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ABSTRACT Platform ecosystems, as a new organizational form, provide enterprises with new contexts
for innovation and entrepreneurship. However, due to a lack of dynamic data, we do not understand how
the platform ecosystem evolves. Because the traditional methods have limitations, this study uses computer
simulations to investigate the evolution and knowledge change of innovative cooperation networks in the
platform ecosystem from the perspective of complex networks. The results indicate that the platform
ecosystem’s innovation cooperation network evolves around initial network enterprises. The degree of
enterprise cooperation shows a trend of decreasing first then increasing, but the efficiency of enterprise
cooperation gradually decreases. Second, as the network evolves, the knowledge level rises, whereas the
knowledge growth rate falls in the platform ecosystem. Meanwhile, the impact of network structure on
knowledge change is unclear, whereas enterprise knowledge creation capability, knowledge absorption
capability, and competitive pressure all have a significant impact on knowledge change.

INDEX TERMS Platform ecosystem, innovation cooperation network, network evolution, knowledge

change, enterprise capability, computer simulation.

I. INTRODUCTION

The emergence of the Internet and information technology
has given rise to a new organizational form, the platform
ecosystem, which has quickly become a driving force for
social and economic development [1]. Many global enter-
prises, including Amazon, Apple, and Facebook, own digi-
tal platforms and implement ecosystem strategies. Platform
ecosystems are emerging networks in which platform enter-
prises use digital technology to link interdependent bilateral
or multilateral users, resulting in many ecological participants
[2]. Many enterprises are flocking to the platform ecosystem
to participate in innovation and entrepreneurship [3]. For
example, just around the anchors, the TikTok platform has
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spawned enterprises of various sizes, including operation
management, video services, live e-commerce, and auxiliary
logistics. Platform ecosystems have evolved into a significant
social and economic development engine.

Many enterprises in the platform ecosystem collaborate to
create value, share resources, and innovate. Connecting enter-
prises promotes the evolution of the innovation cooperation
network, inducing knowledge creation and flow, thus improv-
ing overall innovation output [4]. However, due to the long
growth cycle of the platform ecosystem, complex influencing
factors, and difficulty in obtaining complete dynamic data,
most existing research focuses on internal innovation and
entrepreneurial behavior [5], [6], with insufficient attention
paid to the ecosystem level. How does the innovation coop-
eration network of a platform ecosystem evolve? How does
knowledge emerge and spread in the network of innovation
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cooperation? Existing research has not yielded a clear answer.
Resolving these issues is critical for promoting the healthy
development of the platform ecosystem, which has theoretical
and practical implications.

Complex network simulation has become one of the most
widely used methods for investigating network evolution [7]
and providing a viable path for resolving network complex-
ity in platform ecosystems in recent years. For example,
Xu et al. [8] investigated the dynamic evolutionary character-
istics of organizational groups in a platform network. Zhou
et al. [9] developed a symbiotic evolution model based on
ecological agents and described the key competitive factors
that influence the dynamic evolution of platform ecosys-
tems. However, simulated analyses of a platform ecosystem’s
innovation cooperation network are generally sporadic and
disjointed.

This study used Python software in the context of the plat-
form ecosystem to investigate the evolution and knowledge
change of innovation cooperation networks from the perspec-
tive of complex networks. It focuses on two specific aspects:
(1) How does the platform ecosystem’s innovation coopera-
tion network evolve? (2) How does knowledge change in the
platform ecosystem’s innovation cooperation network? Then,
we discuss the following in detail: (1a) What kind of evolution
model is the platform ecosystem’s innovation cooperation
network? (1b) What are the characteristics of cooperation’s
degree and efficiency in the evolutionary process? (2a) How
do the average knowledge level and knowledge growth rate
change in the platform ecosystem’s innovation cooperation
network? (2b) How dose network structure, firm knowledge
creation capability, knowledge absorption capability, and
competitive pressure impact knowledge change? This study
differs from previous innovation network simulation analyses
in several ways. First, it constructs a network evolution model
from the perspective of complex networks, a novel concept
in most platform evolution research. Second, this research
focuses on the impact of the competitive environment on
knowledge creation and flow, emphasizing the uniqueness of
networks in platform ecosystems. Third, this study encour-
ages a focus on innovation activities from knowledge creation
and flow standpoint, which raises the importance of knowl-
edge management in the platform ecosystem. Furthermore,
the findings not only add to complex network theory but also
provide recommendations for promoting platform ecosystem
innovation and development.

Il. THEORETICAL FOUNDATION

A. COMPLEX NETWORK THEORY

A complex network has some or all of the following char-
acteristics: self-organization, self-similarity, attractor, small-
world, and scale-free [10]. Complex networks in daily life
include transportation, power, computer, and social networks.
The development of computer simulation methods based on
complex networks has made it more efficient to investigate
these network phenomena [11].
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In general, complex networks include random, scale-free,
and small-world networks. In the case of node isomorphism,
the random network generated by the random graph algo-
rithm is usually uniform and can accurately represent network
evolution. For instance, in a random network of N nodes,
the probability of cooperation between any two firms is p €
[0,1] and the number of generating edges is variable [12]. The
scale-free network assumes that most real-world networks
are not random because a few nodes frequently have many
connections, and node degree distributions in a scale-free
network conform to the power—law distribution [13], [14].
Small-world networks are networks that exist between reg-
ular graphs with high clustering coefficients but average
path intersections and random graphs with low clustering
coefficients but short average paths, and it has both a high
clustering coefficient and a short path, which are both com-
mon features of real networks [15]. Watts and Strogatz [15]
started with a regular network and randomly added edges to
get to the Watts—Strogatz (WS) small-world network model.
According to the WS small-world model, the probability of
edge addition p = 0 corresponds to a completely regular
network, p = 1 corresponds to a completely random network,
and p = 0.01 corresponds to the most obvious small-world
network. By varying the p values, different types of network
structures can be created. A large amount of statistical data
shows that many network models have ‘“‘small-world” char-
acteristics in real life, so the small-world network model is
widely used in enterprise complex network simulations [16].

B. KNOWLEDGE NETWORK EVOLUTION
Enterprise survival and growth rely heavily on an orga-
nizational network built on cooperative relationships [17].
Localized learning networks with universities, institutes, gov-
ernment agencies, and other organizations, as well as vertical
or horizontal business networks with suppliers, customers,
and even competitors [18], can be formed by enterprises.
Whether localized learning network or a vertical or hor-
izontal business network, different network entities must
have knowledge creation and flow activities. Supply chain,
for example, acts as a regional supply network channel for
information and knowledge exchange between companies,
promoting organizational learning and knowledge diffusion
across industries [19], [20]. Indeed, knowledge networks can
be found in a wide range of organizational networks. Knowl-
edge networks regard network nodes as knowledge carriers,
achieving knowledge creation, flow, diffusion, and sharing
through the activities of knowledge participants at different
levels [21]. In today’s digital economy, knowledge networks
are frequently embedded in specific social networks. Enter-
prises must join knowledge alliances or embedded platforms
to expand and acquire new knowledge. As a result, the knowl-
edge network of the platform ecosystem has gradually entered
the researchers’ vision.

In fact, knowledge network research dates back to the mid-
1990s [22]. Early research has focused on the constituent
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elements, evolution mechanisms, network boundaries, and
cooperation mechanisms of knowledge networks. As research
advances, more emphasis is being placed on enterprise—
universities, enterprise—enterprise, individual-enterprise, and
individual-individual knowledge flow [23], [24]. Many
researchers have focused on cooperation benefits knowl-
edge diffusion during this process [18], [25], [26]. First,
cooperative relationships foster the development of trust
among enterprises [27]. High levels of trust among enter-
prises can reduce opportunism and the possibility of one
party exploiting valuable knowledge for personal gain, while
increasing willingness to share knowledge [28]. Second,
cooperative relationships foster information exchange among
enterprises [27]. Active, timely, and accurate information
exchanges among collaborators can improve mutual under-
standing of knowledge subjects and boost the effectiveness
of tacit knowledge-sharing [29]. Third, cooperative rela-
tionships foster joint problem-solving [27]. Joint problem-
solving enables enterprises to respond to rapidly chang-
ing technologies and markets by innovating and promoting
knowledge creation and diffusion [30]. Platform ecosystem
cooperative relationships formed around platform leaders
based on digital technology enable faster knowledge diffu-
sion. Knowledge network issues have become more complex
as knowledge acquisition methods have become more diverse
and intertwined.

To simulate knowledge diffusion, several studies have
used complex network evolutionary algorithms. For example,
Cowan and Jonard [31] modeled knowledge diffusion as a
barter exchange process in which various types of knowledge
are diffused in the node exchange process and the system
exhibits ‘““small-world” characteristics. Lin and Li [32] inves-
tigated knowledge diffusion and innovation in four repre-
sentative network models, defining growth diffusion time
and showing that scale-free networks can provide optimal
knowledge transfer. Zhou and Jia [33] proposed a knowledge
diffusion-based link prediction method in complex networks,
and simulation results showed that it is more accurate than
previous methods. In summary, complex network analysis
has become one of the mainstream knowledge network meth-
ods, and it can extract network evolution characteristics and
trends in a more complex network environment, providing
critical support for the discussion of knowledge diffusion in
platform ecosystems.

Ill. INNOVATION COOPERATION NETWORK EVOLUTION
IN PLATFORM ECOSYSTEM

A. SIMULATION PRINCIPLE AND PARAMETER SETTING
Collaboration between enterprises promotes network forma-
tion and evolution. There is a diverse range of individuals
or organizations in the network for knowledge learning and
exchange based on cooperation [18], [26], [27]. In other
words, all the enterprises in the network engaged in inno-
vative cooperation form a knowledge field in which the
enterprises are knowledge subjects, and cooperation among
various subjects promotes knowledge creation, sharing, and
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diffusion. Indeed, the innovation cooperation network is the
carrier of knowledge diffusion, and the distance between
cooperation relationships directly impacts knowledge diffu-
sion efficiency [25], [26]. For example, direct cooperation
clearly has a higher knowledge diffusion efficiency than
indirect cooperation via a third-party. Enterprises in platform
ecosystems have multidimensional characteristics. Multidi-
mensional matching is frequently used to form an innovation
cooperation network, which results in a differential clustering
network model. To propose a network simulation model,
we refer to the community network structure and similar
growth network models [34] and modify the preferred node
connection mechanism of nodes. The model’s main parame-
ters are as follows:

(1) N: the network scale, or the total number of network
nodes i, j, i,j € [1, N].

(2) K: the number of new enterprises that join the innova-
tion network, where K is the number of nodes at the start of
the network’s establishment.

(3) T: the number of network connections. 7; represents
the number of network connections at node i.

(4) C: network-clustering coefficient. C; denotes the clus-
tering coefficient of node i, and C(N) denotes the network’s
average clustering coefficient, which reflects the degree of
cooperation and closeness between enterprises. The greater
a node’s clustering coefficient, the stronger the node’s con-
nection to other nodes. A node’s clustering coefficient is
calculated by dividing the number of network connections at
a given point by the maximum possible variable. The overall
network-clustering coefficient is the average of the clustering
coefficients at all points.

N 2XT,‘
T Kix (Ki—1)

(5) L(N): the average path length. The average path length
represents the distance and efficiency of enterprise collabo-
ration. The shorter the average path length, the lower the cost
and the higher the efficiency of enterprise cooperation. This is
calculated by dividing the sum of the shortest paths between
any two nodes by the total number of network connections.

Ci

1
LIN)=——— ) dj
) 1/2N(N — 1) Z Y
i>j
(6) p(#;): Cooperation probability, which represents the
likelihood that a newly added node will connect to an existing

node i in the innovation cooperation network:
N
p ) =T/ Zi# T

In complex network calculations, many tools, such as Net-
workX, Graph, and Gephi, are commonly used. Each tool
has its own advantages when it comes to analyzing complex
networks, and researchers can choose the tool that best meets
their needs [35]. NetworkX, a software package based on the
Python programming language, has grown in popularity in
recent years [36]. It has strong network analysis capabilities,
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low development costs, and high scalability. As a result,
we implement the platform ecosystem simulation design in
Python 3.8, with the innovation cooperation network envi-
ronment generated by the complex network modeling toolkit
NetworkX. Invoking various NetworkX modules creates the
specific network structure. The simulation design process is
as follows.

First, consider the initial network, Gy = (N, T)). The
platform ecosystem must go through a process from small
to large. The platform typically comprises 3—5 enterprises in
the early stages. New enterprises are drawn to the ecosystem
as the platform evolves. This study establishes the initial
network parameters as Kp = 5 and T(fp) = 8, implying
that the initial network has five nodes (enterprises) and eight
edges (connections) based on the actual situation.

Second, it is assumed that new enterprises will continue to
enter the platform ecosystem as time 7 increases. To keep the
simulation design simple, only one node was added each time
(t). A newly added node has a certain connection probability
p(6;) with the existing node. p(6;) represents the probability
that a new node will choose to collaborate with a specific node
i, which is proportional to node i’s existing network connec-
tions [12]. This means that the more existing connections an
enterprise has, the more likely it is that new enterprises will
collaborate later.

Finally, the generated network is left to evolve over time.
After T times, the platform ecosystem attracts 7 new enter-
prises, and the innovation cooperation network evolves into a
network with No 4+ T nodes and Ty + M;x T edges (M; is the
number of new edges created each time).

B. SIMULATION RESULTS

First, we set the initial network G(#y) = (5, 8), and after
T = 50, we obtained a 55-enterprise cooperation network,
as shown in Figure 1. The network evolution diagram demon-
strates that first-entry enterprises, particularly initial network
enterprises, influence late-entry enterprises’ partner selec-
tion. This is because platform leaders and key component
providers are frequently the first participants, establishing
and expanding the platform ecosystem [37]. These early par-
ticipants not only provide a framework for other ecological
participants to follow, but they are also the first to engage in
competition and cooperation [37]. Consequently, subsequent
ecological participants often form closer bonds with them,
and the evolutionary path of the entire innovation cooperation
network is also shown to revolve around the initial network
enterprises.

Second, as shown in Figure 2, the network clustering
coefficient decreased first and then increased. The network-
clustering coefficient was lowest when 7' = 8. This demon-
strates that cooperation was scattered and turbulent in the
early stages of the platform ecosystem. Enterprise agglom-
eration emerged as the network evolved, and the degree of
cooperation between enterprises increased. This is because
cooperation in the platform ecosystem must be based on an
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a. Initial network node diagram

b. Network evolution diagram when T = 50

FIGURE 1. Evolution diagram of innovative cooperation networks in the
platform ecosystem.

0.84 4

clustering coefficient

] 10 20 B 0 50
time

FIGURE 2. Evolution of network clustering coefficient.

agreement. The platform’s ecosystem can only grow if other
participants recognize and adhere to the platform’s standards
and rules [38]. Prior to the standard’s formation, competition
reigns supreme, and each key player strives to create the most
beneficial product standard for itself, indicating a downward
trend in cooperation closeness. However, when product spec-
ifications and standards are established, cooperation takes
over, and the entire platform ecosystem will quickly pro-
vide complementary products based on a consistent standard,
demonstrating that the level of cooperation among ecological
participants gradually increases.

Finally, as shown in Figure 3, as the number of network
subjects in the platform ecosystem grows, the network’s aver-
age path length grows and eventually stabilizes at around
1.8. It is clear that as more enterprises join the network, the
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FIGURE 3. Evolution of average path length.

efficiency of network cooperation declines. This is because,
unlike in other networks, the platform leader coordinates the
activities of participants [39]. Because ecosystem participants
are not under the platform leader’s hierarchical control, plat-
form leaders’ coordination tasks become more difficult as
the number of ecological participants increases [40]. Partici-
pants choose whether or not to join the platform ecosystem,
as well as how to choose competition fields and partners.
They frequently have dynamic and varied development objec-
tives [41]. The amount of information surrounding plat-
form leaders increases as the number of participants with
strong autonomy increases, resulting in increased difficulty
in network coordination and decreased overall cooperation
efficiency.

C. CASE ANALYSIS
The relevant cases also support the above simulation results.
In the 1980s, Microsoft and Intel formed alliances to chal-
lenge IBM’s dominance [42]. Because of Intel’s Moore’s
Law, Microsoft Windows system upgrades, and the support
of other software and hardware suppliers, the Wintel platform
ecosystem has dominated the desktop end of the personal
computer market for more than 20 years [37]. However, with
the advent of mobile Internet in 2010, the Wintel platform
ecosystem began to show cracks and gradually lagged behind
the ecosystems of IOS, Android, and other mobile platform.
In this process, the initial network enterprises that estab-
lished the Wintel platform ecosystem are Microsoft and Intel,
the platform leaders. To increase its influence during the
ecological development process, Intel launched the ‘‘intel
inside” campaign [43]; Microsoft also launched a global part-
ner program to actively collaborate with ecosystem software
and hardware manufacturers [44]. Indeed, the evolution of
the Wintel platform ecosystem is centered on the two initial
main bodies, Microsoft and Intel, which wield greater net-
work influence over subsequent entrants. Second, Microsoft
and Intel collaborated to promote personal computer (PC)
standards, which increased ecosystem cooperation. Intel, for
example, has created and defined interface standards for
microprocessors to communicate with other components,
and these interfaces are now part of the PC system [38].
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Until standards are agreed-upon, the Wintel ecosystem can-
not develop sufficient complementary and compatible prod-
ucts. Following the unification of the standards, participants’
behaviors shifted from competition to cooperation, with the
degree of cooperation gradually increasing. Third, as the
mobile terminal market expanded, the Wintel ecosystem’s
overall cooperation path expanded while cooperation effi-
ciency decreased. The Wintel ecosystem has gradually lost
its competitive advantage in the emerging mobile terminal
field. Microsoft, for example, began to seek collaboration
with Arm, AMD, Qualcomm, and other chip manufacturers
[45], as well as attempt to develop processors independently,
to form new ecological advantages.

In summary, the platform ecosystem’s innovation cooper-
ation network evolves around platform leaders and key com-
ponent providers. Ecological participants were competitive
prior to agreeing on platform standards and specifications,
which caused the degree of cooperation to decrease as the
number of participants increased. Cooperation dominates the
ecological participants after reaching an agreement on plat-
form standards and norms, causing the degree of cooperation
to increase as the number of participants increases. However,
as the platform ecosystem matures, the cooperation paths
between participants expand, cooperation efficiency declines,
and agility to respond to changes in the external environ-
ment declines, gradually increasing the gap with the new
ecosystem.

IV. KNOWLEDGE CHANGE OF INNOVATION
COOPERATION NETWORK IN PLATFORM ECOSYSTEM

A. SIMULATION PRINCIPLE AND PARAMETER SETTING
The simulation of the evolution of the platform ecosystem’s
innovation cooperation network shows that after a period of
time, the network’s clustering coefficient is stable at approx-
imately 0.9, and the path coefficient is stable at approxi-
mately 1.8. According to the data, network evolution has
a ““small-world” characteristic [12]. Consequently, a small-
world model was selected to build an innovative cooperation
network and simulate knowledge changes. The specific sim-
ulation steps are as follows:

(1) Constructing a model of a small-world network model.
A network Gy = [N, E] was created using the NW network
model, and the connection probability (p) between network
nodes was set.

(2) Each network node represents an enterprise. To begin,
there are three enterprise knowledge change characteristics:
basic knowledge (ken), knowledge absorption capability («),
and knowledge creation capability (8). The enterprise’s basic
knowledge represents its starting point, knowledge absorp-
tion capability represents its ability to learn and transform
new knowledge from other enterprises in the network, and
knowledge creation capability represents its own ability
to create new knowledge. Second, enterprises suffer from
knowledge loss and are affected by platform competition. The
knowledge loss coefficient (9) is typically set to 0.1 because it
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is a nonlinear function. A competitive environment is a level
playing field on a platform. According to Cai et al. [46], this
competitive environment is described by the value of ¢, where
the larger ¢, the more platform competition there is.

(3) Knowledge flow occurs when network nodes are con-
nected (i.e., when cooperation occurs), but the following
conditions must be met. For starters, knowledge can only
flow from nodes with a high-knowledge base to nodes with
a low-knowledge base, implying that knowledge-sharing is
restricted to Ken(j) — Ken(i). Second, enterprise willingness
to share influences knowledge flow, and competitive pressure
(¢) influences the willingness to share of nodes with a large
knowledge base. Third, nodes with a low knowledge base
have a limited knowledge absorption capability («), which
may not be fully utilized. As a result, at some point in time,
the enterprise’s knowledge acquired from a node is KS; ;).

a x (Kji—1 —Kis-1),

when the enterprise is willing to share
0,

when the enterprise refuses to share

KS(l,l) ==

(4) Enterprises create their own knowledge. 8 x K;_i
knowledge is created at each stage. However, knowledge will
also be lost, specifically the & x K,_; knowledge. Conse-
quently, at a certain point in time, enterprise created knowl-
edge is KC(; 1.

KCin =K1y x (1 +B) x 06

(5) As a result, the total amount of knowledge at any node
in time is the knowledge created plus the knowledge acquired
through cooperation. The total quantity of knowledge is K; ;).

K = Ki—1) x (1 + ) x 0
+ D10 —8) x a x (K1) — K1)

We chose the average knowledge level and knowledge
growth rate to measure the knowledge change in the platform
ecosystem. The average knowledge level is the average value
of all nodes’ knowledge levels in the network, and it is K.

— 1
Ki= 2 Kin)
The knowledge growth rate is the rate at which the net-
work’s overall knowledge level grows, and it is U;.

ft_ K
K1

The impact of network structure, knowledge creation capa-
bility, knowledge absorption capability, and platform envi-
ronment on knowledge change can be determined further by
observing changes in knowledge level and growth rate in the
platform ecosystem.

This study uses the number of small-world network nodes
200, and the connection coefficient p € [0,1] to determine
the process involved in the simulation. The initial knowledge
level of an individual is set as a random number between

U,
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FIGURE 4. Comparison of average knowledge level and knowledge
growth rate under different network structures.

0 and 10, that is, K(; 0y € [0,10]. Furthermore, an enterprise’s
absorption capability coefficient («) is 0.8, its knowledge
creation capability coefficient (8) is 0.4, and its knowledge
loss coefficient (6) is 0.9. Considering the competitive envi-
ronments of different platforms and to avoid deviation of the
results, we set the initial platform competition coefficient (&)
as 0.5, and the enterprise sharing willingness as 1-¢. The
values of various parameters were then altered to investigate
the impact of various factors on knowledge changes in the
platform ecosystem.

B. SIMULATION RESULTS
(1) The impact of network structure on knowledge change in
innovation cooperation networks

To investigate the impact of different network structures on
knowledge changes in the platform ecosystem, we changed
the connection probability p of each node in the network
from O to 1 and the maximum evolution period T = 50, which
increases the sufficiency of knowledge creation and flow.

The connection probability p in this study’s simulation
model is 0.001, 0.1, and 1, following the general design of
network simulation to generate a network to investigate the
impact of regular network structures, small-world network
structures, and random network structures on knowledge
change. Figure 4 depicts the evolution of the average knowl-
edge level and the rate of knowledge growth for the three
network structures.
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The average knowledge level of random networks (p = 1)
was slightly higher than that of small-world networks
(» =0.1) and regular networks (p = 0.001), as shown in
Figure 4a, but the difference was not significant. Figure 4b
shows that the knowledge growth rates of the three network
structures peak at around 0.78 at the start of network evolu-
tion, but the knowledge flow weakens as the network evolves.

It can be seen that network structure has little influence on
knowledge change, indicating that the overall ecology’s aver-
age knowledge level is increasing while the average growth
rate is gradually declining and stable at a low level. This is
because platform leaders play a significant role in encourag-
ing cooperation among ecological members. They actively
seek knowledge creators while also providing a forum for
participants to share their knowledge, such as online devel-
oper forums [47]. As the number of participants increases,
they have the potential not only to generate more knowledge
but also to increase the possibility of knowledge exchange,
thereby raising the overall level of knowledge. However,
as the number of participants grew, competition became more
intense, and the rate of knowledge growth gradually slowed,
indicating the ecosystem’s maturity.

(2) The impact of knowledge creation capability on knowl-
edge change in innovation cooperation network

Knowledge creation capability is a fundamental capability
of an enterprise and a critical component for an enterprise
to achieve continuous innovation. This section employs a
complex network simulation to explore the impact of enter-
prise knowledge creation capability on knowledge changes
in the platform ecosystem. Because the network evolution in
the platform ecosystem indicates that the network is ““small-
world,” the network structure is set as a small-world network
model, and the network connection coefficient p is set at 0.1.
We measure the changes in the average knowledge level and
knowledge growth rate of the innovation cooperation network
by changing the data of enterprise knowledge creation capa-
bility 8 (when g is 0.2, 0.4, 0.6, and 0.8). Figure 5 depicts
simulation results.

Figure 5 shows that when T is less than 20, the network’s
average knowledge level dose not differ significantly, indi-
cating a slow growth trend, whereas when 7 is greater than
20, the change in knowledge level is quite different. When
the creation capability is equal to 0.2 or 0.8, the average
knowledge level continues to rise rapidly. Second, in terms
of knowledge growth rate, the network knowledge growth
rate corresponding to various creation capabilities is rapidly
declining and tends to be stable over time. However, when
creative capability is equal to 0.2 or 0.8, the knowledge
growth rate remains higher.

It can be seen that the stronger or lower the enterprise’s
knowledge creation capability, the higher the average knowl-
edge level and the rate of knowledge growth in the plat-
form ecosystem. This is because participants have two main
coping strategies for dealing with the platform ecosystem’s
competition and cooperation relationships: system strategy
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FIGURE 5. Comparison of average knowledge level and knowledge
growth rate under different knowledge creation capabilities.

and component strategy [48]. The system strategy means that
the enterprise’s knowledge creation capability is relatively
strong, and it can enter multiple component markets while
minimizing cooperation. The component strategy implies that
the enterprise’s knowledge creation capability is relatively
low, and it prefers to enter the single component market
while maximizing cooperation. Enterprises that use the sys-
tem strategy can increase their knowledge level and growth
rate by creating more knowledge, that is, becoming more
“competition oriented.” Enterprises that use the component
strategy can improve their knowledge level and growth rate by
leveraging external knowledge spillover, that is, “‘cooperation
oriented.”

(3) The impact of knowledge absorption capability on
knowledge change in innovation cooperation networks

Enterprises in the platform ecosystem must create new
knowledge continuously and absorb new knowledge from
external entities through innovative collaboration. What
effect does a firm’s absorption capability have on changes in
network knowledge? This was the section’s focus. We used a
small-world network model for the network structure and set
the network connection coefficient (p) to 0.1. We measured
changes in the platform ecosystem’s average knowledge level
and knowledge growth rate by changing the value of enter-
prise absorptive capability « (when « is 0.2, 0.4, 0.6, and 0.8).
Figure 6 shows the simulation results.
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FIGURE 6. Comparison of average knowledge level and knowledge
growth rate under different knowledge absorption capabilities.

As shown in Figure 6, when T exceeds 23, the greater the
absorption capability («) of the firm, the higher the average
knowledge level; when T is less than 10, the greater the firm’s
absorption capability («) and the higher the growth rate.

It can be seen that, within a certain range, the higher the
absorption capability, the more helpful it increases average
knowledge level and growth rate. This is because the greater
the enterprise’s ability to absorb knowledge, the more likely
it is to realize the transformation from external to internal
knowledge to enterprise innovation, which can maximize
value creation through collaboration. Cooperative enterprises
can gradually build trust, encourage information exchange,
and eventually achieve joint problem-solving [27]. Innova-
tion is a high-knowledge process [49]. To achieve innova-
tion, ecological participants must acquire of tacit knowledge
from platform owners or other participants, such as develop-
ment knowledge. This tacit knowledge is frequently embed-
ded in employees’ skills, abilities, and perceptions, making
cross-border communication difficult [50], [51]. However,
through cooperative relationships, enterprises can transfer
tacit knowledge in the joint problem-solving process, thereby
stimulating learning and innovation [27], [52]. Therefore,
if an enterprise has a strong knowledge absorption capability,
it can better promote the exchange of tacit knowledge, thereby
realizing the transition from external knowledge to internal
innovation. As a result of knowledge creation, the ecological
average knowledge level and growth rate improve.
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(4) The impact of the competitive environment on knowl-
edge change in innovation cooperation network

Platform ecosystems, such as the trading platform repre-
sented by Amazon and the innovation platform represented
by Apple’s APP store, have more pronounced participant
competition. In this section, we examine at how a competi-
tive environment affects knowledge changes in the platform
ecosystem. We keep the network connection coefficient p at
0.1 and leave the other parameters alone. That is, the enter-
prise absorption capability coefficient « is 0.8, the knowledge
creation capability coefficient 8 is 0.4, and knowledge loss
coefficient 0 is 0.9. We measured changes in the network’s
average knowledge level and knowledge growth rate by
changing the competitive pressure data & (when ¢ is 0.2, 0.4,
0.6, and 0.8). The simulation results are shown in Figure 7.

Figure 7 shows that when T exceeds 20, the lower the
competitive pressure (¢£) in the platform ecosystem, the higher
the average knowledge level, and the lower the competitive
pressure (&) throughout the interval, the higher the maximum
value of the knowledge growth rate.

It can be seen that less competitive pressure promotes
knowledge creation and flow. This is because a competi-
tive environment influences enterprises’ willingness to share
knowledge [53]. When competition increases, firms are more
likely to use intellectual property to protect their proprietary
knowledge [54]. Conversely, firms are more likely to form
cooperative relationships to facilitate knowledge exchanges
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when competition is reduced [55]. In other words, a compet-
itive environment influences firm knowledge-sharing deci-
sion. When cooperation rules the network environment,
knowledge subjects are eager to share their knowledge to
further shared goals; however, when competition is fierce,
opportunism rules, and knowledge subjects are frequently
unwilling to share their knowledge to further their own inter-
ests [56]. In contrast, to gain a competitive advantage, enter-
prises require multiparty knowledge for innovation in a highly
competitive environment [27]. Reduced willingness to share
knowledge raises the risk of failure in innovation, creating a
vicious circle of double decline in knowledge creation and
flow. As a result, when there is a high level of competition
pressure in the platform ecosystem, enterprises are hesitant
to share knowledge and reduce the likelihood of knowledge
creation, resulting in a decrease in the level of knowledge and
the rate of growth. Platform leaders can significantly improve
knowledge flow in an ecosystem by fostering a good envi-
ronment for platform cooperation and reducing competitive
pressure.

C. CASE ANALYSIS

The relevant cases also support the above simulation results.
To break through the game mode of physical CD sales, Valve
officially launched Steam in September 2003 as an online
channel to release games and push updates [57]. Steam ini-
tially operated independently until the first release of games
developed by third-party manufacturers in 2005 [58], which
marked the beginning of the Steam platform ecosystem’s
establishment. The Steam platform has gradually improved
tagging, search, scoring mechanisms, online forums, com-
munity groups, cloud services, and so on, to improve user
experience with third-party games [58]. The Steam platform
has 120 million monthly active users by 2020, making it
the world’s largest game platform ecosystem with the fastest
knowledge creation and flow.

During this process, the Steam platform first innovated the
game distribution mechanism, promoted the release of new
games, and realized knowledge growth. In 2012, the platform
launched the “Green Light” program [59]. This mechanism
allows game developers to publish game information to the
“Green Light” interface, where popular games are reviewed
for release. According to Steam DB data, following the imple-
mentation of this plan, the number of games released annually
on the platform increased from 301 in 2012 to 4,683 in 2016,
a 1,455.81% increase, which is a great success. To further
shorten the release cycle, the platform introduced the ““Steam
Direct” mechanism in 2017 to replace the “Green Light,”
and the game was reviewed directly by the platform [59].
Following the implementation of this mechanism, the number
of games released on the platform each year has increased
from 6,966 in 2017 to 11,660 in 2021, encouraging the release
of third-party games. However, the growth rate has slowed
significantly to 67.38%, indicating that the Steam platform
ecosystem is gradually maturing. Second, on the Steam
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platform, there are two types of ecological participants: game
developers and game publishers. Enterprises can use the com-
ponent strategy only as game developers to develop new game
concepts and then find publishers for distribution [60]. These
game developers frequently lack financial, sales, and mar-
keting skills. However, by working together with publishers,
these obstacles can be successfully overcome. If a company
is large enough, it can use a system strategy to develop and
publish games on its own [60]. These two modes coexist in the
Steam platform ecosystem and promote knowledge creation
and flow. Third, to boost user activity and gather feedback,
the Steam platform has added a game discussion section to
the player community module and granted the manufacturer
community management rights [57]. If a game manufacturer
has a high capacity for knowledge absorption, it is more likely
to obtain useful information from user feedback and browsing
behavior, promoting product improvement and game innova-
tion, and thus raising the overall knowledge level. Fourth, the
Steam platform combats piracy and reduces the competitive
pressure caused by stolen games. Game developers face a
higher risk of piracy and infringement due to the ease with
which digital products can be copied and the lax enforcement
of relevant laws, which increases competition and reduces
the possibility of knowledge-sharing. In response to this sit-
uation, Steam offers digital rights management technology
support to game developers [58]. Game developers use this
technology to encrypt product packages before uploading and
selling them, reducing the possibility of piracy and preserving
platform knowledge.

In summary, as the platform ecosystem grows and matures,
the knowledge level will improve significantly, but the rate of
knowledge growth will gradually low and stabilize. In terms
of knowledge creation capability, if an enterprise has a high
level of knowledge creation capability, it can pursue a com-
petitive system strategy. If its capacity for knowledge cre-
ation is limited, it can pursue a component strategy based
on cooperation. Both strategies encourage the creation and
flow of knowledge. In terms of knowledge absorption capa-
bility, the knowledge absorption capability of enterprises is
relatively strong, which is conducive to transforming external
knowledge to internal innovation, thereby improving eco-
logical knowledge. In terms of a competitive environment,
if an enterprise perceives little competitive pressure, it will be
more willing to share knowledge and consider collaboration,
which will promote an increase in the level and rate of growth
of ecological knowledge.

V. CONCLUSION AND DISCUSSION
A. CONCLUSION
Using computer simulations, this study focuses on the evolu-
tion and knowledge changes of innovation cooperation net-
works in the platform ecosystem from a complex network
perspective.

The following are the key findings regarding the evolu-
tion of innovation cooperation networks. First, the platform
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ecosystem’s innovation cooperation network is evolving
around initial network enterprises, such as platform leaders
and key component providers. This finding shows the distinc-
tiveness of the evolution of innovation cooperation networks
in platform ecosystems. For example, industry—university—
government networks can evolve in several ways, including
enterprise-led, university-led, and government-led [61], [62].
Platform leaders and key component providers play an impor-
tant role in knowledge creation and flow within the platform
ecosystem [5], [56]. Second, prior to platform standard uni-
fication, the degree of network cooperation decreased, but it
increased after standard unification. Because platform mod-
ularity is required, the development of an innovation cooper-
ation network is based on a set of agreed-upon principles and
standards [38]. Unlike supply chain networks [20], industrial
cluster networks [63], alliance networks [64], and so on,
which show a gradual upward trend as member interaction
deepens, the platform ecosystem is dominated by competi-
tion before standards are formed, and by cooperation after
standards are formed. Third, as platform leaders become
more difficult to coordinate, network cooperation becomes
less efficient. Coordination becomes more difficult as the
number of participants increases, as it does in most enter-
prise networks [65]. The difference is that in the platform
ecosystem, the platform leader is primarily responsible for
coordinating participants who are not subject to hierarchical
control or contract control, which complicates coordination
and exacerbates the reduction in cooperation efficiency [39].

The key findings regarding knowledge change in
innovation cooperation networks are as follows. First, the
network structure has little effect on knowledge changes,
showing an increasing trend of average knowledge levels
and declining knowledge growth rates. As innovation col-
laborators increased in number, so did knowledge creators.
The cooperative relationship fosters trust and information
exchange [20], [56], which promotes knowledge-sharing and
diffusion, and thus raises the overall knowledge level. The
knowledge potential gap between collaborators narrows as
the innovation network matures [66], causing the rate of
knowledge growth to slow and eventually stabilize. Second,
disparities in enterprise knowledge creation capability have
resulted in two modes of knowledge change: “‘competition-
oriented” and ‘“‘cooperation-oriented.” When an enterprise’s
knowledge creation capability is strong, it can enter multiple
component markets and frequently employs a system strat-
egy to achieve ‘“‘competition-oriented”” growth. By contrast,
when the enterprise’s knowledge creation capability is weak,
it tends to concentrate on entering one component mar-
ket, frequently employing a component strategy to achieve
“cooperation-oriented”’ growth, and the rest of the required
knowledge is frequently acquired through external cooper-
ation [48]. Third, the greater an enterprise’s capacity for
knowledge absorption, the easier it is to realize the transition
from external knowledge to internal innovation, thereby pro-
moting network knowledge growth. Participants’ innovation
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in the platform ecosystem is frequently inextricably linked
to the platform owner’s or other participants’ tacit knowl-
edge support [50]. The cooperative relationship established
between enterprises enables joint problem-solving, facilitat-
ing the exchange of tacit knowledge [27]. Enterprises with
strong absorptive capacities learn and absorb tacit knowl-
edge more quickly, thereby accelerating the transformation
of knowledge into innovation. Fourth, the less competitive
pressure enterprises perceive, the more willing they are to
share knowledge, thus promoting network knowledge flow.
The competitive and cooperative environment of the net-
work influences enterprises’ willingness to share knowledge,
and knowledge-sharing occurs more frequently when firms
cooperate rather than compete [56]. In a highly competitive
environment, a decreased willingness to share knowledge
increases the likelihood of innovation failure [27], resulting
in a double decline in knowledge creation and flow, which
affects the platform ecosystem’s knowledge level.

In its entirety, this study uses computer simulation to exam-
ine the evolution and knowledge changes of innovation coop-
eration networks in platform ecosystems based on enterprise
entities. (1) The following are the main conclusions about
how the innovation cooperation network evolves in the plat-
form ecosystem. (1a) Different from networks like alliances,
supply chains, and industry-university-government networks,
innovation cooperation networks in platform ecosystems are
primarily evolving around initial network enterprises like
platform owners and key component providers. (2a) During
the evolution process, the degree of cooperation shows a
trend of first decreasing and then rising, while the cooper-
ation efficiency shows a downward trend. (2) The follow-
ing are the main conclusions about how knowledge changes
in the platform ecosystem innovation cooperation network.
(2a) The average knowledge level in the platform ecosys-
tem innovation cooperation network is increasing, while the
rate of knowledge growth is decreasing. (2b) The impact of
network structure on knowledge change is unclear, whereas
the enterprise’s knowledge creation capability, knowledge
absorption capability, and competitive pressure all have a sig-
nificant impact on knowledge change. The findings presented
above provide new ideas and inspirations for investigating
the emerging phenomenon of platform ecosystems from the
perspective of complex network theory.

B. LIMITATIONS AND FUTURE RESEARCH

This study has the following limitations, which should be
considered in future research. First, there are various types
of platform ecosystems, such as commercial and industrial
platforms. They are distinct in terms of structure, attributes,
and operations. Future research should consider how differ-
ences in these platforms impact knowledge changes. Second,
while enterprises are the primary source of knowledge cre-
ation and flow in the platform ecosystem, many potential
users may also impact knowledge changes, which should be
considered in future research. Third, the study’s conclusions
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are primarily based on simulations and case analyses. Future
research could use empirical methods to validate the findings
and improve the model’s generality and universality.
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