controller design techniques
for fuzzy systems were examined by [19] and [20], while T-S
fuzzy Kalman filtering problems were investigated by [21]
and [22]. Recently, the T-S fuzzy approach has been improved
to guarantee the feasibility of systems under modeling uncer-
tainties, unmeasurable premise variables, etc [23], [24].

Since the controller or state estimator is implemented
through a digital computer, control engineers have to consider
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sampling issues for the data or signals. Accordingly, many
researchers have studied sampled-data control techniques
to handle a system where a continuous-time plant and a
digital controller coexist [25], [26], [27]. Among several
approaches for handling sampled-data systems, the input
delay method, which models the sampling intervals of the
control input as a time-varying delay, has recently become
popular [28]. Since the sampled-data system can be con-
verted into a problem providing a stability criterion of
the continuous time-delay system, a solution can be eas-
ily obtained based on the well-established Lyapunov sta-
bility analysis and linear matrix inequality (LMI) approach
[29], [30], [31]. Although this method can lead to conser-
vatism in the resulting stability criteria, many researchers
have come up with solutions for this problem through various
mathematical methods [32]. Bounding techniques, such as
free weighting matrices [33], Jensen’s inequality [34], [35],
and Wirtinger’s inequality [36], have been used to reduce
conservatism. Since certain matrix inequalities can lead to
the reciprocally convex condition, the use of the reciprocally
convex combination lemma [37], [38] or the extended recip-
rocally convex combination lemma [39] is recommended to
solve these inequalities. Notably, as the number of deci-
sion components such as free weighting matrices, increases,
and the design complexity inevitably increases, engineers
must consider the trade-off between conservatism and design
complexity.

Issues on state estimation are of great importance in signal
processing and control theory. This is because, in practical
applications, engineers do not have access to all of the state
information of a dynamic system. Although the Kalman filter
is widely used in this situation, its performance is degraded
in models with parametric uncertainty or high nonlinearity
and external disturbances [40]. Consequently, the H∞ and
L2 − L∞ filters have attracted the attention of researchers
from the viewpoint of addressing model uncertainties,
unknown external disturbances, and noise [41], [42], [43].
Based on the H∞ analysis, the filtering problem for vehicle
sideslip angle estimation with sampled-data measurements
was studied by [44]. The authors of [45] and [46] investigated
the application of the L2 − L∞ filtering to time-delayed
neural networks. Different from the H∞, the L2 − L∞ is a
performance measure of the peak value of a signal against
external disturbances. Based on many examples in the lit-
erature, the peak value of the error signal greatly affects
the stability or output response characteristics of a system
[47], [48]. Therefore, control or filter design issues utilizing
the L2 − L∞ performance have gained ongoing research
interest in this field [49], [50], [51]. However, to the best of
our knowledge, the L2 − L∞ filtering problem has not yet
been solved for ASSs with sampled measurements.

Based on the above literature review, we present a
method for designing a controller and filter for a nonlinear
sampled-data system based on a T-S fuzzy model and an
input delay approach. Our main objective is to design a filter-
based output-feedback controller that can minimize the peak

value of the estimation error by introducing the L2 − L∞

performance. The conditions for the proposed controller and
filter design by using the Lyapunov stability theory and
LMI are presented. Moreover, we reduce the conservatism
in the results that can occur due to the time-varying delay
by introducing a new boundary technology called extended
reciprocally convex combination. The main contributions of
this paper are summarized as follows.

1) By introducing the L2 − L∞ performance index,
we explored for the first time the suspension filtering
problem capable of attenuating the peak value of esti-
mation error for external disturbances.

2) In order to solve the conservatism of the sampled-data
system based on the input delay approach, the con-
troller and filter for active suspension were designed
using Wirtinger’s inequality with the extended recipro-
cally convex combination bounding technique.

3) Through various simulation results, the efficiency and
excellence of the proposed sampled-data L2 − L∞

filter-based output feedback fuzzy controller are veri-
fied. In addition, it was confirmed that the boundary
technique used in this paper reduced conservatism and
extended the input delay time compared to the existing
approach.

The remainder of this paper is organized as follows.
Section II contains the formulation of an ASS with sampled
input as a T-S fuzzy model. Section III presents the LMIs
for designing a PDC scheme controller and a sampled-data
L2 − L∞ filter. Section IV provides the results of a perfor-
mance evaluation of the proposed approach in cases involving
different types of road disturbances. Section V presents our
concluding remarks.

Notation: The superscript T denotes the transposes of
matrices and vectors. The expression P > 0 (or, P ≥ 0) indi-
cates that P is positive (or positive semi-) definite matrix. The
asterisk ∗ adjacent to (i, j) in a matrix denotes the transpose of
element (j, i) in the matrix. For simplicity, Diag{·} indicates
a block-diagonal matrix and Sym{A} denotes A+ AT .

II. PROBLEM FORMULATION
The overall framework of the proposed approach is shown in
Figure 1. To facilitate the application to this framework in the
real world, we implement the following steps. The vehicle
mass is considered a time-varying variable because it may
change in several situations, for instance, owing to payloads.
The dynamic equation is established as follows:

ms(t)z̈s(t) + fcs + fks = u(t),

mu(t)z̈u(t) − fcs − fks + fcu + fku = −u(t), (1)

where ms and mu denote the sprung and unsprung masses,
respectively; fcs and fcu represent the damping forces, fks and
fku indicate the spring forces of the suspension and the tire,
they can be represented as follows:

fcs = cs(żs(t) − żu(t)), fks = ks(zs(t) − zu(t)),

fcu = cu(żu(t) − żr (t)), fku = ku(zu(t) − zr (t)),

VOLUME 11, 2023 21069



Y. J. Lee et al.: Sampled-Data L2 − L∞ Filter-Based Fuzzy Control

FIGURE 1. Quarter-vehicle suspension model.

where zs and zu denote the displacements of the sprung and
unsprung masses, respectively; zr denotes the displacement
of the road surface; cs and ks imply the damping ratio and
the spring constant of the suspension, respectively; cu and ku
represent the damping ration and the compressibility of the
tire, respectively; and u(t) stands for the control input of the
suspension.

The state variables considered in the state space analysis
are defined as follows:

x(t) = [zs(t) − zu(t), zs(t) − zu(t), żs(t), żu(t)]T .

The state variables include suspension deflection, tire deflec-
tion, vertical velocity of sprung mass, and vertical velocity
of unsprung mass. By defining the external disturbance as
w(t) = żr (t), the system (1) can be rewritten as follows:

ẋ(t) = A(t)x(t) + Bu(t)u(t) + Bw(t)w(t), (2)

where

A(t) =


0 0 1 −1
0 0 0 1

−
ks

ms(t)
0 −

cs
ms(t)

cs
ms(t)

ks
mu(t)

−
ku

mu(t)
cs

mu(t)
−
cs+cu
mu(t)

 ,

Bu(t) =

[
0 0 1

ms(t)
−

1
mu(t)

]T
,

Bw(t) =
[
0 −1 0 cu

mu(t)
]T

.

In controller design, the three requirements pertaining
to road holding stability, ride comfort performance, and
mechanical constraint [52] must be considered.

(1-1) Vertical acceleration: Vehicle vibration can adversely
influence the bodies of the vehicle occupants. Therefore, our
primary objective is to design a controller that can minimize
vertical acceleration of the vehicle body against uneven road
disturbances:

minimize z̈s(t). (3)

(2-1) Constraint of suspension deflection: Considering
the presence of mechanical structures, suspension deflection
must not exceed a certain value:

|zs(t) − zu(t)| ≤ zmax, (4)

where zmax is the maximum permissible suspension deflec-
tion.

(2-2) Road holding ability: Road holding is the ability of a
vehicle to stay on the road surface. The following inequality
ensures that the dynamic tire load is less than static tire load:

ku(zu(t) − zr (t)) < (ms(t) + mu(t))g. (5)

Therefore, the requirements can be divided into perfor-
mance and constraint outputs as follows:

z1(t) = ddotzs(t),

z2,1(t) = zs(t) − zu(t),

z2,2(t) = ku(zu(t) − zr (t))/(ms(t) + mu(t))g. (6)

Then, the following system can be established to indi-
cate the ASSs with uncertainty of the sprung and unsprung
masses:

ẋ(t) = A(t)x(t) + Bu(t)u(t) + Bw(t)w(t),

z1(t) = C1(t)x(t) + D1(t)u(t),

z2(t) = C2(t)x(t), (7)

where

C1(t) =

[
−

ks
ms(t)

0 −
cs

ms(t)
cs

ms(t)

]
, D1(t) =

1
ms(t)

,

C2(t) =

[
1

zmax
0 0 0

0 ku
(ms(t)+mu(t))g

0 0

]
.

We assume that w(t) ∈ L2[0, ∞), and without loss of gener-
ality, ∥w∥

2
2 ≤ wmax < ∞.

Let y(t) and v(t) denote the measurement output vector and
the sensor noise, respectively. Then, the measurement output
equation can be expressed as follows:

y(t) = Cx(t) + Dv(t), (8)

where

C =

[
1 0 0 0
0 1 0 0

]
, D =

[
α1
α2

]
.

where α1 and α2 imply the coefficient of sensor noises.
Remark) For a practical implementation of the proposed

controller, estimating the state variable from the measured
output is a very important issue. In case of the laboratory vehi-
cles, all state variables of the suspension system is accessible
by using sensors such as LVDT (Linear Variable Displace-
ment Transducer) and LVT (Linear Velocity Transducer).
However, it is impossible to equip industrial vehicles with all
of these sensors due to problems such as cost [53]. In partic-
ular, the vertical velocity of sprung and unsprung masses is
not available because LVT cannot be realized in real vehicles.
Therefore, in this paper, we choose only suspension and
tire deflection as measurement output from the view of the
practical implementation of the controller.

As above mentioned, the sprung mass ms(t) and the
unsprung mass mu(t) are considered as uncertainties which
have the minimum and maximum values. Assume that the
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TABLE 1. IF-THEN Rules.

sprung and unsprung masses can be measured through online
and offline estimation methods [54], [55]. Let ms,min and
ms,max denote the minimum and maximum weight of the
sprung mass, respectively; and mu,min and mu,max indicate
the minimum and maximum weight of the unsprung mass,
respectively. By defining the premise variables as ξs(t) =

1/ms(t) and ξu(t) = 1/mu(t), the uncertainty terms can be
expressed by using the sector nonlinear method as follows:

ξs(t) = M1(ξs(t))ḿs +M2(ξs(t))m̀s,

ξu(t) = N1(ξu(t))ḿu + N2(ξu(t))m̀u, (9)

where

ḿs := max ξs(t), m̀s := min ξs(t),

ḿu := max ξu(t), m̀u := min ξu(t),

and

M1(ξs(t)) +M2(ξs(t)) = 1,

N1(ξu(u)) + N2(ξu(t)) = 1.

We can define the membership functions as follows:

M1(ξs(t)) = fracξs(t)−m̀sḿs − m̀s,M2(ξs(t)) =
ḿs − ξs(t)
ḿs − m̀s

,

N1(ξu(t)) = fracξu(t)−m̀uḿu − m̀u,N2(ξu(t))
ḿu − ξu(t)
ḿu − m̀u

.

(10)

The membership functions M1(ξs(t)) and N1(ξu(t)) corre-
spond to ‘‘Heavy’’, the membership functions M2(ξs(t)) and
N2(ξu(t)) correspond to ‘‘Light.’’ Therefore, based on the
fuzzy rules presented in Table 1, the T-S fuzzy model for
ASSs can be defined as follows:

ẋ(t) = Āix(t) + B̄u,iu(t) + B̄w,iw(t),

z1(t) = C̄1,ix(t) + D̄1,iu(t),

z2(t) = BarC2,ix(t),

y(t) = Cx(t) + Dv(t), (11)

where

Āi :=

4∑
i=1

µi(ξ (t))Ai, B̄u,i :=

4∑
i=1

µi(ξ (t))Bu,i,

B̄w,i :=

4∑
i=1

µi(ξ (t))Bw,i, C̄1,i :=

4∑
i=1

µi(ξ (t))C1,i,

D̄1,i :=

4∑
i=1

µi(ξ (t))D1,i, C̄2,i :=

4∑
i=1

µi(ξ (t))C2,i,

and µi(ξ (t)) represents the weighting functions that satisfy
µi(ξ (t)) ≥ 0 and

∑4
i=1 µi(ξ (t)) = 1.

The sampled-data fuzzy controller based on the PDC
scheme can be expressed as follows:

u(t) = K̄jx(tk ), (12)

where

K̄j :=

4∑
j=1

µj(ξ (t))Kj.

It is assumed that the membership functions between the
system and PDC fuzzy controller can be real-time matching.
By substituting (12) into (11), we can express the closed-loop
system as follows:

ẋ(t) = Āix(t) + B̄u,iK̄jx(tk ) + B̄w,iw(t),

z1(t) = BarC1,ix(t) + D̄1,iK̄jx(tk ),

z2(t) = C̄2,ix(t),

y(t) = Cx(t) + Dv(t). (13)

The objective of designing a fuzzy controller of the form
given in (12) for the system expressed in (11) is to determine
the fuzzy controller gain K̄j (j = 1, . . . , 4), such that the
following conditions are satisfied for all nonzero w(t) ∈

L2[0, ∞) under the zero initial condition: For the closed-loop
system in (13) 1) the asymptotic stability; 2) ||z1||2 < γc||w||2
with a given attenuation level γc > 0; 3) hard constraints
|u(t)| ≤ umax, |{z2(t)}r | ≤ 1, (r = 1, 2).

Asmentioned previously, we assume that all state variables
are not measurable owing to unavailable sensors like LVTs.
By defining the filter state vector as x̂(t), the fuzzy filter
equation with sampled measurements can be established as
follows:

˙̂x(t) = Āix̂(t) + B̄u,iu(t) + L̄i(y(tk ) − ŷ(tk )),

ŷ(t) = Cx̂(t), (14)

where

L̄i :=

4∑
i=1

µi(ξ (t))Li.

Then, the control input using estimated state can be expressed
as follows:

u(t) = K̄jx̂(t). (15)

The filtering error state vector is defined as e(t) = x(t) −

x̂(t). Subsequently, the fuzzy filtering error system can be
established using (11) and (14).

ė(t) = Āie(t) − L̄iCe(tk ) + B̄w,iw(t) − L̄iDv(tk ),

z̃(t) = He(t). (16)

For the L2 − L∞ filter design, the main aim is to select
the filter gain L̄i (i = 1, . . . , 4), such that the following
requirements are satisfied for all w, v ∈ L2[0, ∞) under the
zero condition:
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1) The filtering error system in (16) is asymptotically
stable.

2) Given an attenuation level γf > 0, the filtering error
system in (16) guarantees the following performance:

sup
t≥0

{z̃T (t)z̃(t)}

< γ 2
f [

∫
∞

0
wT (t)w(t)dt +

∞∑
k=0

hkvT (tk )v(tk )]. (17)

By defining h(t) = t − tk for t ∈ [tk , tk+1), we can use the
zero-order-hold (ZOH) sampling method as an input delay
approach [28]. In this case, 0 ≤ h(t) < tk+1 − tk = hk ≤ hM ,
and ḣ(t) = 1, where hM indicates the maximum allowable
sampling time. By following this approach, the closed-loop
system and error system can be redefined as follows:

ẋ(t) = Āix(t) + B̄u,iK̄jx(t − h(t)) + B̄w,iw(t),

z1(t) = C̄1,ix(t) + D̄1,iK̄jx(t − h(t)),

z2(t) = C̄2,ix(t), (18)

and

ė(t) = Āie(t) − L̄iCe(t − h(t)) + B̄w,iw(t)

−L̄iDv(t − h(t)),

z̃(t) = He(t). (19)

Before proceeding, we introduce the following lemmas,
which are indispensable to derive our main results.
Lemma 1 [38]: For an arbitrary matrix R > 0, the scalars

a and b with 0 < a < b, and the vector α : [a, b] → Rn, the
following inequality holds:

(b− a)
∫ b

a
α̇T (u)Rα̇(u)du

≥

[
α1
α2

]T [
R 0
∗ 3R

] [
α1
α2

]
, (20)

where α1 = α(b) − α(a) and α2 = α(a) + α(b) −
2

b−a

∫ b
a α(u)du.

Lemma 2 [39]: For a real scalar β ∈ (0, 1), the matrices
R1 > 0 and R2 > 0, and the appropriate dimension matrices
S1 and S2, the following matrix inequality holds:[

1
β
R1 0
0 1

1−β
R2

]

≥

[
R1 + (1 − β)T1 (1 − β)T1 + βT2

∗ R2 + βT2

]
, (21)

where T1 = R1 − S2R
−1
2 ST2 , and T2 = R2 − ST1 R

−1
1 S1.

III. MAIN RESULTS
In this section, we present the new LMI conditions for a
sampled-data L2 − L∞ filter-based output-feedback con-
troller to ensure its asymptotic stability under hard constraints
by using Wirtinger’s inequality and the extended reciprocally
convex combination lemma.

A. SAMPLED-DATA FUZZY CONTROLLER
Theorem 1: For the given constants ρ > 0 and hk > 0,

if there exist positive definite matrices P,Q1,Q2, R, and S1; a
symmetric matrix S2; any appropriate dimension matrices T1,
T2, U1, U2, and U3; and a scalar γc > 0 for i, j = (1, . . . , 4),
the following conditions hold:

21,ii < 0, (22)

22,ii < 0, (23)

21,ij + 21,ji < 0, (i < j) (24)

22,ij + 22,ji < 0, (i < j) (25)[
−u2maxP

√
ρK̄T

j
∗ −I

]
< 0, (26)[

−P
√

ρ{C̄2,i}
T
r

∗ −I

]
< 0, (27)

where

21,ij =

41,ij 43,ij ET2 T
T
1

∗ −I 0
∗ ∗ −2Ra

 ,

22,ij =

42,ij 43,ij ET1 T2
∗ −I 0
∗ ∗ −Ra

 ,

41,ij = 51 − 52 − 53 + Sym{eTUes,ij} − γ 2
c e

T
7 e7,

42,ij = 51 − 54 − 55 + Sym{eTUes,ij} − γ 2
c e

T
7 e7,

43,ij = [C̄1,ie1 + D̄1,iK̄je3]T ,

51 = eT1Q1e1 + 2eT1 Pe6 − eT3Q1e3 + h2ke
T
6 Re6,

52 = eT1 S1e1 − 2eT1 S1e2 + Sym{eT1 S2e2 + eT2 S2e2}

+eT2 (hkQ2 + S1)e2,

53 = 4ET1 RaE1 + Sym{ET1 T1E2} + ET2 RaE2,

54 = eT1 S1e1 − 2eT1 S1e2 + 2hkeT1 S1e6 − eT2 (hkQ2 − S1)e2
+2hkeT2 S1e6 + Sym{eT1 S2e2 − eT2 S2e2 − hkeT2 S

T
2 e6}

−h2ke
T
6 Re6,

55 = 2ET1 RaE1 + Sym{E1T T2 E2} + 2ET2 RaE2,

El = [eTl − eTl+1, e
T
l + eTl+1 − 2eTl+4]

T , (l = 1, 2)

es,ij = Āie1 + B̄u,iK̄je3 + B̄w,ie7,

eu = UT
1 e1 + UT

2 e2 + UT
3 e6,

ek = [0n×(k−1)n, In×n, 0n×(7−k)n], (k = 1, . . . , 7)

Ra = Diag{R, 3R}.

Then, the closed-loop system (18) ensures asymptotic stabil-
ity, and has an H∞ performance under w(t) for prescribed
bound γc subject to the hard constraints, which satisfies 0 ≤

h(t) = t − tk ≤ tk+1 − tk = hk .
Proof) Consider the following LKF candidate:

V (t) =

6∑
i=1

Vi(t), (28)
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where

V1(t) = xT (t)Px(t),

V2(t) =

∫ t

t−hk
xT (s)Q1x(s)ds,

V3(t) = hk

∫ 0

−hk

∫ t

t+u
ẋT (s)Rẋ(s)dsdu,

V4(t) = h(t)(hk − h(t))xT (t − h(t))Q2x(t − h(t)),

V5(t) = hk (hk − h(t))
∫ t

t−h(t)
ẋT (s)Rẋ(s)ds,

V6(t) = (hk − h(t))(x(t) − x(t − h(t)))T

·{S1(x(t) − x(t − h(t))) + 2S2x(t − h(t))}.

Let define

η(t) = [xT (t), xT (t − h(t)), xT (t − hk ),
∫ t

t−h(t)

xT (s)
h(t)

ds,∫ t−h(t)

t−hk

xT (s)
hk − h(t)

ds, ẋ(t),wT (t)]T .

In this case, we can calculate the time derivative of V (t) as
follows:

V̇ (t) = ηT (t)(51 + 5̄
h(t)
2 )η(t) − J1 − J2, (29)

where

5̄
h(t)
2 = (hk − 2h(t))eT2Q2e2 + hk (hk − h(t))eT6 R2e6

+2(hk − h(t)){eT1 S1e6 + eT2 (S
T
2 − S1)e6}

−eT1 S1e1 + 2eT1 (S1 − S2)e2 − eT2 (S1 − 2S2)e2,

J1 = hk

∫ t

t−hk
ẋT (θ )Rẋ(θ )dθ,

J2 = hk

∫ t

t−h(t)
ẋT (θ )Rẋ(θ )dθ.

By applying Lemmas 1 and 2 to the integral terms of V̇ (t),
we obtain

hk

∫ t

t−hk
ẋT (θ )Rẋ(θ )dθ + hk

∫ t

t−h(t)
ẋT (θ )Rẋ(θ )dθ

≥ ηT (t){
1
α
ET1 (2Ra)E1 +

1
1 − α

ET2 RaE2}η(t)

≥ ηT (t){5̄3 + (1 − α)5̄4 + α5̄5}η(t), (30)

where

5̄3 = 2ET1 RaE1 + ET2 RaE2,

5̄4 =

[
E1
E2

]T [
2Ra − T2R−1

a T T2 T1
∗ 0

] [
E1
E2

]
,

5̄5 =

[
E1
E2

]T [
0 T2
∗ Ra − T T1 (2Ra)

−1T1

] [
E1
E2

]
,

α =
h(t)
hk

.

For any appropriate dimension matrices Ui (i = 1, 2, 3),
the following equation can be derived from system (18).

2{xT (t)U1 + xT (t − h(t))U2 + ẋT (t)U3}

×{Āix(t) + B̄u,iK̄jx(t − h(t)) + B̄w,iw(t) − ẋ(t)}

= 2ηT (t)eTUes,ijη(t). (31)

By applying (30)-(31) to (29) and adding zT1 (t)z1(t) −

γ 2
c w

T (t)w(t) on both sides, the following expression can be
obtained:

V̇ (t) + zT1 (t)z1(t) − γ 2
c w

T (t)w(t) ≤ ηT (t)5h(t)
ij η(t), (32)

where

5
h(t)
ij = 51 + 5̄

h(t)
2 − 5̄3 − (1 − α)5̄4 − α5̄5

+Sym{eTUes,ij} + 43,ij4
T
3,ij − γ 2

c e
T
7 e7.

If 5
h(t)
ij < 0, we can easily establish the H∞ performance

under zero initial conditions for all nonzero w(t) ∈ L2[0, ∞)
as the integral from zero to ∞, that is, ∥z1(t)∥2 < γc∥w(t)∥2.
Moreover, by applying the convex combination bounding

technique, the inequality f (α) := (1−α)5̄4+α5̄5 > 0 holds
if f (0) > 0 and f (1) > 0. Therefore, 5h(t)

ij < 0 if 5
h(t)=0
ij <

0 and 5
h(t)=hk
ij < 0, and the conditions (22)-(25) can be

derived using the Schur complement.
As described in an existing study [9], according to the LKF,

xT (t)Px(t) < ρ, where ρ = V (0) + γ 2
c wmax. Therefore,

max
t>0

|{z2(t)}r |2 = max
t>0

||xT (t){C̄2,i}
T
r {C̄2,i}rx(t)||2

< ρ · λmax(P−
1
2 {C̄2,i}

T
r {C̄2,i}rP−

1
2 ), (33)

max
t>0

|(u(tk ))|2 = max
t>0

||xT (t − h(t))K̄T
j K̄jx(t − h(t))||2

< ρ · λmax(P−
1
2 K̄T

j K̄jP
−

1
2 ), (34)

where λmax(·) indicates the maximal eigenvalue. As a result,
the input and output constraints are guaranteed if

ρP−
1
2 K̄T

j K̄jP
−

1
2 < u2maxI , (35)

ρP−
1
2 {C̄2,i}

T
r {C̄2,i}rP−

1
2 < I , (36)

where i = 1, . . . , 4, j = 1, . . . , 4, and r = 1, 2. According
to the Schur complement, the conditions in (26) and (27) are
equivalent to (35) and (36), respectively.

If the controller gain K̄j is unknown, the conditions in
Theorem 1 are not LMIs because of the terms 41,ij and 42,ij.
Therefore, we cannot find the solutions easily by using any of
the existing LMI tools. For this reason, we transform the con-
ditions in (22)-(25) appropriately to calculate the controller
gains K̄j (j = 1, . . . , 4). By using the following theorem,
we present the LMI conditions required to obtain the desired
controller gains.
Theorem 2: Given the constants ρ > 0, ϵ1 > 0, ϵ2 > 0,

and hk > 0, if there exist positive definite matrices P̂, Q̂1, Q̂2,
R̂, and Ŝ1; a symmetric matrix Ŝ2; any appropriate dimension
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matrices Ḡj, T̂1, T̂2, and U ; and a scalar γc > 0 for i, j =

(1, . . . , 4),

2̂1,ii < 0, (37)

2̂2,ii < 0, (38)

2̂1,ij + 2̂1,ji < 0, (i < j) (39)

2̂2,ij + 2̂2,ji < 0, (i < j) (40)[
−u2maxP̂

√
ρḠTj

∗ −I

]
< 0, (41)[

−P̂
√

ρU{C̄2,i}
T
r

∗ −I

]
< 0, (42)

where

2̂1,ij =

4̂1,ij 4̂3,ij ET2 T̂
T
1

∗ −I 0
∗ ∗ −2R̂a

 ,

2̂2,ij =

4̂2,ij 4̂3,ij ET1 T̂2
∗ −I 0
∗ ∗ −R̂a

 ,

4̂1,ij = 5̂1 + 5̂2 − 5̂3 + Sym{eTû eŝ,ij} − γ 2
c e

T
7 e7,

4̂2,ij = 5̂1 + 5̂4 − 5̂5 + Sym{eTû eŝ,ij} − γ 2
c e

T
7 e7,

4̂3,ij = [C̄1,ie1 + D̄1,iḠje3]T ,

5̂1 = eT1 Q̂1e1 + 2eT1 P̂e6 − eT3 Q̂1e3 + h2ke
T
6 R̂e6,

5̂2 = eT1 Ŝ1e1 − 2eT1 Ŝ1e2 + Sym{eT1 Ŝ2e2 + eT2 Ŝ2e2}

+eT2 (hk Q̂2 + Ŝ1)e2,

5̂3 = 4ET1 R̂aE1 + Sym{ET1 T̂1E2} + ET2 R̂aE2,

5̂4 = eT1 Ŝ1e1 − 2eT1 Ŝ1e2 + 2hkeT1 Ŝ1e6 − eT2 (hk Q̂2 − Ŝ1)e2
+2hkeT2 e6 + Sym{eT1 Ŝ2e2 − eT2 Ŝ2e2 − hkeT2 Ŝ

T
2 e6}

−h2ke
T
6 R̂e6,

5̂5 = 2ET1 R̂aE1 + Sym{E1T̂ T2 E2} + 2ET2 R̂aE2,

eŝ,ij = ĀiUT e1 + B̄u,iḠje3 + B̄w,ie7,

eû = e1 + ϵ1e2 + ϵ2e6,

R̂a = Diag{R̂, 3R̂}.

Then, a T-S fuzzy controller exists that can ensure the asymp-
totic stability, and has an H∞ performance under w(t) for
prescribed bound γc, which satisfies 0 ≤ h(t) = t − tk ≤

tk+1 − tk = hk . The fuzzy controller gain can be calculated
as K̄j = ḠjU−T .
Proof ) We define U = U−1

1 , U2 = ϵ1U1, U3 =

ϵ2U1, �1 = Diag{U ,U ,U ,U , U ,U , I , I ,U ,U}, �2 =

Diag{U , I }, and J = Diag{U−1,U−1
}. And, redefine

P = U−1P̂U−T , Q1 = U−1Q̂1U−T , Q2 = U−1Q̂2U−T ,
R = U−1R̂U−T , S1 = U−1Ŝ1U−T , S2 = U−1Ŝ2U−T ,
T1 = J T̂1JT , T2 = J T̂2JT , and Ḡj = K̄jUT in Theorem 1.
By pre- and post-multiplying (22)-(25) with �1 and �T

1 ,
we can obtain (37)-(40), respectively. Also, (41)-(42) can be
derived by pre- and post-multiplying with �2 and �T

2 to (26)
and (27). Then, the PDC controller gain can be obtained as
K̄j = ḠjU−T from solving LMI conditions (37)-(42).This
completes the proof of Theorem 2.

B. SAMPLED-DATA L2 − L∞ FILTER
Theorem 3: For given constant hk > 0, if there exist the

positive definite matrices P , Q1, Q2,R, and S1; appropriate
dimension matrices S2 = ST2 , T1, T2, X1, X2, and X3; and
a scalar γf > 0 for i = (1, . . . , 4), the following conditions
hold: [

91,i + 92 − 93 ÊT2 T
T
1

∗ −2Ra

]
< 0, (43)[

91,i + 94 − 95 ÊT1 T2
∗ −Ra

]
< 0, (44)[

P HT

∗ γ 2
f I

]
> 0, (45)

where

91,i = êT1Q1ê1 − êT3Q1ê3 + Sym{êT1P ê6 + êTX ês,i}

+h2k ê
T
6Rê6 − êT7 ê7 − êT8 ê8,

92 = Sym{êT0 S2ê2} − hk êT2Q2ê2 − êT0 S1ê0,
93 = Sym{ÊT2 T2Ê1} + 2ÊT1 RaÊ1 + 2ÊT2 RaÊ2,

94 = Sym{hk êT0 S1ê6 + hk êT2 S2ê6 + êT0 S2ê2}
+hk êT2Q2ê2 + h2k ê

T
6Rê6 − êT0 S1ê0,

95 = Sym{ÊT1 T1Ê2} + 4ÊT1 RaÊ1 + ÊT2 RaÊ2,

Êl = [êTl − êTl+1, ê
T
l + êTl+1 − 2êTl+3]

T , (l = 1, 2)

ês,i = Āiê1 − L̄iCê2 + B̄w,iê7 − L̄iDê8 − ê6,

êX = X T
1 ê1 + X T

2 ê2 + X T
3 ê6,

ê0 = ê1 − ê2,

êk = [0(k−1)×n, In, 0(8−k)×n], (k = 1, . . . , 8)

Ra = Diag{R, 3R}.

Then, the filtering error system (19) is asymptotically stable,
and has an L2 − L∞ performance (17) under w(t), and v(t)
for a given attenuation level γf , which satisfies 0 ≤ h(t) =

t − tk ≤ tk+1 − tk = hk .
Proof) Consider the following LKF candidate;

V (t) =

6∑
i=1

Vi(t), (46)

where

V1(t) = eT (t)Pe(t),

V2(t) =

∫ t

t−hk
eT (s)Q1e(s)ds,

V3(t) = hk

∫ 0

−hk

∫ t

t+s
ėT (u)Rė(u)duds,

V4(t) = h(t)(hk − h(t))eT (t − h(t))Q2e(t − h(t)),

V5(t) = hk (hk − h(t))
∫ t

t−h(t)
ėT (s)Rė(s)ds,

V6(t) = (hk − h(t))(e(t) − e(t − h(t)))T

·{S1(e(t) − e(t − h(t))) + 2S2e(t − h(t))}.
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Let define

ζ (t) = [eT (t), eT (t − h(t)), eT (t − hk ),
∫ t

t−h(t)

eT (s)
h(t)

ds,∫ t−h(t)

t−hk

eT (s)
hk − h(t)

ds, ėT (t),wT (t), vT (tk )]T .

Then, we can calculate the time derivative of V (t) as follows:

V̇ (t) = ζ T (t)(9̄1 + 9̄
h(t)
2 )ζ (t) − J̄1 − J̄2, (47)

where

9̄1 = 2êT1P ê6 + êT1Q1ê1 − êT3Q1ê3 + h2k ê
T
6Rê6,

9̄
h(t)
2 = −êT0 S1ê0 + 2êT0 S2ê2 + (hk − 2h(t))êT2Q2ê2

+2(hk − h(t))(êT0 S1ê6 + êT2 S2ê6)
+hk (hk − h(t))êT6Rê6,

J̄1 = hk

∫ t

t−hk
ėT (θ )Rė(θ)dθ,

J̄2 = hk

∫ t

t−h(t)
ėT (θ )Re(θ )dθ.

By applying Lemma 1, we obtain the following expression:

hk

∫ t

t−hk
ėT (θ )Rė(θ)dθ

≥ ζ T (t){
1
α
ÊT1 RaÊ1 +

1
1 − α

ÊT2 RaÊ2}ζ (t),

hk

∫ t

t−h(t)
ėT (θ )Rė(θ )dθ

≥
1
α

ζ T (t)ÊT1 RaÊ1ζ (t). (48)

According to Lemma 1, the reciprocally convex terms can be
calculated as follows:

1
α
ÊT1 (2Ra)Ê1 +

1
1 − α

ÊT2 RaÊ2

≥ 9̄3 + (1 − α)9̄4 + α9̄5, (49)

where

9̄3 = 2ÊT1 RaÊ1 + ÊT2 RaÊ2,

9̄4 =

[
Ê1
Ê2

]T [
2Ra − T2R−1

a T T
2 T1

∗ 0

] [
Ê1
Ê2

]
,

9̄5 =

[
Ê1
Ê2

]T [
0 T2
∗ Ra − T T

1 (2Ra)−1T1

] [
Ê1
Ê2

]
.

For any appropriate dimension matrices Xi (i = 1, 2, 3),
the following equation can be derived from system (16).

2{eT (t)X1 + eT (t − h(t))X2 + ėT (t)X3}

×{Āie(t) − L̄iCe(t − h(t)) + B̄w,iw(t) − L̄iDv(tk ) − ė(t)}

= 2ζ T (t)êTX ês,iζ (t). (50)

By adding −wT (t)w(t) − vT (tk )v(tk ) to both sides of the
inequality derived from (47)-(50), we can obtain the follow-
ing expression:

V̇ (t) − wT (t)w(t) − vT (tk )v(tk ) ≤ ζ T (t)9̄h(t)ζ (t), (51)

where

9̄
h(t)
i = 91,i + 9̄

h(t)
2 − 9̄3 − 9̄4 − 9̄5.

If 9̄
h(t)
i < 0, then

V̇ (t) < wT (t)w(t) + vT (tk )v(tk ). (52)

By integrating (52) from 0 to t under the zero initial condition,
we obtain

0 ≤ V (t) − V (0) <

∫ t

0
wT (s)w(s)ds+

n∑
k=0

hkvT (tk )v(tk ).

(53)

Moreover, the LMI condition (45) indicates that

P −
1

γ 2
f

HTH > 0. (54)

By using this equation, we can derive the L2 − L∞ perfor-
mance as follows:

z̃T (t)z̃(t) = eT (t)HTHe(t)
< γ 2

f e
T (t)Pe(t)

≤ γ 2
f V (t)

< γ 2
f [

∫ t

0
wT (s)w(s)ds+

n∑
k=0

hkvT (tk )v(tk )]

≤ γ 2
f [

∫
∞

0
wT (t)w(t)dt +

∞∑
k=0

hkvT (tk )v(tk )].

(55)

Therefore, if the inequalities (52) and (55) hold, the state
estimation error system (19) can guarantee asymptotic sta-
bility of the system and has an L2 −L∞ performance against
external disturbances and sampled noise.

Using the convex combination technique, the inequality
9̄
h(t)
i < 0 can be considered equivalent to 9̄

h(t)=0
i < 0 and

9̄
h(t)=hk
i < 0. Then, we can obtain Theorem 1 by applying

the Schur complement. This completes the proof.
Next, we transform the conditions in Theorem 3 into LMIs

when the filter gain is not given. In the following theorem,
the LMI conditions and its proof are presented to obtain the
filter gains Li (i = 1, . . . , 4),
Theorem 4: For the constants µ1, µ2, and hk > 0, if there

exist the matrices P > 0, Q1 > 0, Q2 > 0, R > 0, S1 > 0,
S2 = ST2 , T1, T2,X , and M̄i with appropriate dimensions and
a scalar γf > 0, such that[

9̂1,i + 92 − 93 ÊT2 T
T
1

∗ −2Ra

]
< 0, (56)[

9̂1,i + 94 − 95 ÊT1 T2
∗ −Ra

]
< 0, (57)[

P HT

∗ γ 2
f I

]
> 0, (58)

VOLUME 11, 2023 21075



Y. J. Lee et al.: Sampled-Data L2 − L∞ Filter-Based Fuzzy Control

TABLE 2. Vehicle parameters.

TABLE 3. Attenuation levels corresponding to different sampling times.

TABLE 4. Maximum allowable sampling time as determined using
various methods.

where

9̂1 = êT1Q1ê1 − êT3Q1ê3 + Sym{êT1P ê6 + êTX̂ êŝ,i},

92 = Sym{êT0 S2ê2} − hk êT2Q2ê2 − êT0 S1ê0,
93 = Sym{ÊT2 T2Ê1} + 2ÊT1 RaÊ1 + 2ÊT2 RaÊ2,

94 = Sym{hk êT0 S1ê6 + hk êT2 S2ê6 + êT0 S2ê2}
+hk êT2Q2ê2 + h2k ê

T
6Rê6 − êT0 S1ê0,

95 = Sym{ÊT1 T1Ê2} + 4ÊT1 RaÊ1 + ÊT2 RaÊ2
+h2k ê

T
6Rê6 − êT7 ê7 − êT8 ê8,

êŝ,i = X Āiê1 − M̄iCê2 + X B̄w,iê7 − M̄iDê8 − X ê6,
êX̂ = ê1 + µ1ê2 + µ2ê6.

Then, an L2 − L∞ fuzzy filter exists that can guarantee the
asymptotic stability and has an L2 − L∞ performance under
w(t), and v(t) for an given attenuation level γf , which satisfies
0 ≤ h(t) = t − tk ≤ tk+1 − tk = hk . The L2 − L∞ fuzzy
filter gain can be obtained as L̄i = X−1M̄i.
Proof: By defining X = X1, X2 = µ1X , X3 = µ2X ,

and M̄i = X L̄i, we can obtain (56) and (57) from (43) and
(44) in Theorem 3. Then, the L2 − L∞ fuzzy filter gain can
be calculated as L̄i = X−1M̄i from solving LMI conditions
(56)-(58). This completes the proof of Theorem 4.

IV. SIMULATION RESULTS
This section presents the results of simulations involving
different types of road disturbances to demonstrate the effec-
tiveness of the proposed method. The parameters of the sus-
pension system are summarized in Table 2. The mass of
the vehicle is assumed to be ms ∈ [940kg, 1006kg] and
mu ∈ [106kg, 122kg]. The sampling period hk is assumed
to be 10 [ms]. The output and input constraint are set to
zmax = 0.035 [m] and umax = 1500 [N] respectively. In this
study, we choose α1 = α2 = 0.546, ρ = 1, ϵ1 = ϵ2 = 0.45,
and µ1 = µ2 = 0.45. It is assumed that the sensor noise v(t)
is Gaussian noise with a zero mean.

First, we consider the sampled-data H∞ fuzzy controller
design for ASSs in (11). By solving the LMIs (37)-(42) in

FIGURE 2. Bump road case.

Theorem 2, we can obtain the controller gain matrices as
follows:

K1 = 103 × [6.7966, −27.1725, −5.5776, 0.0286],

K2 = 103 × [3.8405, −21.2493, −6.1195, 0.1257],

K3 = 103 × [5.7589, −27.8985, −5.7612, 0.0628],

K4 = 103 × [2.7556, −21.8822, −6.3126, 0.1621].

Similarly, based on the LMIs (56)-(58) in Theorem 4, the
filter gain matrices can be calculated as follows:

L1 =

[
61.3754 −16.5774 −217.5601 −440.6738

−61.3191 16.5824 217.1726 438.1614

]T
,

L2 =

[
61.6219 −16.5977 −218.2178 −526.7450

−61.5654 16.5986 217.8032 527.8501

]T
,

L3 =

[
61.4134 −16.6063 −213.5678 −439.5115

−61.3571 16.6110 213.6146 437.1237

]T
,
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FIGURE 3. Controlled output for bump road disturbance.

L4 =

[
61.3151 −16.5277 −214.3661 −524.7152

−61.2684 16.5335 214.4570 525.8312

]T
.

As mentioned previously, we solved the sampled-data prob-
lem by using the input delay approach. In order to reduce
the conservatism that occurs in this situation, Wirtinger’s
inequality with the extended reciprocally convex combination
bounding technique was used. Table 3 presents the minimum
attenuation levels of the controller and filter corresponding
to different sampling periods. In Table 4, we calculate the
maximum allowable sampling times for some conventional
bounding techniques. As shown in this table, Wirtinger’s
inequality with the extended reciprocally convex combina-
tion bounding technique guarantees more allowable sampling
time than others in the case of the controller and filter,
respectively.

A. BUMP ROAD
First, we simulate the performance of the proposed approach
in a case involving a bump disturbance. A single bump is
assumed to be present on a smooth road, and it is expressed
as follows:

zr (t) =

{
A
2 (1 − cos( 2πVL t)), 0 ≤ t ≤

L
V

0, otherwise
(59)

where A and L are the amplitude and length of the bump
disturbance, respectively. V is the velocity of the ego-vehicle.
It is assumed that the vehicle velocity is constant at V = 35
[km/h]. The road parameters are set as A = 50 [mm] and
L = 6 [m]. A bump road disturbance signal is depicted in
Figure 2(a). We verified the estimation performance of the

FIGURE 4. Rough road case.

proposed filter by comparing it with the H∞ filter and the
Kalman filter. Figure 2(c) shows the measurement output
of suspension deflection sampled by ZOH method. Using
this output signal, the proposed filter in (14) generates state
estimation signals. Figure 2(d) illustrates estimation error
signals of the suspension deflection according to different
filters. The solid line represents the error peak value for
the filter estimation corresponding to each color. As shown
in this figure, the error peak value of the proposed filter
estimation is much smaller than that of others under exter-
nal disturbance. Therefore, the proposed filter is excellent
in minimizing the peak value of the state estimation error
that affects the controller performance in the presence of
disturbance. Based on this state estimation result, the input
signal generated by the proposed controller in (15) is shown
in Figure 2(b). It is confirmed that the generated control
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FIGURE 5. Controlled output for rough road disturbance.

input is within the prescribed constraint. Figure 3 represents
the body acceleration, suspension deflection, and relational
dynamic tire load response for open- and closed-loop sys-
tems, respectively. The black solid line indicates the physical
constraint for suspension deflection. As shown in this figure,
the closed-loop system with the proposed controller shows
better responses than the open-loop system concerning these
signals. Also, we can verify that all the states are within a
range that satisfies the constraints of the suspension system.

B. ROUGH ROAD
Consider a rough road consisting of waves of various frequen-
cies and amplitudes, as follows:

zr (t) = 0.0254 sin(2π t) + 0.005 sin(10.5π t)

+0.001 sin(21.5π t). (60)

A rough road disturbance depicted in Figure 4(a) is similar
to the vehicle body resonance frequency (1 Hz) under a
high-frequency disturbance condition. The sampledmeasure-
ment for a rough road disturbance is shown in Figure 4(c).
The proposed filter in (14) estimates an unmeasured state
information by using this signal. Similar to Figure 2(d), the
error signals for different filters are illustrated in Figure 4(d).
The solid line indicates the peak value of error signals. This
figure shows that the error peak value of the L2 − L∞ filter
is smaller than other filters. Therefore, it can be proven that
the proposed filter is more suitable for minimizing the peak
value of the estimation error under the external disturbance.
Then, the control input generated by the state estimation is

illustrated in Figure 4(b). This figure implies that the con-
trol input does not exceed the prescribed input constraint.
Figure 5 presents the controlled outputs z1(t) and z2(t) for
a rough road disturbance. As in the bump case, it can be
seen that the closed-loop system with the controller designed
from Theorem 2 not only performs better than the open-loop
system in terms of all key performances of the suspension
system but also satisfies the design constraints. Therefore, the
applicability of the proposed controller has been effectively
proven.

V. CONCLUSION
We proposed a novel sampled-data L2 − L∞ filter-based
output-feedback fuzzy control design method for uncertain
ASSs under hard constraints. The input delay approach was
used to solve the sampled-data problem for continuous-
time ASSs. The conservatism encountered in the design of
sampled-data controllers and filters was effectively reduced
by using Wirtinger’s inequality with the extended recipro-
cally convex combination bounding technique. Moreover,
hard limitations such as mechanical constraints and con-
trol inputs were considered when designing the controller.
Based on the Lyapunov–Krasovskii theorem, an L2 − L∞

filter-based output-feedback fuzzy controller was designed
using the LMI technique to guarantee the robustness of the
closed-loop system against external disturbances and sam-
pled noise. The simulation results obtained using different
types of road disturbances and measurement noise demon-
strated the effectiveness of the proposed approach.
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