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ABSTRACT Epilepsy is a neurological condition affecting around 50 million individuals worldwide,
reported by the World Health Organization. This is identified as a hypersensitive disease by clinical
associations. The unique characteristics of Electroencephalography have proven to be stable and universal;
therefore, researchers have a lot of credibilities. So, it is the most used test for Epileptic Seizure detection
and prediction. This study examines the contributions that have so far been made utilizing Electroen-
cephalography technology to detect, predict, and monitor Epileptic Seizures. We have reviewed around
56 research articles, and those papers are selected from different academic databases. The studies explored
various approaches, including Machine Learning, Deep Learning, and the Internet of Things framework.
A comprehensive discussion of different classification algorithms is analyzed, and their performances are
explored. Furthermore, various open issues of the stated approach are discussed, and potential future works
are addressed.

INDEX TERMS Electroencephalography, brain-computer interface, artificial intelligence, Internet of
Things, deep learning.

I. INTRODUCTION
The word ‘‘Epilepsy’’ originated from the Greek verb ‘‘epil-
ambanein,’’ which means to seize, or attack. Epilepsy, also
known as Epileptic Seizure (ES), is a common neural disorder
in which brain activities become abnormal due to sudden
changes of electrical impulses in the brain. An uncontrollable
seizure is the result of this sudden change in brain activity.
Some common symptoms of ES are: jerking at an uncon-
tainable rate, dizziness, tingling, seeing flashing lights, loss
of awareness, changes in taste, hearing, smell, and touch.
ES patients frequently experience psychic illnesses such as
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terror, stress, and deja vu. ESmay be caused by a brain tumor,
a stroke, an acute head injury, a brain infection, genetics, drug
toxicity, injury before birth, lack of sound sleep, and a lack
of oxygen during birth. It is reported that epilepsy can harm
one’s quality of life [1]. It is found that it can affect anyone
at any age, but it most commonly begins in childhood or over
65 years [2]. These patients may suffer memory loss and emo-
tional problems such as depression and anxiety. They often
face disgrace and discrimination from society. People with ES
are up to three times more likely to die at a premature age than
person without disability. FromHarris et al. [3], it is clear that
there is also the risk of sudden unexpected death in epileptic
seizures (SUDEP). Though the reason behind SUDEP is still
unclear, in most cases, the reason behind the death is a sudden
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fall and hurting the head. The Centers for Disease Control
and Prevention (U.S.A) reported yearly 1.16 SUDEP cases
per 1,000 ES patients. Patients having uncontrolled seizures
have a higher death rate than people who have controlled
seizures [4].

Though there is no permanent cure for ES, this disease can
be managed by proper medication and treatment. According
to the WHO, almost 70% of epilepsy patients can live a
seizure-free life if those patients are treated and diagnosed
correctly [5]. Early diagnosis and continuous monitoring
of seizures can decrease the life risks and ensure a better
quality of life. For this diagnosis and monitoring, experts
need brain activity signals. Electroencephalography (EEG)
[6], [7], Positron Emission Tomography (PET) [8], Elec-
trocorticography (ECoG) [9], Functional MRI (fMRI) [10],
[11], and Magnetoencephalography (MEG) [8] are the most
essential and common neuroimaging methods. According to
research on the diagnostic testing of ES, EEG data-oriented
methods are popular by physicians. MRI gives information
about brain activity over a longer period of time than stan-
dard EEG, which only records problematic patterns such
lateralized periodic discharges (LPDs) [12]. EEG uses two
non-invasive recording techniques: intracranial (IEEG) and
scalp (sEEG). Due to its lower risks and easier recording, the
sEEG approach is more frequently employed by neurologists
and specialized doctors than IEEG. In addition, the frequency
and rhythm of brain activity change during seizures, and these
signal recordings are affordable. EEG is therefore frequently
employed as the primary signal to identify epileptic seizures
[13]. So, considering the huge popularity and the extensive
use of EEG, this paper only focuses on the EEG technique
for gathering brain signals. EEG signals can be collected with
the help of a Head-mounted headset where electrodes are
responsible for sensing the brainwaves. A computer-oriented
system named Brain-Computer Interface (BCI) is used to
analyze and convert EEG data into commands related to
an output device for the desired action [14]. By collecting
EEG data and converting them into commands, we can easily
detect and predict seizures.

Multiple researchers have used ML based prediction and
detection methods to address seizures over the years. DL is a
cutting-edge technology that can learn patterns more exactly
from a large volume of data by classifying them through
multiple layered hierarchical structures. For ensuring person-
alized healthcare, continuous remote monitoring, and emer-
gency treatment, the Internet of Things (IoT) is a wonderful
technology. IoT works as a middleware that connects many
devices or components and enables communication among
them. Researchers are eager to work on IoT-based seizure
prediction and monitoring systems these days [15].

This article surveys the literature over the period
2010-2021 on ES prediction, detection, and monitoring-
oriented research which included ML, DL, and IoT frame-
works. This study mainly focused on narrative systematic
review approach. Besides, for better understanding of the
outcomes of these articles, some Pie and Bar charts are also

presented here. The papers were searched in databases like
IEEE Xplore Digital Library, Google Scholar, and Science
Direct. For searching articles, the main Key words were EEG
or Electroencephalography or ML or DL or IOT or Epilep-
tic Seizure or ES or Detection or Classification or Neural
Network or SVM or Random Forest or K-Nearest Neighbor
or Prediction. 159 papers were primarily discovered. Once
the duplicates were omitted and screening and reviewing the
abstract of these papers, 62 papers were eligible and assessed.
Here, no use of EEG, no ML based ES detection, Neoro-
Fuzzy, Adversarial Network, and cross-bispectrumEEGwere
the exclusion criteria. After full text review, Thesis and review
papers are also excluded. Eventually, 6 research articles were
removed after full text assessment. Total of 56 papers were
reviewed for this study. Because the conference papers also
contain important content and researches, this review work
covers both conference and journal literature. Figure 1 repre-
sents the paper selection process for this review work through
a Prisma diagram.

A. EXISTING REVIEW WORKS
ES has vast literature and to date, several surveys address-
ing various areas of ES have been published. Song et al.
[16] reviewed advancements in automatic medical assis-
tance systems used for EEG-based ES identification. He also
addressed several methodologies employed in this sector of
research and described their key qualities. Acharya et al. [17]
thoroughly discussed several feature extraction approaches as
well as the results of various automated epilepsy stage iden-
tification techniques. Torse et al. [18] evaluated the results of
feature extraction techniques and classification algorithms.
The comparison investigates the practical feasibility of imple-
menting a seizure detection technique. Iftekhar et al. [19]
presented a comparative review of many new classification
and feature selection strategies used in BCI at each level.
The application of DL approaches to classify brain signal is
also investigated. Abualsaud et al. [20] reviewed numerous
classification algorithms and demonstrated the effect of ambi-
guity in EEG data on classifier accuracy. They constructed a
model for dividing the EEG into numerous sub-bands utiliz-
ing various transformations such as Discrete Cosine Trans-
form (DCT) and Discrete Wavelet Transform (DWT).

Abbasi and Goldenholz [21] focused on some of the most
popular ML methods for Epilepsy prediction. The authors
have also discussed some of the challenges that ML tech-
niques face in the field of epilepsy. Researchers and med-
ical experts will be benefited from the knowledge of these
methods. Siddiqui et al. [22] reviewed a wide range of these
ML classification techniques (non-black-box and black-box)
for detecting ES. The authors also analyzed various statistical
features. Rasheed et al. [23] conducted a thorough review of
the existing literature, highlighting why early identification
of ES is necessary and how DL and ML algorithms are
employed for ES prediction. Raut and Rathee [24] discussed
various ML classification techniques for ES detection. After
experimenting with various classification techniques, they
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FIGURE 1. Prisma diagram showing the paper selection process for this work. Ultimately, 56 papers were reviewed for this study.

determined that Random Forest (RF) was the best classifier.
Shoeibi et al. [25] reviewed various DL techniques for detect-
ing ES. They also presented the pros and cons of each DL
models and found themost promisingDLmodel for ES detec-
tion. The authors also described challenges and future work.
Table 1 presents a clear comparison between our paper and
other mentioned review papers. We compared these papers
based on four different criteria: feature extraction method,
ML classifier, DL classifier, and IoT monitoring.

Feature extraction methods were described by [17], [18],
[20], [22], and [23]. Reference [19] partially described feature
extraction methods in their work. References [17], [18], [20],
[22], [21], [23], and [24] completely dicussed different ML
classifiers. Various DL classifiers are partially described by
[17]. On the other hand, [19], [23], and [25] presented various
DL classifiers completely. Reference [25] partially presented
IoT-based ES patient monitoring schemes. After analyzing
Table 1 it is clear that there is no review paper that covers
all four criteria.

B. MAIN CONTRIBUTIONS OF THIS WORK
To the best of our knowledge, no review paper has thoroughly
discussed IoT frameworks in conjunction with ML and DL
classifiers for ES detection, prediction, and monitoring. So,
here’s the unique aspect of our work. The significant contri-
butions of this paper can be summarized as follows:

• The working principles and application areas of the EEG
techniques are analyzed.

• Adetailed description of the steps and procedures of pre-
dicting ES are analyzed along with the common feature
extraction methods.

• Comparison between various commonML andDLmod-
els based on adaptability, scalability, and interpretability.
Besides limitations of every algorithms are also stated.

• Applications of the IoT in e-Healthcare, alongwith some
recent IoT-based models for predicting and monitoring
ES are also discussed.

• Detailed analysis of recently published ML and DL
models for ES prediction and detection are presented.

• Evaluation metrics and performance analysis of those
recently published models are broadly discussed.

• Detailed analysis and comparison of commonly used
EEG datasets are presented.

• In-depth analysis of different challenges and future
directions in this particular field are addressed.

The remainder of the paper is arranged as follows: Sec-
tion II contains the EEG technique’s working principles and
application domains. Section III comes with a ES detection
and prediction steps. Section IV contains a discussion about
commonly used ML and DL classification algorithms. Sec-
tion V provides an overview of the IoT in e-Healthcare. Some
recently published EEG IoT-based models for ES predicting
and patient monitoring are also reviewed. An elaborative
discussion and comparison among recently published ML
and DL models for detecting and predicting ES are presented
in Section VI. Evaluation metrics and relative performance
comparisons are depicted in the Section VII. Existing EEG
datasets are presented in Section VIII. Section IX contains
challenges and future directions in this research field. Finally,
Section X contains concluding remarks. The pictorial illustra-
tion of the survey structure is shown in Figure 2.

II. ELECTROENCEPHALOGRAPHY (EEG)
The method of EEG, is used to calculate the electrical activity
of the brain. The electrical impulses inside the brain and of
neurons in the cerebral cortex are captured using tiny metal
disks (called electrodes) implanted inside the scalp. Through
adding advanced algorithms to the recorded EEG, EEG
devices are capable of providing an amount of knowledge that
can describe a human’s general state. It is used to quantify
brain activity that occurs after a particular event, such as the
completion of a task or the appearance of a stimulus, or it can
be used to measure random brain activity that occurs while
there is no specific event. Postsynaptic potentials, or changes
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FIGURE 2. Taxonomy of this paper.

TABLE 1. The following table compares the focused area of our paper with other existing review works. legends: ✓ = discussed, X = not discussed,
P̃ = partially discussed.

in membrane potential elicited by neurotransmitters bind to
receptors on the postsynaptic membrane, are mainly mea-
sured by EEG [26]. EEG signals cater a noninvasive and sus-
ceptible measure of brain function throughout the cognitive
operations. Some of the notable benefits of EEG are:

• Exemplary fast in analyzing neural activity and data
manipulation.

• Commanding reliability.
• Cost effective.
• Practical and convenient to use.
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FIGURE 3. Working principle of electroencephalography (EEG).

• Qualified in analysing the extensive area of cognitive
functions.

A. BACKGROUND OF EEG
The revelation of recordable brain impulses in animals’ stim-
ulated nerves and muscles, and subsequently, in their cerebral
cortex, gave rise to the field of EEG in the last quarter of the
nineteenth century. Hans Berger, a German neuropsychiatrist
who is credited with discovering the human EEG, devised
the procedure in the late 1920, with the driving philoso-
phy of ‘‘window into the brain’’. EEG was originally dis-
missed by the scientific community, Eventually following the
replication of Hans Berger’s results by British physiologists
Edgar Adrian and Bryan Matthews in the year 1934, EEG
became recognized as a non-invasive test of the neuronal
activities [27].

B. WORKING PRINCIPLE OF EEG
The functionality of EEG and its application follows a set of
steps as shown in Figure 3.

1) SIGNAL GENERATION
An EEG signal is constructed as the various neural activities
occur in the brain. With the help of an EEG device that is
small metal electrodes connected to the scalp of the head,
neuronal activities are collected and hence an EEG signal is
generated. The electrical activities of the brain differ from
person to person. Consequently, EEG test can distinguish the
distinctive cognitive functions. EEG is the optimal choice for
the study of brain activities.

2) SIGNAL ACQUISITION
The necessary EEG signal is acquired from the brain. Various
methods are recently introduced for this sake. The traditional
electrode on the scalp is one of the options. The electrodes
are contacted to the scalp using electrolyte gel. This gel is
useful as it makes the attachment to the scalp adhesive and
eventually improves the signal quality. Another method of
signal acquisition is the headset system. There are a number
of commercially available EEG headsets. Each system has
upper hand in a particular application. The main task is to
collect brain electrical signals.

3) BRAIN ACTIVITY ANALYSIS
The first step of analyzing the acquired signals is pre-
processing. This includes filtering noise and artifacts. Pre-
processing step prepare the signal for further analysis. EEG
signals can be re-referenced as the need of application. Next
step is artifact handling. In case of EEG, artifacts signify the
other signals acquired by the system than brain signals. EEG
tests can obtain signals from the atmosphere, equipment, and
physiological activities which need to be reduced. Proper
analysis is not achieved if these artifacts are associated with
the brain signal. Artifact rejection method is facilitated to
handle the interfering artifacts. Separating EEG artifacts from
the neural signal is the main focus of this method. For EEG
feature extraction and implementation, a diverse group of
algorithms are introduced. The optimal algorithm depends on
the goal of the application. Supervised-unsupervised classi-
fication, graph theory, and many other algorithms are used.
The algorithms generated are application specific which con-
sequently provides the best result for analysis.

4) OUTPUT INTERFACE
Information fusion results in achievable refined characteris-
tics of the observed system. In case of EEG, this method is
necessary but the available algorithms and techniques are not
capable of providing sufficient results. The proper implemen-
tation of information fusion techniques are application spe-
cific. A time and memory efficient algorithm for information
fusion is necessary in EEG. The current feedback generation
models include large screens, and provide a comprehensive
feedback of the study. Smartphones and other mobile devices
are potential feedback devices which can display the signal
activities in a more articulate and appealing way [28].

C. APPLICATIONS OF EEG
The advancement of technology has opened up a potential
new era for researchers around the world to extend the study
on human emotion and complex brain processes. Introduction
of EEG technology has been manifested in a variety of fields
[29]. Some of the application categories are described bellow:

1) NEUROMARKETING
The concept of neuromarketing focuses on the decision mak-
ing process of consumers. The measurement of consumer’s
response towards products, advertisement is the base of neu-
romarketing. Using brain signal activities during the sub-
ject’s store visit or product purchase, an image of consumer
behavior can be drawn [30]. This helps to gain insights of
customer motivation and preferances.

2) HUMAN FACTOR
Study of the brain during human-machine interaction is one
of the significant EEG applications. The mental state of indi-
viduals during activities is evaluated with this. This allows the
researchers to recognize degrees of mental workload, stress
and emotion during tasks. EEG can evaluate the anxiety level
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or characteristics of people by analyzing the brain activities
while social interaction is occured [28].

3) NEUROSCIENCE AND PSYCHOLOGY
Neuroscience is the study of the nervous system. This focuses
on effects of the brain on characteristics, traits and psycholog-
ical functions. Actions and reactions of the brain as the human
attempts activities and mental state during experiencing emo-
tions are studied in neuroscience [31].

4) BCI
A BCI is a digital process that collects impulses from the
brains, and contemplate on them. The process further con-
verts them to instructions which are then beamed into an
external device in order to perform an intended operation. It’s
a computer basedmechanism as the name suggests. EEG is an
optimal technique for recording neural activity signals of the
BCI system [32]. BCI uses real time EEG data to implement
applications [33]. These data are used to control and regulate
devices. It is an emergent domain of EEG which allows
operating devices with the help of brain activity. This enables
extraordinary and tailored EEG applications [34]. Integration
of BCI and EEG elevates a wide variety of applications
conducted through neural activity. Application of EEG is
seen in the military where personnel can lift and carry heavy
weight while equipped with EEG technology. Assistance to
disabled people, measuring mental disorders are some of
many applications of BCI and EEG amalgamation.With BCI,
neural activities are translated into command signals which
can steer devices as needed. Some standard BCI applications
are as follows:

• Sensor monitoring and management of smart homes.
• Controlling vehicles and other automated devices.
• Supervision of a prosthetic body part.
• Guiding the mobility of an electric wheelchair.
• Mobile applications control through Eyewinks.
• Cursor movement.
• Speech recognition.

III. DETECTION AND PREDICTION OF EPILEPTIC SEIZURE
A standard scheme for predicting and classifying ES using
EEG data allows the following steps:

• Pre-processing of EEG data.
• Extraction of features that define the pattern of seizure.
• Feature selection.
• Classification of the selected features to classify the
EEG signal (i.e., normal or seizure).

A. PRE-PROCESSING
The pre-processing process extracts noise and undesired arti-
facts from the acquired EEG signal (e.g., eye movement and
muscle artifacts) and prepares it for future signal analysis.
Noise and artifacts in raw EEG signals must be identified in
the preprocessing step to minimize their impact on the feature
extraction process. As EEG is produced by numerous elec-
trodes, it is also critical to determine frequency and channel
in this step. Although EEG is designed to record cerebral

movement, it also records electrical activity from locations
other than the cerebrum. Artifacts are recorded movements
that are not of cerebral origin and can be divided into
physiologic and extra-physiologic artifacts. Extra physi-
ologic artifacts caused by equipment, the type of EEG
(scalp or intracranial), cutoff frequencies, notch filter char-
acteristics, and sampling rate. Body-generated physiological
artifacts such as ocular (electrooculogram: EOG), muscle
(electromyogram: EMG), and heart rate (electrocardiogram:
ECG). Differential window (DW) is applied to EEG signals to
deliver more audible signals, making it easier to distinguish
seizure from interictal signals. Regression method, Wavelet
transform, Principle Component Analysis (PCA), Indepen-
dent Component Analysis (ICA), EEG source imaging (ESI),
EMD, Adaptive, andWiener filtering techniques are typically
used to remove noise and other artifacts from the EEG sig-
nals [35]. Therefore, noise removal, filtering, re-sampling are
some common pre-processing techniques.

There is a connection between the four stages of a seizure:
interictal, preictal, ictal, and postictal. Preictal is a time period
that precedes ictal, which is before the seizure prediction hori-
zon and within the seizure occurs period. Postictal describes
the state following seizures, while interictal refers to normal
stages. Preictal and interictal distinctions are crucial for data
segmentation and sampling. One of the popular approaches
for data segmentation and sampling is discussed here. Preictal
and interictal segments must first be located on the long-term
EEG signal in order to be distinguished from one another.
Preictal is a time frame prior to an ictal seizure that is
influenced by the start time, the occurring period (SOP), and
the seizure prediction horizon (SPH). Moving the window
sampling method, which has a window length of 30 s and
an 8 s overlap to increase the sample set, further divides each
preictal or interictal segment into smaller samples. Here, the
window size is the amount of time over which a waveform is
sampled. So, sample rate and window size are closely related
to each other. If the sample rate is ‘p’ samples per second,
then a window size of ‘q’ samples is ‘q × (1/p)’ second.

B. FEATURE EXTRACTION
EEG signals can be analyzed in frequency, time or frequency-
time domains. Each domain offers an EEG representation,
which is needed to analyze and evaluate the EEG data and
characterize the identified seizure activity. The feature extrac-
tion process intends to extract distinguishing features from
the EEG representation. The motive of this step is to charac-
terize the various patterns of seizure activity. With the help
of signal decomposition techniques, feature extraction can be
easily performed from the EEG input signals. Some common
signal decomposition techniques which are used in seizure
prediction are described below:

1) TIME DOMAIN
a: STANDARD STATISTICS
The objective of the mathematical transformations or Stan-
dard statistics is to gather additional data that the initial signal
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does not provide. Standard statistics for feature extraction
include mean, standard deviation, kurtosis, and skewness.

The mean is the average of the values of the signal’s multi-
ple data points. The standard deviation is used to calculate the
spread of data values around the mean. Kurtosis is a measure
of the number of outliers in a probability distribution. Skew-
ness is a measure of the amount of asymmetry in a probability
distribution [36].

b: HJORT PARAMETER
The Hjorth parameter, which has three different types of
parameters including Activity, Mobility, and Complexity,
is one method for indicating a signal’s statistical properties
in the time domain. The surface of the power spectrum in
the frequency domain can be determined by the activity
parameter, which is the variance of the time function. In other
words, if there are many or few high-frequency components
in the signal, the value of Activity will return a large/small
value. The ratio of the variances of the first derivative of
the signal and the signal itself is used to define the mobility
parameter. This parameter’s power spectrum standard devia-
tion is a percentage. The complexity parameter describes how
closely a signal’s shape resembles a pure sine wave. As the
signal’s shape resembles a pure sine wave more and more,
complexity converges to 1. These three parameters not only
aid in the analysis of signals in the time domain but also
provide information about the frequency spectrum of a signal.
Additionally, by using them, lower computational complexity
can be attained [37].

c: HIGHER-ORDER CROSSINGS (HOC)
As time progresses, most of the time series display local and
global up and down movements. This can be expressed by
calculating the number of zero crossings of the time series
x(t). When we apply a filter to any time series, its a number
of oscillations change [38]. This in turn changes the zero
crossing count. Thus, the technique that can be applied can be
stated as: a filter is applied to the time series, and then count
the number of zero-crossings; then apply another filter to the
original time series, and count the number of zero-crossings,
and so on. The Higher-Order Crossings (HOC) are nothing
but the resulting zero-crossing counts. The HOC sequence is
just the sequence of zero-crossing counts [39].

d: ENTROPY-BASED FEATURE EXTRACTION
Entropy-based feature extraction methods can discriminate
between distinct communication signals by defining the dis-
tribution state features of the signals. The entropy-based fea-
ture extraction is very popular because the internal details
of the signals are unimportant and the calculation is quite
easy. Some commonly used feature extraction algorithms are
discussed below.

Shannon entropy: Shannon entropy was named after
Claude Shannon and was first presented in 1948. Since then,
it has been most widely used in the information sciences.
The Shannon entropy of a random variable is a measure
of its uncertainty. Shannon entropy, in particular, quantifies

the expected value of the information contained in a
message [40].

Rényi entropy: Shannon entropy is the most commonly
used method of quantifying information. However, there are
others. Alfréd Rényi invented Rényi entropy, which general-
izes Shannon entropy and incorporates other entropy metrics
as special instances. The Rényi entropy is used as an indicator
of diversity in ecology, medicine, and statistics. The Rényi
entropy is also useful in quantum information since it may
be used to calculate entanglement. The collision entropy is
defined as the Rényi entropy for the case α=2.

Fuzzy entropy: Fuzzy entropy is used to calculate subjec-
tive data in the context of uncertainty. In order to recognize
the EEG signal pattern, two methods, successive and direct
segmentation, are introduced.

Transfer entropy: Transfer entropy is a model-free statis-
tic and non-parametric approach that measures the amount
of directed transfer of an EEG signal between stochastic
variables. As a result, it provides an asymmetric technique
of measuring information flow.

Tsallis entropy: The Tsallis entropy distribution is a prob-
ability distribution that is produced from maximizing the
Tsallis entropy under proper restrictions. Tsallis statistics
have been used to study a wide range of phenomena in
fields as diverse as physics, chemistry, biology, medicine,
economics, and geophysics.

e: INDEPENDENT COMPONENT ANALYSIS (ICA)
ICA is frequently used in EEG analysis at the signal prepro-
cessing stage because of its capability to filter out artifacts
from the signal. When recording multi-channel signals, the
advantages of using ICA becomes most apparent. By assum-
ing non-Gaussian signal distribution, ICA allows the sep-
aration of a mixture of signals into their various sources.
The sources are extracted by the ICA by investigating the
independence underlying the measured data [41].

2) FREQUENCY DOMAIN
a: FAST FOURIER TRANSFORM (FFT)
J. Fourier discovered the Fast Fourier Transform (FFT) in
1965, following the development of the Discrete Fourier
Transform (DFT) algorithm in 1822. Because of the reduc-
tion in the looping process, the FFT algorithm calculates
transformations faster than DFT. Such transformations are
quickly computed by factorizing the DFT matrix into a prod-
uct of sparse (mostly zero) factors. As a result, it handles to
decrease the complexity of computing the DFT from O(n2),
which arises if the definition of DFT is simply applied, to
O(N log N), at which N is the data size. The speed difference
can be huge, especially for large data sets with N in the thou-
sands or millions. To filter signals from the time domain to
the frequency domain, the system employs FFT [42]. FFT is
truly a promising feature extraction technique. For example,
A person’s heart rate can be measured using FFT. Photo-
plethysmography (PPG) signals are required for this. PPG
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signals are captured using the flashlight camera on an
Android phone. When the heart rates calculated by the
Android app were compared to the digital blood pressure
and heart-rate monitor medical equipment, Sharma et al. [43]
achieved an optimistic accuracy of nearly 98%.

b: SHORT TIME FOURIER TRANSFORM (STFT)
When a signal’s frequency components change over time,
the STFT provides time-localized frequency information,
whereas the conventional Fourier transform offers frequency
information averaged over the whole signal time interval.
Therefore, the STFT method could be a good choice for
non-stationary signal analysis. It uses frequency domain win-
dowing to analyze localized signals. The Gaussian window
has the best resolution for time and frequency. The STFT’s
time resolution and frequency resolution are also impacted
by the window length [44], [45].

c: AUTOREGRESSIVE MODEL
The Autoregressive model is extensively used in signal
processing and system identification. In an AR model, the
variable of interest is typically forecasted using a linear com-
bination of the variable’s past values. In other words, it’s used
for predicting when there’s a relationship between the values
in a time series and the values that come before and after
them. The AR model coefficients are used as feature vectors
in the brain-computer interface system [46].

d: EIGENVECTOR
Eigenvector techniques are used to estimate signal frequen-
cies and powers from noisy measurements. The eigenvector
approaches are based on an eigendecomposition of the noisy
signal’s correlation matrix. Even when the signal-to-noise
ratio (SNR) is low, the eigenvector strategy generates a
high-resolution frequency spectrum. These techniques pro-
vide enough resolution to estimate sinusoids from data. As a
result, in order to gain some noise immunity, it is reasonable
to estimate the autocorrelation matrix using only the principal
eigenvector components [47].

e: PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is an unsupervised linear transformation technique that
is primarily used for dimensionality reduction and feature
extraction. PCA is a technique that tries to find the eigenvec-
tors of the a covariancematrix with themaximum eigenvalues
and then uses them to project the information into a new
subspace with equal or fewer dimensions [48].

3) TIME-FREQUENCY DOMAIN
a: WAVELET TRANSFORMATION (WT)
The length of the window in the Fourier Transform (FT)
limits the frequency resolution. To resolve this issue, WT is
invented. Wavelets are explained as ‘‘small’’ waves with a
shorter period and 0 mean values. Those are mathematical
functions that can localize a set or a function in terms of both

frequency and time. Because of its appealing properties, such
as frequency or time localization and extracting features, the
WT is a powerful technique in signal processing. Analyzing
Wavelet is classified into two types: Continuous Wavelet
Transform (CWT) and DWT. The Wavelet basis function is
matched and convolved with the signal in CWT principles
refers, the original signal is matched and convolved with
Wavelet basis function at a continuous frequency and time
increment. Reference [49] stated that a DWT is a transform
method that separates the signal into several sets, each of
which is a time series coefficients explaining the signal’s time
evolution in the respective frequency range.

b: EMPIRICAL MODE DECOMPOSITION (EMD)
Huang et al. established a new method for evaluating
non-linear and non-stationary data called ‘‘empirical mode
decomposition’’ in 1998. Any complicated and complex col-
lection of data can be reduced using this model into a limited
and often small amount of ‘‘intrinsic mode functions’’ that
permits well-behaved Hilbert transforms. EMD has limita-
tions in the resolution of the frequency as well as problem
in mode mixing. According to [50], if the amplitude ratio
exceeds a certain threshold, the frequency result may fall.

c: ENSEMBLE EMD (EEMD)
Wu and Huang [51] proposed a noise-assisted model for
analyzing data named EEMD. The EEMD method entails
‘‘sifting’’ an ensemble of white noise-added signals. EEMD
can naturally divide scales without requiring the selection of
previous subjective criterion, as in the original EMD algo-
rithm’s intermittence test. White noise is required to drive
the ensemble for exhausting all feasible solutions during
the sifting phase, causing the various scale signals to col-
late in the right IMF mandated by the dyadic filter banks.
Although EEMD method overcomes the problem in mode
mixing, it has certain downsides, including residual noise in
the reconstructed EEMD signal and various realizations of the
similar input signal yielding a varied number of modes [52].

d: COMPLETE EMPIRICAL ENSEMBLE MODE
DECOMPOSITION WITH ADAPTIVE NOISE (CEEMDAN)
To overcome the problems of EED, Torres et al. [53] pro-
posed CEEMDAN in 2011. CEEMDAN is an EEMD and
EMD algorithm variant that gives a precise reconstruction of
the main input signal. It provides improved separation of the
IMFs in the spectral domain.

e: EMPIRICAL WAVELET TRANSFORMATION (EWT)
Gilles et al. [54] developed a decomposition model which
removed few limitations of the EMD and named the model
EWT. This model is also a successor of classical WT.
The EWT approach seeks to identify the oscillatory AM
and frequency FM components of a signal, both of which
have compact Fourier support. By segmenting the Fourier
spectrum, empirical wavelets are created. If various com-
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TABLE 2. Advantages and disadvantages of popular feature extraction methods.

ponents of a signal could not be separated in the Fourier
spectrum, the decomposition findings of EWT will be
incorrect [55].

f: WAVELET PACKET DECOMPOSITION (WPD)
Wavelet Packet Decomposition (WPD), often known as
wavelet packets, is a wavelet transform that uses more fil-
ters than the DWT. Wavelet packets are a linear combina-
tion of wavelets. They form bases that retain many of their
parent wavelets’ orthogonality, smoothness, and localization
features. The coefficients in the linear combinations are
produced by a recursive technique, with each newly com-
puted wavelet packet coefficient, resulting in minimal

computing cost for expansions in wavelet packet bases. Each
level of the DWT is computed by passing the preceding
approximation coefficients through high and low pass filters.
The WPD, on the other hand, decomposes both the detail and
approximation coefficients.

g: HILBERT-HUANG TRANSFORMATION (HHT)
The Hilbert-Huang transformation (HHT) is a method that
combines empirical mode decomposition with Hilbert spec-
trum analysis. The empirical mode decomposition adaptively
decomposes signals based on their properties into various
intrinsic mode functions. The intrinsic mode functions are
then transformed into instantaneous frequencies usingHilbert

30698 VOLUME 11, 2023



S. Jahan et al.: AI-Based Epileptic Seizure Detection and Prediction in Internet of Healthcare Things: A Systematic Review

transforms to provide the signal’s time-frequency-energy dis-
tributions and characteristics. Biological signals, mechanical
diagnosis signals, natural physical signals such as earthquake
waves, ocean acoustic signals, and winds can all benefit from
HHT-based time-frequency analysis.

FIGURE 4. Flow chart of epileptic seizure (ES) classification.

h: VARIATIONAL MODE DECOMPOSITION (VMD)
Dragomiretskiy and Zosso [56] suggested a VMD model in
2014. The approach, which is based on the EMD, presupposes
that the main signal F is made up of several IMFs [57]. VMD
outperforms WT in terms of noise sensitivity and eliminates
modal aliasing [58]. VMD can be used combined with other
optimization approaches to provide exact separation results in
the actual air quality forecasting models [59]. Table 2 clearly
says the limitations and main contributions of popular feature
extraction methods.

C. FEATURE SELECTION
The features selection is an essential step in lowering classi-
fication error rate and computation complexity. The feature
selection process refers to removing redundant and irrelevant
features or optimizing the feature’s small subsection for the
specific classifiers. Wrapper, filter, and embedded methods
are the three types of feature selection techniques. The clas-
sification method is treated as a black box by the wrapper.
Filtering methods are used in the pre-processing step to per-
form a preliminary evaluation of the feature’s importance.
While wrapper methods select features based on interaction
with a classifier, i.e., an underlying model, filter methods
are model-independent. An advantage of filters is that they
usually require less computational power than wrappers and
are more suitable for big data sets [38].

D. CLASSIFICATION
In the classification phase, the classifier assumes the appro-
priate class (seizure or normal). This assumption takes place
based on selected features that came from the feature selec-
tion phase. The section VI of this paper contains a detailed
description of various classification models. Figure 4 depicts
the process of ES classification.

IV. CLASSIFICATION ALGORITHM
Popular classification algorithms can be divided into two
major sub parts. One is ML and another is DL. ML is a type
of AI that can adjust automatically with little assistance from
humans. On the other hand, a Artificial neural networks are
used in DL which is a subset of ML and used to simulate
the way the human brain learns. Some popular ML and DL
algorithms are discussed bellow:

A. MACHINE LEARNING (ML)
1) NAIVE BAYES (NB)
NB is a ML approach used in probabilistic classification.
This algorithmic technique predicts varied class probabilities
based on distinct criteria. The core of the classifier is based
on the Bayesian theory with a substantial implication that
attributes are conditionally independent given the class. This
classifier has the advantage as it needs a lesser amount of
training data. Multinomial, Bernoulli, and Gaussian Naive
Bayes are some of the popular types of NB classifiers.
NB operates by assuming that the inclusion of some class
features has no relevance on the presence of other features.
It evaluates each feature separately to compute the feature
qualities which influence the classification outcome of any
given class. This is a speedier way and, even though it seems
to be over-simplified, in many real-world scenarios NB clas-
sifiers have been effectively working. One limitation of NB
is it makes the assumption that all features are independent,
which is rarely the case in practice.

2) DECISION TREE (DT)
DT is a supervised learning algorithm with the added benefit
of solving regression and classification problems. The objec-
tive is to develop a model which predicts the value of a target
variable, in order to resolve the problem in which the leaf
node correlates with a class label, the decision tree employs
the tree representative. Attributes are represented on the tree’s
internal node. This is also known as a statistical classifier
based on information gain, where the best-standardized profit
is the criteria for splitting by producing DTs.

DTs apply several strategies to divide a node into two or
more sub-nodes. The emergence of sub-nodes improves the
uniformity of the sub-nodes. That is, with relation to the target
variable, we may say that the pure node rises. The decision
tree divides the nodes on all relevant factors and then picks
the split that leads to the most uniform subnodes. C4.5, ID3,
CART, and MARS are some of the algorithms to formulate
DTs [60]. DT’s relative instability in comparison to other
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decision predictors is one of their drawbacks. Aminor change
in the data can have a significant impact on the decision tree’s
structure, which can convey a different outcome than what
users would typically receive.

3) RANDOM FOREST (RF)
RF is a supervised learning algorithm. The forest, which is a
combination of a set of DTs, is generally trained in ‘‘bagging’’
methods. The main principle of this method is that the total
outcome is increased by a mixture of learning models. Every
individual tree disseminates a class prediction in the RF, and
the class with the most votes becomes the forecast for the
model. Instead of looking for the most essential feature when
a node is scattered, a random subset of features seeks for the
best feature suggested by Breiman in 1999. This covers a
wide range which usually leads to a superior model [61].With
a view to increase prediction accuracy while preventing over-
fitting issues, this classifier flexibly selects the optimizing
parameters (i.e., number of DTs formed and greatest depth
of the decision tree) [62]. This algorithm may become too
slow and ineffective for real-time predictions if there are a lot
of trees. But lots of work is going on to remove this barrier.

4) K-NEAREST NEIGHBOR (KNN)
KNN algorithm is a nonparametric, nonlinear and reasonably
easy classification method [63]. It works effectively with
the bigger training dataset. For the bigger training dataset,
it works great. In this approach, data object categorization
is done by computing the majority of neighbors’ votes, and
the object is the class that is most prevalent among the neigh-
bors. KNN is mostly based on similarities such as Euclidean
Distance (ED), Manhattan Distance and the other metrics
between training and test data sets. The latest samples are
allocated to the class for training on the basis of similarity
measures based on close K dataset thus the majority vote in
the case is determined to classify the case. For K, the ideal
value is from 3 to 10. Based on neighboring K training sets,
a test data set is allocated to the class [64]. KNN is proved
to be slower in execution when the number of predicates
increases.

5) SUPPORT VECTOR MACHINE (SVM)
SVM is one of the most commending supervised ML algo-
rithms. Its popularity remains as being used in classifications
and regressions problems. This algorithm is useful in solv-
ing big data classification problems. The SVM algorithm is
designed to build the optimal line or decision boundary to
separate n-dimensional space in classes. As a result, the new
data item may readily be assigned to the appropriate section.
This optimal decision limit is known as a hyperplane [65].

Linear and Non-Linear SVMs are the categories of this
algorithm. SVM selects the extreme vectors to assist in build-
ing the hyperplane. These extreme vectors are called support
vectors and thus the algorithm is named SVM.Whenever two
classes cannot be linearly distinguished, the SVMs attempt

to determine the hyperplane maximizing the margin while
decreasing the amount of misclassification errors proportion-
ate to them. A favorable user-defined parameter controls the
balance between margin and misclassification error [66].

6) LEAST SQUARES SUPPORT VECTOR MACHINE (LS-SVM)
LS-SVM algorithm exists as a modification of the SVM
algorithm. This can be utilized in classifications as well as in
function estimation. Application of equality constraints and
least squares are seen to disentangle problems. Utilization of
target values is considered contrary to threshold values [67].

7) ADAPTIVE BOOSTING (AdaBoost)
The AdaBoost algorithm is a strategy used as an ensemble
method used in ML elongated as adaptive boosting. It is
termed as the weights are allocated to each case, with bigger
weights for examples which have been incorrectly classified.
In supervised learning, boosting is used to minimize bias
and change. It is centered on the gradual growth of the
learner. Each successor is produced from a formerly devel-
oped learner, with the exception of the initial one. In other
words, weak learners are transformed into strong ones [68].
As a weak classifier, a decision stump is typically employed
in the AdaBoost method as a sub-classifier and these weak
sub-classifiers are combined together to build a stronger final
classifier.

B. DEEP LEARNING (DL)
1) ARTIFICIAL NEURAL NETWORK (ANN)
The theme of ANN is based upon the computer simulation
of the human brain as a response to any incident. It consists
of hundreds or thousands of artificial neurons interlinked by
processing units. Processing units are the weights and biases
which interconnect neurons. The weights and biases are thus
modified so that by training an ANN, it creates an outcome
significantly analogous to the original result [69]. In general,
an ANN has an input layer, a single or hidden layer, for the
production of a feature, and a classification output layer.

2) CONVOLUTIONAL NEURAL NETWORK (CNN)
CNNs can successfully capture spatial and temporal depen-
dencies. These use local spatial correlation by implementing
a pattern of local connections among adjoining layer neurons.
CNN classifies images by detecting lower-level character-
istics (such as borders and curves) and then building up a
number of convolutional layers into more abstract representa-
tions [70]. In comparison to other algorithms, pre-processing
is substantially reduced in CNN. While hand-made filters
are made in a simple manner, CNNs are able to learn
these filters/functions with adequate training. At least four
separate layers, including convolutinal, pooling/subsampling
layers, completely connected layers and the output layers
are included in a standard CNN design. Generally CNN is
referred to as Two Dimensional CNN (2D-CNN) although
there are two other variations of CNN i.e., One Dimensional
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CNN (1D-CNN) and Three Dimensional CNN (3D-CNN)
exist in real life applications. 1D-CNN is used for time series
data such as data obtained from accelerometer to recognize
activity. 3D-CNN is utilized with 3D images for-instance
Computerized Tomography and Magnetic Resonance Imag-
ing in order to classify them or for feature extraction.

3) RECURRENT NEURAL NETWORK (RNN)
The NNs with memories that collect all the information saved
in succession from the preceding element are RNNs. This
means that, because the RNNs carry out the identical duties
for each element in the series, with the result being reliant
upon all previous calculations, the data is used in a some-
what lengthy sequence. RNN-based algorithms can generally
track and store relationships of long-term reliance. In RNN-
based learning techniques, the Long Short-Term Memory
model (LSTM) as well as the Gated Recurrent Unit (GRU)
are common variables. RNN has a ‘‘memory,’’ which retains
all of the computed information. For each input, it utilizes the
same settings as it does for all the inputs or hidden layers to
create the output. In contrast to other ML approaches, this
decreases parameter complexity. It is often used to handle
mundane issues such as language translation, processing,
speech recognition, and captioning [71].

Commonly used mobile featured applications such as
Siri, google translate use RNNs. By supplying the identical
weights and partitions to all layers, RNN turns the indepen-
dent activations into dependent activations, decreasing the
complexity of growing parameters and studies each previous
output by supplying an input to the next hidden level for every
output.

4) LONG SHORT-TERM MEMORY (LSTM)
Long short-termmemory networks, or LSTMs, are employed
in deep learning. A variety of RNNs, particularly in problems
involving sequence prediction, are capable of learning long-
term dependencies. A series of ‘‘gates’’ used by LSTMs
regulate how data in a sequence enters, is stored in, and leaves
the network. A typical LSTM has three gates: an output gate,
an input gate, and a forget gate. Each of these gates is a
separate neural network and can be thought of as a filter.

5) BIDIRECTIONAL LONG SHORT-TERM MEMORY (BI-LSTM)
Attempting to make any neural network have the sequence
information in both directions—backwards (future to past) or
forward—is known as bidirectional long-short term memory
(BI-LSTM) (past to future). An extension of conventional
LSTMs that can enhance model performance is called a
bidirectional LSTM. A bidirectional LSTM differs from a
conventional LSTM in that our input flows in two directions.
Bidirectional LSTMs train two LSTMs rather than one on the
input sequence where all timesteps of the input sequence are
available.

Adaptability and scalability are two major concerns of all
ML algorithms. IoT-based applications are dealing with a

large amount of real-time data. Adaptive machine learning
is a more sophisticated solution that prioritizes real-time data
collection and analysis. It readily adapts to new information
and offers insights almost immediately, as its name would
imply. In other words, it is capable of quickly adjusting to new
information and understanding its significance. Scalability
in machine learning refers to the capacity of ML applica-
tions to handle large amounts of data and carry out complex
computations quickly and affordably for millions of users
worldwide. The scope to which a model can be understood in
terms of people is its interpretability. The following Table 3
and 4 shows a comparison between the above-mentioned
algorithms in terms of adaptability and scalability and inter-
pretability. The limitations of these algorithms are also men-
tioned in this table. After reviewing different research articles
on ML algorithms it is observed that in the case of adapt-
ability and scalability, very limited works are done. Most of
the researchers didn’t focus on adaptable and scalable ML
algorithms for EEG-based ES detection. Besides, maximum
ML algorithms don’t have any proper interpretable form. For
EEG-based ES detection, no such interpretable form of ML
algorithm is developed. Though explainable AI algorithms
such as LIME and Shap can be used to interpret the decisions
of these ML algorithms. But more emphasis should be given
to creating interpretable ML Algorithms.

V. INTERNET OF THINGS (IoT)
The IoT is synonymous with the revolution of technology.
It depicts the evolution of information and communication
technologies, and its growth is dependent on rapid technolog-
ical advancement in a variety of fields. The phrase Internet
of Things which is abbreviated as IoT is coined by Kevin
Ashton, cofounder of the Auto-ID Center in MIT, consists of
the terms ‘‘Internet’’ and ‘‘Things’’. The creation of theWorld
Wide Web which is referred to as the internet has connected
people worldwide to exchange information, news and views.
As per Internet Live Stats, the total number of Internet users
worldwide was projected to be 4,990,597,893 as of December
13, 2021. The number of internet users accounts for roughly
40% of the global population. When it comes to the Things,
this can be any entity or individual that can be identified in the
real world. The term ‘Things’ is not only electronic devices
or technologically advanced tools but ‘‘Things’’ which are
around us and not thought to be technological [94]. By 2025,
the total number of estimated IoT devices will be 30.9 billion
units. There have beed a significant increase from approxi-
mately 13.8 billion units in the year 2021 [95].

The unique benefit of IoT and a wide variety of IoT
applications enables users to operate in all fields, such as
healthcare, home automation, industrial automation, business
automation, urbanization, smart agriculture, emergency alerts
and disaster recovery. New IoT technology applications allow
firms to develop and deploy sophisticated risk management
methods, in the form of enhanced operational performance,
companies leverage technology.
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TABLE 3. Comparison between various ML algorithms.
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TABLE 4. Comparison between various DL algorithms.
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FIGURE 5. Projected market share of IoT in healthcare industry (year
2016 to 2025) [96].

A. IoT IN E-HEalthcarE
To minimize the insufficiency of advanced patient care,
a remarkable incorporation of IoT with the healthcare indus-
try is necessitated. The application of IoT and healthcare
is immense and plays significant roles. Internet of Health-
care Things (IoHT) is a subset of IoT. IoHT is a connected
infrastructure of software applications and medical devices.
It allows the exchange of healthcare data with the help of
wireless technology. IoHT opens a new dimension providing
various possibilities and advantages. It plays an essential
role to make the modern healthcare system efficient and
robust. IoT adoption in healthcare has substantially trans-
formed the healthcare sector by facilitating interconnectivity
among medical devices, patients, and medical professionals.
Statistic confirms the healthcare currently accounts for 70%
of best-selling IoT devices mostly wearables and smartwears,
and by 2026, 40% of all IoT-enabled products will be
accounted by healthcare. By 2025, the healthcare industry is
expecting to generate more than $135 billion in revenue [96].
Estimated universal market share of IoT healthcare industry
is shown in Figure 5. Some of the notable benefits of IoT in
healthcare are:

• IoT allows patient supervision on a real-time basis and
thereby reduces needless trips to doctors, hospitals, and
readmission rates substantially.

• It permits doctors to reach intelligent conclusions based
on evidence and offers total clarity.

• Constant patient surveillance and real-time data aid in
the early detection of illnesses or even before the symp-
toms appear.

• Medicines and healthcare device management in the
healthcare sector is a major issue. These are efficiently
maintained and used at lower costs via IoHT.

• IoT data not only serves to make an appropriate decision
but is also responsible for seamless health operations
with fewer failures, wastage, and operational expenses.

B. EEG-IoT IN E-HEalthcarE
1) PSYCHOLOGICAL STATE OR EMOTION ANALYSIS
Soundarya [97] proposed a new work that uses EEG to mea-
sure psychological state that helps to initialize the parameters

of the NN as emotion is hard to understand and measure, but
still, suicide is a huge issue on a global scale. The system
creates a synchronized wave containing values and details
of the patient’s emotions. Which finally helps to understand
the state of the emotion of an individual. It gives an accu-
racy of 75.42% (got from softmax classifier), which gives
better results when compared to other ML classification
algorithms.

Kaur et al. [98] made an investigation where EEG is used
to analyze all sorts of impacts of positive and negative emo-
tion. They worked on three types of happiness, emotion,
calm, and anger. Real-time EEG signals are recorded from
10 subjects and simultaneously different emotions video clips
of 2 minutes each are being watched. Later they extract
fractal dimension features from raw EEG. It gets an average
accuracy of 60%. The proposed methodology proves it is
possible to recognize emotions from EEG signals.

2) PATHOLOGY DETECTION
Muhammad et al. [99] proposed a remote pathology detec-
tion system that is based on EEG. A Deep Convolutional
Neural Network (DCNN) with 1D and 2D convolutions are
used, and fusion is done with features from different con-
volutional layers. Various networks are investigated, and a
publicly available EEG signal is used to experiment. The
proposed system achieved accuracy greater than 89% using
the CNN and later the (Multi Layer Perceptron) MLP with
two hidden layers. It has been evaluated in a cloud-based
framework also, and its performance is found comparable
with the performance gathered from only a local server. The
accuracy rate of this model is satisfactory but not excellent.

3) SLEEPINESS DETECTION
In 2018, a sleepiness detection method based on a BCI
headset with three electrodes was proposed by borulkar et al.
[100]. The frequency of brain waves is computed using a
headset worn on the person’s head. Unwanted noises are
removed from the received signals. The calculated frequen-
cies are then compared to the brain state’s threshold frequen-
cies, allowing a specific judgment such as if an individual is
awake or asleep to be made. If a person is drowsy, a specific
alert is produced on his or her Android smartphone to wake
him or her up.

4) FATIGUE DETECTION
Zhang et al. [101] presented a system that detects fatigue
based on monitoring train driver vigilance for high-speed
train safety using a wireless wearable EEG. It detects the
drowsiness of the driver. The three parts of this system record
data, transmit it to pc using Bluetooth. Then it implements
a SVM classification algorithm, which determines the level
of vigilance. Also, if the fatigue is detected then an early
alarm system starts working. The accuracy rate of this model
is 90.70%, which is satisfactory but not excellent.
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5) DEPTH OF ANESTHESIA MONITORING
For monitoring the depth of Anesthesia intelligently, proac-
tively, and wirelessly, Fernandes et al. [102] proposed an
electric Depth of Anesthesia (DoA) monitoring activity in the
course of an intraoperative period in a completely simulated
environment. The authors had used a micro-controller to
collect EEG raw data from the ‘‘Mindwave Mobile Headset’’
during the process of sensing. They combined the Arduino
with a Bluetooth module because the headset sends EEG
signals via Bluetooth and the Arduino did not have com-
munications infrastructure in this method. A three-layered
architecture has been proposed by the authors where layer 1
consists of data collection, monitoring, storage, visualization,
and monitoring. REST API stays in the second layer and the
final layer consists of the cloud platform. To determine the
depth of anesthesia, EEG attention levels aremeasured.When
anomalies in attention values are detected, the agents respond
by sending text messages to care-providers. The ‘‘SmartDoA-
Monitoring’’ app takes an average of 3.375 seconds to detect
the anomaly and notify the agent if found.

6) PHYSICALLY DISABLED OR IMMOBILE PATIENTS
MONITORING
Carrasquilla-Batista et al. [103] proposed an EEG data-
dependent wheelchair that is specially customized for phys-
ically immobile people. Here, small voluntary eye blinking
brain wave data are captured by the sensor-based headset
prepared by NEUROSKY, and that raw information is pro-
cessed and computed by Raspberry Pi single-board computer.
The authors claimed that their system can perfectly detect the
difference between voluntary and involuntary eye blinks. So,
based on those voluntary eye blinks of patients’, a wheelchair
can do its movements.

Soman and Murthy [104] designed and implemented a
BCI-based system for synthesized speech generation that
is based on the user’s EEG signals. This type of system
is especially beneficial for patients with locomotive dis-
orders like locked-in disease, who can share information
with their caregivers via this functionality. This solution uti-
lizes the lightweight and easily wearable EMOTIV headset,
is designed on an open-source application, and no individual
training is needed for the users. By collecting the eye blinking
data of five volunteers, the authors trained the system and
achieved an offline accuracy of approximately 95%.

Kurapa et al. [105] proposed a home appliance automation
system where EEG-based BCI signal is used, those signals
are filtered by a hybrid filter and finally can extract the
Electromyography (EMG) signals of a physically disabled
person. This system collects brain waves from an electrode
cap then those data are being filtered and processed in mat
data. Further processing is done with the help of a micropro-
cessor andwith the help of Bluetooth those data are sent to the
home appliances. The EEG signals were obtained through an
experiment on eight healthy male subjects aged 18 to 22 years
old who were free of any abnormalities. In this experiment,

a 29-second video is shown to perform a specific task at
a specific time, such as hand movement. The power and
time peak generated from the hand movement data of three
subjects exist between 21.4 Hz to 21.8 Hz, and 14.1 seconds
to 14.69 seconds, respectively. One possible drawback of this
model is here, EEG data are collected and analyzed based
on the movement of the right hand. This would create a
problem for those persons who have difficulties in right-hand
movement or may not have the right hand.

C. EEG-IoT BASED EXISTING METHODS FOR ES
PREDICTION, DETECTION, AND MONITORING
Hosseini et al. [106] proposed a BCI framework for predict-
ing seizure where DL and cloud computing techniques are
used. An optimization of general CNN and Stacked Auto-
encoder (SAE) is implemented in this model where, Dif-
ferential Search Algorithm (DSA), PCA, and Independent
Component Analysis (ICA). Sayeed et al. [107] proposed a
three-staged seizure detection technique where in the first
stage EEG data are decomposed by DWT method. After
that, different Hjorth Parameters (HPs) are retrieved from
the decomposed data and prominent changes are observed
between ictal and interictal data. Finally, KNN classification
is performed, final predictions are collected and saved in the
cloud. This framework supports the seizure detection tech-
nique and offers the communication of acquired results. Data
security issues and a complete patient monitoring scheme
were not focused on here. A complete seizure prediction
and IoT-based remote monitoring framework is proposed
by Sayeed et al. [108]. In the proposed framework, DWT,
statistical extraction of features, and a NB classifier are used
to detect seizures. The patient’s medical data can be viewed
at any time with the help of the edge-IoT framework. Security
of edge devices was not focused on this proposed work.

Alhussein et al. [109] proposed a cognitive IoT-based
smart health care framework that can provide timely, assess-
able, modern health care services at a very minimal cost.
In this framework, various physical data are collected from
patients body with the help of sensors like EEG, ECG, EMG,
accelerometer, oximeter, thermometer etc. With the help of
Bluetooth, Zigbee, RFID those collected data are passed to
the hosting layer and a Wireless Area Network (WAN) inter-
face will send those data to the cloud. The data is sent to the
cognitive engine, which analyzes multimodal sensor data to
determine if the patient requires emergency treatment. If the
cognitive engine predicts the patient may have a seizure, all
those physical data are passed to the feature extraction mod-
ule and also inform patients seizure tendency to all possible
stakeholders. In the feature extraction module, DL techniques
are used to predict and detect seizure and sends those data
to the cloud database. Based on those results doctors and
caregivers can provide necessary healthcare. With the help of
smart communication technique, all healthcare service details
are shared with all city stakeholders so that patients reports
and details can be used in future. Thismodel is not compatible
with very large EEG dataset.
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TABLE 5. Comparison between various EEG-IoT based models for ES prediction, detection, and monitoring.

Sayeed et al. [110] proposed a system that continually ana-
lyzes brain inputs and extracts hyper-synchronous impulses
to detect the starting of seizure. If the number of pulses
reaches a predetermined threshold level within a particular
time window, a seizure is reported. First, the brain’s EEG
data are collected; after that, with the help of Signal Rejection
Algorithm (SRA) and Voltage Level Detection (VLD) of the
signal, a seizure can easily be detected. Despite being an
Internet of Medical Things (IoMT) framework, the monitor-
ing of seizure patients is not described in this paper.

IoT in health opens the way for emergency treatment for
epileptic patients. Gupta et al. [111] suggested a cloud health
IoT system based monitoring paradigm for epileptic patients.
To assure data security a DWTs Singular Value Decompo-
sition (SVD) and the Short-time Fourier Transform (STFT)
technique can be used for watermarking. The suggested
watermarking system, which is founded on DWT-SVD and
STFT, was tested on class S and class Z EEG signal. Here, the
authors only focused on security using watermarking. Feature
extraction and classification parts are not focused on here.

Sayeed et al. [112] proposed an IoT framework to detect
the seizure using EEG data. In this approach, HPs and DWT
techniques are used. DWT technique will help to decompose
the EEG signals and signals will be converted to subbands
and features are extracted. In the last stage, DL is used for
performing the classification. An approach named hardware-
in-the-loop is used in this framework. The proposed model
only detects a seizure, send EEG data and seizure state in
the cloud. So, a complete monitoring scheme is not presented
here.

Singh and Malhotra [113] introduced an autonomous ES
detection method and layered architecture for the early iden-
tification of ES by combining existing modern commu-
nications techniques with cloud computing and ML. This
system sends detected EEG data from the patient to the

cloud via a WiFi or 4G network. Fast Walsh Hadamard
Transform algorithm is employed to handle EEG data in
the cloud, and Higher Order Spectra (HOS) are employed
to extract statistical and entropy-based characteristics. The
RF technique was used to categorize EEG data into seizure
phases: ictal, preictal, and normal. Because of the numer-
ous hand-crafted features that must be extracted, existing
seizure prediction algorithms are computationally intensive
and require a lot of memory to store their parameters. For
seizure prediction, Daoud et al. [114] suggested a DL-based
IoT platform. Because the classification and feature extrac-
tion stages are combined, the computational complexity will
be minimized. The Spatio-temporal properties of nonlinear
and non-stationary EEG data are extracted using a DCNN
model. Table 5 shows recently proposed EEG-IoT based
models for ES prediction, detection, and monitoring.

VI. MACHINE LEARNING FOR DETECTING EPILEPTIC
SEIZURE FROM EEG
A. MACHINE LEARNING (ML)
1) SUPPORT VECTOR MACHINE (SVM)
In 2016, a multiclass SVM-based seizure prediction method
was proposed by Direito et al. [115]. The feature sets, when
integrated with multiclass classification as well as post-
processing strategies, aim to create warnings while reducing
the impact of false positives. Using SVM and Multi-Features
of EEG data, Sriraam and Raghu [116] proposed a model
to classify seizure data. To understand non-focal and focal
ES, multi-features obtained from various domains are used.
Subasi et al. [117] proposed a two hybrid SVM approach to
detect an ES. Here, Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) helped to detect the optimum
parameters for SVM. Those two new approaches open a
new door of research on hybrid SVM. But, the high time
complexity is observed by those hybrid approaches.

30706 VOLUME 11, 2023



S. Jahan et al.: AI-Based Epileptic Seizure Detection and Prediction in Internet of Healthcare Things: A Systematic Review

Hamad et al. [118] proposed a hybrid SVMmethod, where
Grasshopper Optimization Algorithm (GOA) was combined
with SVM. To ensure a good EEG classification, GOA was
used to choose the impactful set of features as well as the suit-
able SVMs variable settings. This model to detect seizure was
a real promising approach that provides good performance in
classification. A high-quality ES prediction model using the
CNN-SVM model was proposed by Agarwal et al. [119] in
the year 2018. CNN has the ability to modify various require-
ments from different applications. SVM is a computational
method described by a segregating ideal hyperplane that is
used to categorize new samples. The integration of SVM and
CNN has been shown to be an effective method for epileptic
prediction. Raghu et al. [120] proposed a novel method to
detect an ES. The authors presented a sigmoid entropy-based
DWT approach for extracting features. SVM was used here
as the classifier. The wavelet coefficients in each sub-band
were used to calculate the sigmoid entropy. From this work,
it is clear that sigmoid entropy can be a potential biomarker
to detect a seizure.

A combination of SAE and SVM is proposed by
Siddharth et al. [121] to detect seizures’ focal area. The
authors used a filter bank named Fourier-Bessel series expan-
sion domain empirical wavelet transform (FBSE-EWT).
From multi-channel EEG signals, EEG data are passed to
the FBSE-EWT filter, which can separate rhythms. After
that, filtrated data are passed to the SAE-SVM network
and the classification between focal and non-focal data are
observed. Specific rhythms were extracted and selected from
each channel EEG data using the FBSE-EWTfilter bank with
a predetermined sequence range. After the experiment, the
authors observed that the FBSE-EWT based rhythms (theta
band) coupled with SAE-SVM outperformed other existing
models.

2) RANDOM FOREST (RF)
Mursalin et al. [122] presented an ES detection model where
the feature selection process is performed by improved
correlation method. RF was used as a classifier in this
model. To begin the analysis, Improved Correlation-based
Feature Selection (ICFS) method was used to identify the
most important features from the frequency-time domain
and entropy-based attributes. This model outperforms various
conventional correlation-based methods. A seizure detection
method was proposed by Zhang et al. [123] that combines
the SVD, Generalized Stockwell Transform (GST), and a
classifier called RF. The unprocessed EEGwas converted into
a matrix (frequency-time) using GST, and the singular values
were retrieved using SVD. After those steps, classification
operation took place using RF. The time complexity of this
method was not specified. RF typically takes longer to gen-
erate the tree.

Wang et al. [124] proposed a model that employs a
unique RF-based model in conjunction with Grid Search
Optimization (GSO). After normalization Seizure features

were visualized using the short-time Fourier transformation.
Prior to actually feeding the features into the classifiers,
the dimensionality of the attributes was reduced using PCA.
Wang et al. [125] also proposed a novel ES state prediction
method where Wavelet Packet Features (WPFs) was used
to extract features from data and the RF was used as a
classifier. For the multi-channel EEG signal, WPFs such as
the sub-band ratio (energy) and three wavelet coefficients
are retrieved. For preictal phase prediction, the RF is used.
Sameer and Gupta [126] proposed a novel automated seizures
detection technique using the alpha band (8 Hz-12 Hz). The
authors used STFT to convert the frequency domain signal
into the time domain. From this time-domain signal, four
statistical features were extracted. Mean, variance, skewness,
and kurtosis are used as the features of this signal. A total of
six classifiers were used in this model and their result compar-
ison shows that the RF classifier provides better results than
others. Chakraborty et al. [127] presented an ES detection
method using VMD as the feature extraction technique and
RF as the classifier. TheKruskal-Wallis test is used to identify
significant features, which are then fed into the classifier.
Four different classifiers are tested in this experiment and the
RF classifier outperformed all others.

3) K-NEAREST NEIGHBOR (KNN)
Rajaguru and Prabhakar [128] presented a modified
KNN-based classifier to classify epilepsy. The dimensions
of the collected EEG signals were reduced using Power
Spectral Density (PSD). The dimensionally decreased values
were classified using KNN Dependent AdaBoost Classi-
fier for classifying epilepsy. Ibrahim et al. [129] presented
KNN-based classifier to predict epilepsy. In this model fea-
ture, extraction was performed by Shannon entropy. The
distribution and the complexity of the EEG signals may reveal
information about the brain’s features and condition. These
findings compel us to conduct additional research into the
use of entropy as a tool for seizure prediction. With KNN
approach, this seizure predictor compares the entropy of
every iteration throughout the moving window to analyze the
pre-seizure and normal baselines.

For detecting epilepsy using different EEG data, Choubey
and Pandey [130] presented a method where some statis-
tical features are compared and for classification compari-
son, KNN and ANN classifiers were used. Here, Higuchi
Fractal Dimension (HFD), Expected Activity Measurement
(EAM), and sample entropy those statistical features were
used and the best suited statistical feature for the clas-
sification was obtained. Akbari et al. [131] presented a
seizures detection method where rhythms’ phase space is
reconstructed in the EWT domain. In this method, rhyth-
mic separation and noise cancellation are performed on
raw EEG data. After that, feature extraction has occurred
and necessary features were selected with the help of the
GA. Finally, classification is performed using the KNN
algorithm.
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TABLE 6. Comparison between various ML-based models for ES prediction and detection.

4) NAIVE BAYES (NB)
To detect epilepsy, Sharmila and Geethanjali [132] presented
a DWT feature extraction-based model KNN and NB classi-
fiers are used. The result of 14 various epilepsy detectionmix-
tures was investigated using KNN and NB classifiers for the
generated statistical features from the DWT. For online-based
personalized seizure prediction, Xiao et al. [133] proposed
three adaptive predictors. Those are: Adaptive Naive Bayes
Predictor (ANBP), and Adaptive Probabilistic Prediction
(APP). From long-term EEG recordings, the online pattern
learning and forecasting model produced highly impressive
prediction accuracy for ten epileptic patients.

5) DECISION TREE (DT)
Martis et al. [134] presented an EMD based automated ES
detection method where the C4.5 algorithm is used as the
classifier. EMD works as the feature extraction method that
decomposes inter-ictal and ictal EEG data. Few IMFs are
produced by EMD, which are frequency and amplitude mod-
ulated waves. After that, data are passed into the C4.5 that is a
DT algorithm. For epilepsy classification, Rajaguru and Prab-
hakar [135] presented a Soft Decision Tree (SDT) method
where Sparse PCA (SPCA) was considered as a dimension-
ality reduction factor. In this approach first, raw EEG data

were sampled and passed to the sparse PCA for reducing
the dimensionality then the outputs were sent to SDT for
classification. Wu et al. [136] proposed an intelligent classi-
fier for epilepsy detection where a performance comparison
between three types of DT algorithm andMulti Layer Percep-
tron (MLP) algorithm was performed. The three types of DT
algorithms are C4.5, CHAID, and CART. Table 6 discusses
recently proposed ML-based models for ES prediction and
detection.

6) ADAPTIVE BOOSTING (ADABOOST)
Rajaguru and Prabhakar [137] proposed an AdaBoost-based
ES detection method in which AdaBoost are used as
post-classifiers to improve the model’s accuracy. This pro-
posed model is built with the code converter and the
AdaBoost classifier, and the main reason for using the
AdaBoost classifier is the code converter’s poor performance.
First, the EEG datasets are collected, followed by the sam-
ples. The samples are then encoded and processed using a
code converter. Third, an AdaBoost classifier is used as the
post classifier, which helps to ensure that a specific weight
is maintained throughout the entire training set. Finally, the
model’s performance is evaluated. One limitation of this
model is the accuracy of the model is good but not the best.
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There are some models which provide more accurate results
than this work.

Al-Hadeethi et al. [138] used AdaBoost LS-SVM to
present a two-phased seizure detection technique. To reduce
the dimensionality, covariance matrix in the first phase.
Here, a feature extraction operation was also performed.
In the second step, the AdaBoost LS-SVM classifier can
deal with unbalanced data. Hassan et al. [139] proposed a
method for resolving the issue of automatic ES detection
from single-channeled EEG signals using AdaBoost classi-
fier where CEEMDAN is used for extracting the features.
Firstly, segmentation of EEG data takes place and after that,
those segmented data are decomposed by the CEEMDAN
method. Secondly, from the output of CEEMDAN, inverse
Gaussian parameters are extracted carefully. Now, data are
ready to be divided into training ad testing sets. Lastly, with
the help of the AdaBoost classifier, a classification operation
was performed.

B. DEEP LEARNING (DL)
1) ARTIFICIAL NEURAL NETWORK (ANN)
Chakrabarti et al. [82] proposed an adaptable method for
ES detection that is rooted in ANN for classification and
wavelet for feature extraction. EEG signals were used as
the input for the DWT, which was processed using multi-
resolution analysis. For feature extraction, four different
wavelets, including Daubechies, Symlet, Bi-orthogonal, and
Coiflet, were used. The method was validated using a pro-
totype microcontroller-based model to enhance classification
accuracy in the shortest amount of time. The prototype circuit
is not complex and challenging, and the microcontroller is
well-equipped and suitable for working in various environ-
ments with various sensors.

For the categorization of focal and generalized ES types
that used a feed-forward multi-layer neural network archi-
tecture (MLP ANN), Saric et al. [83] constructed a Field
Programmable Gate Array (FPGA)-based solution. Scalable
and portable FPGA systems based on MLP ANN are very
useful for real-time ES diagnosis in both biomedical and
non-clinical settings. 822 recorded signals from the Temple
University Hospital Seizure Detection Corpus (TUH EEG
Corpus) dataset are used to train, verify, and test the ANN
algorithm. The system took five main features as inputs,
which were extracted from EEG data using time-frequency
assessment, Continuous Wavelet Transform (CWT), and sta-
tistical methods. 583 which means that 70% of the entire
sample was used for developing the system in MATLAB and
TensorFlow, and 30% of the samples which is 239 samples
were also used for later testing of the model’s result on the
FPGA. After that, k-Fold Cross-Validation was used to find
the ANN model’s appropriate parameters. Ultimately, the
highest-performingANNmodel for real-time seizure classifi-
cation was applied to the FPGA in terms of average validation
data accuracy obtained during cross-validation.

Guo et al. [140] proposed an automated ES detection
technique where ANN is used with WT technique for

decomposition. The abilities to combine line length features
with an ANN to identify ES in EEGs were investigated. Since
this dataset was pre-processed by erasing artifacts through
visual observation, extensive testing in real-world clinical
settings is required. Juárez-Guerra et al. [141] presented a
novel method to identity epileptic patient and the normal
person using DWT and ANN. First, noisy data were removed
then data were passed to the DWT. Here, DWT is used
for extracting the features of the EEG data. After the fea-
ture extraction, data were passed to the Feed-forward ANN
(FFANN). Ambulkar and Sharma [142] proposed a five-stage
ES detection method. First, the data optimization was per-
formed using S-transform then time-frequency representation
of EEG segments using windowwidth occurred, after that the
PSD was calculated next data features were extracted, and
finally, classification using ANN is performed.

2) CONVOLUTIONAL NEURAL NETWORK (CNN)
A DCNN of 13 layers was proposed by Acharya et al. [143]
to detect seizure in an efficient way. Feature selection and
extraction steps are not mandatory in this method. One limi-
tation of this work is, it requires a lot of datasets as it is a DL
technique. Wei et al. [144] proposed a 3D-CNN algorithm
to classify seizure from multi-channel input signals. In the
first step, EEG data are converted into 2D images then all
images are converted into 3D images. Lastly, a CNN model
is responsible to classify those images into different seizure
stages.

Zhou et al. [145] proposed a CNN-based ES detection
method where the authors avoided manual feature extraction.
Huang et al. [146] proposed a novel seizure detection method
with the help of attention-based CNN-BiRNN. This model
is constructed using three steps. the first step consists of
a multi-scale convolution model, an attention-based model
constricts the second step, and a multi-stream recurrent bidi-
rectional algorithm completes the final step. This model can
also deal with EEG signals that have missing or different
channels.

Jana et al. [147] proposed a combined method to detect
the seizure. Here spectrogram and 1D CNN are combined
together to get a better and efficient result. One drawback
of this model is the accuracy value of this model is poor.
To detect ES offset and onset, Boonyakitanont et al. [148]
proposed a CNN-based model where EEG signals act as the
input signal. To capture Spatio-temporal patterns separately
a filter is factorized here. This model can successfully detect
the onset and offset seizure. For classifying seven different
variants of seizure, Raghu et al. [149] proposed a unique
transfer learning and CNN-based method. The method has
been evaluated by using the transfer learning algorithm, and
the features of images were extracted by utilizing ten pre-
trained networks.

To decrease false alarms during seizure detection,
Takahashi et al. [150] merged a CNN that prepared images
of EEG plots with patient-specific autoencoders (AE) of
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TABLE 7. Comparison between various DL-based models for ES prediction and detection.

EEG signals. Seizures and artifacts were both automatically
recorded by the AE. They built a CNN with three output
classes (seizure, non-seizure-but-abnormal, and non-seizure)
based on seizure logs gathered by expert epileptologists
and AE errors. A seizure alarm was issued based on the
total number of consecutive seizure labels. The deep con-
volution network and autoencoder-based model, known as
the AE-CDNN, was proposed by Wen and Zhang [151].
To do unsupervised feature learning from EEG in epilepsy,
this was built. Based on two publicly available EEG data
sets, the authors extracted features using the AE-CDNN
model and classified the features (Bonn and Boston).
According to experimental findings, features derived by
AE-CDNN perform better in classification than features
obtained by principal component analysis and sparse random
projection.

3) RECURRENT NEURAL NETWORK (RNN)
A deep RNN (DRNN) based epilepsy detection method is
proposed byVidyaratne et al. [152]. In addition, onemapping
technique for efficient signal processing is also presented by
the authors. This mapping helps to learn the Spatio-temporal
features from raw EEG signals. Hussein et al. [153] proposed
an ESD-LSTM method for detecting ES with high accu-
racy. This method can understand high-level EEG depictions
and differentiate between seizure and normal EEG activity.
An LSTM-based epilepsy detection approach was proposed
by Abbasi et al. [154]. This classifier classifies interictal, pre-
ictal, and ictal data very efficiently. EvenBinary classification
was also performed by thismodel. Single-layered and double-
layered memory-based LSTM architecture was developed by
authors and they found double-layered memory-based LSTM
gives better performance than single-layered one.
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Aliyu et al. [155] proposed an RNN model to classify
epileptic EEG data. Here DWT is used for extracting the
features and after that those data are sent to the classifier.
The authors compared their RNN with other ML model
and found their model outperforms all the others. Daoud
and Bayoumi [156] proposed a combined model to predict
seizure where Bi-LSTM, and Deep Convolutional Autoen-
coder (DCAE). The authors compared Bi-LSTM and DCAE
with other 4 approaches and stated, Bi-LSTM andDCAE out-
performed other methods. The Bi-LSTM extracts temporal
information from raw EEG data and DCCN is responsible for
learning spatial data. The transfer learning method was used
to explore DCAE-based semi-supervised learning strategies,
which resulted in a reduction in the training period. The
authors reported that this model is suitable for real-time appli-
cations. But, gathering the full data sequence before starting
the prediction can create a huge concern, as it is a real-time
application.

Baskar and Karthikeyan [157] proposed an ES detection
technique using EEMD as the feature extraction method and
LSTM as the classifier. Using the Akima Spline Interpolation
technique to decompose the signal, they have successfully
found the intrinsic mode function. After that signal was
decomposed by EEMD and Kalman filter helps to remove the
Gaussian noise. Then this signal is feed to an LSTMclassifier.
Liu et al. [158] proposed a tumor and ES detection technique
using the Deep C-LSTM method. First, the input data are
passed through the DCNN layer after that an LSTM layer
got those signals and an Adam optimizer is used to optimize
those signals. Data will pass to the dropout layer and lastly,
the softmax activation function was used. A larger dataset
is needed for training the model. Hu et al. [159] proposed
a Bi-LSTM network to detect seizure where the local mean
decomposition technique is used to reduce the computational
complexity. Here two opposite directional LSTM networks
are combined together. On major benefit of this model is
it can utilize the benefits of both after and before stages.
Table 7 discusses recently published DL-based models for ES
prediction and detection.

VII. EVALUATION METRICS AND PERFORMANCE
ANALYSIS
A. EVALUATION METRICS
Classification models are notorious techniques and widely
used. Evaluating a model is a core part of building a practical
ML model. The performance of a model is described by
evaluation metrics. The capacity of the metrics to discern
betweenmodel outcomes is a key feature. The goal is not only
to create a prediction model but also developing and selecting
a model that provides high accuracy on out-of-sample data.
As a result, it is critical to validate the model prior to com-
puting anticipated values. Out of several metrics, confusion
matrix is a prominent example. A confusion matrix generates
a matrix that describes the model’s overall performance. It is
an N × N matrix, where N represents the total of classes

being predicted. Some of the essential definitions related to
confusion matrix are:

1) Accuracy: Accuracy is the most prevalent metric for
evaluating classification models. This metric computes
the proportion of correct predictions to total instances
analyzed. Best use case is when the data are balanced.

Accuracy =
TP+ TN

TP+ TN + FP+ FN

2) Precision: The precision metric is used for measuring
the positive patterns accurately predicted in positive
classes from the total predicted patterns. It is the per-
centage of positive instances detected accurately.

Precision =
TP

TP+ FP

3) Recall or Sensitivity: The sensitivity metric is used
to calculate the percentage of correctly categorized
positive patterns.This is the percentage of true positive
instances that are appropriately detected. Best use case
is when the data are imbalanced like the disease detec-
tion data-set.

Sensitivity = Recall =
TP

TP+ FN

4) Specificity: In contradiction to sensitivity metric,
specificity quantifies the percentage of negative
instances that are appropriately detected. The fraction
of true negative cases detected accurately has its best
use case when data are imbalanced as well as theminor-
ity class is a negative class [160].

Specificity =
TN

FP+ TN
Here, True Positive (TP) means the observation is true

so is the prediction. True Negative (TN) means observation
and prediction both are negative. False Negative (FN) stands
for prediction being negative while the observation was a
positive case. In the case of False Positive (FP) which is,
the observation is negative but the prediction was positive
Lever et al. [161].

B. PERFORMANCE ANALYSIS
1) INTERNET OF THINGS (IOT)
Hosseini et al. [106] developed a DL and cloud computing
enabled ES prediction technique. The accuracy of optimized
CNN and optimized SAE were 96% and 94%, respectively.
Sayeed et al. [107] developed a three-staged seizure detection
technique using Bonn datasets. Dataset ‘A’ contains EEG
recordings from five healthy volunteers with their eyes wide
open. Intracranial EEG data were recorded from the patients
during ictal and interictal stages, in datasets ‘E’ and ‘D’,
respectively. The authors claimed a classification accuracy
of 100% for ictal vs. normal EEG; and 97.9% for ictal vs.
normal and interictal EEG data. Authors had also developed
an IoMT-based platform for effectively predicting seizures.
ThingSpeak, SimulinkR, and off-the-shelf microcontrollers
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FIGURE 6. Comparison between various IoT models for epileptic
seizure (ES) detection, prediction, and epileptic patient monitoring based
on sensitivity and specificity.

FIGURE 7. Comparison between various internet of things (IoT) models
for Epileptic Seizure (ES) detection, prediction, and epileptic patient
monitoring based on accuracy.

were used by Sayeed et al. [108] to develop and validate a
complete seizure prediction and IoT-based remotemonitoring
framework. The proposed solution reduces time latency by
44% compared to typical cloud IoT systems and has an
accuracy of 98.65% while performing the classification.

Alhussein et al. [109] developed a cognitive IoT-enabled
smart health care framework for epileptic patients and used
the CHB-MIT dataset that is collected from the Children’s
Hospital situated in Boston. This dataset is made with the
help of 23 volunteers. All of them are epileptic patients, and
their ages are between 10 to 22 years old. The sensitivity
and accuracy rates of this framework are 93.5% and 99.2%,
respectively. Sayeed et al. [110] proposed an IoMT-based
seizure detector that has a specificity of 97.5% and sensitiv-
ity of 96.9%. Gupta et al. [111] developed a cloud-enabled
IoT system for epileptic patients and used a publicly avail-
able dataset given by the University of Bonn. The findings
reveal that this method performed well in watermarking, with
35.25 Peak Signal to Noise Ratio (PSNR) and 31.32 Signal
to Noise Ratio (SNR).

Sayeed et al. [112] developed an IoT framework to detect
the seizure using EEG data. Using the Bonn dataset, the
authors found a 100% accuracy for ictal vs. normal EEG clas-
sification and 98.6% accuracy for ictal vs. interictal and nor-
mal EEG classification. Singh and Malhotra [113] reported
99.40% accuracy, 99.66% specificity, and 99.40% sensitivity
rate using the RF classifier in an autonomous ES detection
and early identification method. Daoud et al. [114] devel-
oped a DL-based IoT platform for ES prediction and used
the CHB-MIT dataset in this experiment. EEG signals from
22 pediatric epileptic patients were gathered for this dataset.
This system’s accuracy, sensitivity, and specificity rates were
96.1%, 97.41%, and 94.8%, respectively. This model can be
implemented in a wearable device.

Performance analysis of various IoT-based models for ES
prediction, detection, and epileptic patient monitoring are
presented in Table 8. Figure 6 and 7 represents the perfor-
mance comparison between various IoT-based models for ES
prediction, detection, and epileptic patient monitoring based
on sensitivity, specificity, and accuracy, respectively. From
Figure 6 and 7 it is clear that [107] and [112] presented
two models that achieved 100% accuracy. Reference [113]
reported the highest specificity and sensitivity score, which
was 99.66% and 99.4%, respectively.

2) MACHINE LEARNING (ML)
Agarwal et al. [119] used the American Epilepsy Soci-
ety (Kaggle) EEG dataset for establishing a high-quality
epileptic seizure prediction model using the CNN-SVM. The
model achieved an accuracy of (97.86±10.5)%, specificity
(98.81±10.5)%, and sensitivity (96.47±10.5)%. RMCH,
Bonn, and CHB-MIT datasets were used by Raghu et al.
[120] for developing a novel method to detect an epileptic
seizure using DWT and SVM. From the RMCH dataset,
the authors found an accuracy of 96.34%, a detection
delay (mean) of 1.2s, and a false detection rate of 0.5 per
hour. The CHB-MIT, and Bonn and databases scored
the highest sensitivity of 94.21%, and 100%, respectively.
Siddharth et al. [121] presented a hybrid model to clas-
sify focal and non-focal seizure areas. The authors used
SAE-SVM and FBSE-EWT filter bank and achieved a 100%
accuracy, sensitivity, and specificity score. This experiment is
performed on Bern-Barcelona dataset. For developing an ES
detection model using ICFS, the Bonn dataset was used by
Mursalin et al. [122]. They found 100% (case A-E) accuracy
from the ICFS-RF model.

A combination of SVD, GST, and RF was presented by
Zhang et al. [123] for ES prediction. Using the Bonn dataset,
this method successfully predicts ES with an accuracy of
99.63%. This method outperformed various typical methods.
Wang et al. [124] used the Bonn dataset, and the RFGSO
classifier has an AUC of 99.0%, signifying near-perfect out-
put. An accuracy score of 84.8% was reported by Wang et al.
[125] using WPFs-RF to predicts seizure states. Here a
benchmark dataset named CBH-MIT was used. Sameer and
Gupta [126] presented a new approach for detecting seizures
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TABLE 8. Performance comparison between various internet of things (IoT) based models for epileptic seizure (ES) detection, prediction, and epileptic
patient monitoring.

TABLE 9. Performance Comparison between various ML based models for ES prediction and detection.

using the alpha band (8 Hz-12 Hz). Using the RF classifier,
they obtained an accuracy of 98% and an AUC score of
1 in distinguishing healthy and seizure patients. For conduct-
ing this study, the authors used the Bonn and Hauz Khans
EEG dataset. Chakraborty et al. [127] used VMD and RF
to detect ES and obtained 98.7% accuracy using the Bonn
dataset.

Rajaguru and Prabhakar [128] reported an average clas-
sification accuracy of 97.53% using a modified KNN-based
classifier to classify epilepsy. The sensitivity and specificity
values were 95.27% and 99.79%, respectively. The average
obtained time delay was 2.18 seconds. Here, the dataset
was collected from 20 epileptic patients in Sri Ramakrishna
Hospital, India. Ibrahim et al. [129] presented a KNN-based
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FIGURE 8. Comparison between various machine learning (ML) models
for epileptic seizure (ES) prediction, and detection based on accuracy.

FIGURE 9. Comparison between various machine learning (ML) models
for epileptic seizure (ES) prediction and detection based on sensitivity.

FIGURE 10. Comparison between various machine learning (ML) models
for epileptic seizure (ES) prediction and detection based on specificity.

classifier to predict epilepsy and achieved 76.4% accu-
racy while working with the CBH-MIT dataset. This model
successfully detected 44 patients among 55. Choubey and
Pandey [130] conducted an experiment for detecting epilepsy
using different EEG data. Using the Bonn dataset, the HFD
model yields ANN classifier accuracy of around 94%, and the
KNN accuracy rate of around 98%.

Akbari et al. [131] presented a seizure detection approach
using EWT, GA, and KNN. The accuracy of this model was
98.33% using the Bonn dataset. Sensitivity and specificity
scores are 96% and 99.50%, respectively. For personalized

online seizure prediction, Xiao et al. [133] created a model
and evaluated it using a self-created dataset. The average
accuracy of ANBP was 82%, which was reported by the
authors. One drawback of this model was that this model’s
performance was not compared to other well-known classi-
fiers. Sharmila and Geethanjali [132] presented an ES clas-
sifier and reported that using the Bonn dataset NB classifier
provides 100% accuracy, and the computational time using
NB was very low than KNN. So, in this case, NB outper-
formed KNN classifier.

Martis et al. [134] presented a new EMD based ES detec-
tion approach and achieved an accuracy of 95.33%, sensitiv-
ity of 98%, and specificity of 97%. Here, the Bonn dataset
was used for conducting this work. For ES classification,
Rajaguru and Prabhakar [135] presented a model where they
used a self-created dataset. Specificity 98.54%, sensitivity
95.13%, and accuracy 96.83% were reported by the authors.
The model’s accuracy was not very high. Wu et al. [136] pre-
sented an intelligent classifier for epilepsy detection. It was
reported by the authors that both MLP and CARTmodels had
an accuracy of more than 99%.

Rajaguru and Prabhakar [137] proposed an ES detection
method with the help of an AdaBoost classifier and code
converter. The authors reported that this model’s specificity,
sensitivity, and accuracy are 98.12% and 96.45%, 97.29%,
respectively. EEG data were collected from Twenty patients’
of Sri Ramakrishna Hospital. The mean perfect classifica-
tion rate of this model is 94.58%. Using the Bonn dataset,
Al-Hadeethi et al. [138] reported 99% accuracy and sensi-
tivity in his two-phased seizure detection technique. Using
Bonn’s dataset, Hassan et al. [139] successfully detected ES.
The combination of CEEMDAN and Adaboost provides a
very good detection accuracy of 100% (class A and E).
The sensitivity and specificity scores are 100% and 100%,
respectively.

Performance analysis of various ML-based models for ES
prediction and detection are presented in Table 9. Figure 8, 9,
and 10, and represents the performance comparison between
various ML models for ES prediction and detection based
on accuracy, sensitivity, and specificity, respectively. ML-
based models presented by Hamad et al. [118], Sharmila
and Geethanjali [132], Mursalin et al. [122], Siddharth et al.
[121], and Hassan et al. [139] achieved an accuracy of 100%.
The ES prediction model presented by Siddharth et al. [121],
Raghu et al. [120], and Hassan et al. [139] achieved the high-
est sensitivity and specificity score, which is 100%.

3) DEEP LEARNING (DL)
The work of Chakrabarti et al. [82] has been validated using
the pediatric patient EEG database from CHB-MIT. Records
from 10 patients were chosen, and the performance metrics
revealed that the sym4 (a version of Symlet) wavelet had the
highest sensitivity, specificity, and accuracy at 97.2%, 93.5%,
and 95.3% respectively. Furthermore, the prototype model
consumes very little power. As a result, the proposed method
has a good chance of working as a good seizure detection
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FIGURE 11. Comparison between various deep learning (DL) models for
epileptic seizure (ES) prediction and detection based on sensitivity.

FIGURE 12. Comparison between various deep learning (DL) models for
epileptic seizure (ES) prediction and detection based on specificity.

device in real-life scenarios. The findings of Saric et al. [83]
showed that an FPGA-based MLP ANN can diagnose ES
with a rate of accuracy of 95.14%. The results also demon-
strate the steps needed to properly implement ANN on the
FPGA.

Using the Bonn dataset, Guo et al. [140] developed an
automated ES detection technique and achieved a classifica-
tion accuracy of 97.75%.

Juárez-Guerra et al. [141] developed a novel method to
identity epileptic patients and person without disability using
DWT and ANN. The authors reported 93.23% (DWT-Db2)
and 99.26% (DWT-Haar) accuracy when using the Bonn
dataset. Ambulkar and Sharma [142] proposed a five-stage
epileptic seizure detection method, and by working on
the Bonn dataset, the authors achieved 99.5% accuracy.
Acharya et al. [143] developed an effective way for detect-
ing seizures. Using the Bonn dataset, the authors reported
specificity, sensitivity, and accuracy of 90.00%, 95.00%, and
88.67%, respectively.

Wei et al. [144] presented a 3D-CNN algorithm to clas-
sify seizures from multi-channel input signals, which out-
performed 2D CNN models. Here accuracy rate was more
than 90%. 88.90% and 93.78% are the value of sensitivity
and specificity, respectively. Zhou et al. [145] developed a
CNN-based ES detection method where the authors avoided
manual feature extraction. The authors reported accuracies

FIGURE 13. Comparison between various deep learning (DL) models for
epileptic seizure (ES) prediction and detection based on accuracy.

of 96.7% (preictal vs. interictal), 95.4% (ictal vs. interic-
tal), and 94.3% (interictal vs. preictal vs. ictal) by using the
Freiburg dataset. Accuracies of 95.6% (preictal vs. interictal),
97.5% ictal vs. interictal), and 93% (interictal vs. preictal vs.
ictal) were observed by using the CBH-MIT dataset. A novel
seizure detection method with the help of attention-based
CNN-BiRNNwas developed byHuang et al. [146]. Using the
CBH-MIT dataset, the authors reported 94% specificity and
93% sensitivity. For ES detection, an average accuracy noted
by Jana et al. [147] is 77.57%. Using the CBH-MIT dataset,
the specificity and sensitivity value of this model is 75.59%
and 79.54%, respectively. For offset and onset ES detection,
the CHB-MIT dataset was used by Boonyakitanont et al.
[148], and the authors got an accuracy of over 90%. Here, the
recorded F1 score is 64.40%. For classifying seven different
variants of seizures, 82.85% (Adam Solver and LR) and
88.30%(Inceptionv3) classification accuracies were reported
by Raghu et al. [149]. In the case of computation time and
accuracy, the extracted image features approach significantly
outperformed the transfer learning approach.

The proposed AE-median CNN’s [150] false alarm rate
was lowered, from 0.17 h−1 to 0.034 h−1, compared to the
original CNN’s rate of 0.17 h−1.Wen and Zhang [151] pro-
posed an AE-CDNNmodel. Whenever the feature dimension
was more more than 16, the average classification accuracy
of the features without parameter adjustment, reach more
than 92%.

Vidyaratne et al. [152] developed a DRNN-based epilepsy
detection method and found 100% accuracy and sensitivity
with a 7 (mean) second of detection delay. By using data from
Bonn’s dataset, Hussein et al. [153] achieved 100% accuracy,
specificity, and sensitivity. This ES prediction model outper-
forms general ML-based models. For binary classification
(ictal and non-ictal) of ES, Abbasi et al. [154] presented an
LSTMmodel. Thismodel gives 98% accuracy. One limitation
of this model is the performance of this model is compared
with only the SVM. For classifying ES, 99% accuracy is
achieved by the proposed model of Aliyu et al. [155]. One
of the popular datasets called ‘‘Bonn’’ was used by authors
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TABLE 10. Performance comparison between various DL based models for ES prediction and detection.

to conduct this work. Daoud and Bayoumi [156] used the
CBH-MIT dataset for predicting seizures and found an accu-
racy of 99.6%. Here, the specificity rate is 99.60%, sensitivity
is 99.72%, and false alarm rate is 0.004 per hour. Baskar
and Karthikeyan [157] proposed an LSTM based ES detec-
tion technique that achieves 98.2% accuracy, 94.96% sen-
sitivity, and 93.72% specificity. Liu et al. [158] developed a
tumor and epileptic seizure detection technique and achieved
99:38% accuracy. Here, the dataset is collected from the UCI
data repository. The duration between each detection was
very short, and that value was 0.006 seconds. A Bi-LSTM
network to detect seizures was developed by Hu et al. [159].
Using the CHB-MIT dataset, this model achieved 93.61%
sensitivity and 91.85% specificity, respectively.

Performance analysis of various DL-based ES detec-
tion and prediction models are presented in Table 10.
Figure 11, 12, and 13 represents the performance comparison
between various DL models for ES detection and prediction
based on sensitivity, specificity, and accuracy, respectively.
After analyzing all the DLmodels, we found that themodel of
Hussein et al. [153] and Vidyaratne et al. [152] achieved an
outstanding accuracy score, and that is 100%. Hussein et al.
[153] reported the highest specificity and sensitivity score,
which was 100%.

VIII. EEG DATASETS
A. CHB-MIT
Shoeb et al. [162] created CHB-MIT dataset by capturing
EEG signals from 23 individuals with 163 seizures. 844 hours
were needed to create the full dataset. Here, the sample rate
per second was 256 and 10 to 20 standard electrodes are used
in this case. This dataset contains two kinds of seizure, one
is the main seizure, and another is a combined seizure. The
amount of data in this dataset is satisfactory.

B. BONN
The data were sampled at a rate of 173.61 Hz. The time
series have the acquisition system’s bandwidth (0.5 - 85)
Hz. The use of a low-pass filter with a frequency of 40 Hz,
as specified in the manuscript, is considered the The initial
stage of analysis. There are sets of data in this dataset. The
Bonn database is made up of five sets of data: A, B, C, D,
and E, each of which contains 100 separate channels of EEG
signals. Here data recording took 23.6 seconds. Datasets B
and A contain normal signals from five participants with their
eyes closed and open, respectively. EEG data from database
C and D are associated with the pre-ictal area. The EEG data
in the E dataset are associated with the ictal area. 10–20 scalp
EEG standard electrodes were used in the A and the B dataset.
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TABLE 11. Comparison between various datasets.

FIGURE 14. The prevalence of various popular EEG datasets for epileptic
seizure (ES) prediction and detection in the literature.

Depth electrodes were used for constructing the C and the D
dataset and using both strip and depth electrodes, the E dataset
was created by [163].

C. EEG EPILEPSY DATASET (Hauz Khas)
These are segmented EEG time series data collected from ten
epilepsy patients obtained from the Neurology Sleep Centre
in Hauz Khas in New Delhi. This dataset was created by
Swami et al. [164]. The data was collected using the AS40
Amplifier at a sample rate of 200 Hz. Gold-plated scalp EEG
electrodes were put according to the 10-20 electrode place-
ment protocol. Filtered between (0.5-70) Hz. Ictal, interictal,
and preictal stages are the three stages of the signal. Each
downloading folder consists of fifty EEG time-series signal
MAT files. The folder’s name correlates to the stage of an ES.

D. FREIBURG
Klatt et al. [165] constructed this dataset from EEG record-
ings of 21 participants with medically uncontrollable focal
epilepsy. It was captured during an intrusive presurgical

epilepsy scanning at the University Hospital of Freiburg in
Germany. The recording time for eight human subjects was
pretty less than 24 hours; on the other hand, this time for
13 subjects was 24 hours. This data set contains 88 seizures
data altogether. Here the sampling frequency was 256Hz, and
six electrodes were used to capture those data.

E. BERN BARCELONA
This dataset provided intracranial EEG of focal epileptic
patients and was obtained from Bern Hospital in Barcelona
(brain department). Sriraam and Raghu [116] recorded sig-
nals using AD-Tech electrodes. 10–20 standards were used
here with one additional electrode. There were two kinds of
EEG data in the database: one is focal data, and another one
is extra focal data. Each database comprises 3750 pairs of
concurrent observed data with a 20-second duration and a
512-Hz sampling frequency. The database contains 83 hours
of EEG data which are collected from five human subjects of
various ages.

F. RAMAIAH MEDICAL COLLEGE AND HOSPITAL (RMCH)
This dataset was created by Raghu et al. [120].They gener-
ated using a sampling frequency of 128 Hz from the Galileo
Suite-EB neuro EEG system. The unipolar scalp EEG signal
was used to record the signal using 19 electrodes, according
to the International 10–20 configuration system. The database
includes 115 individuals, 48 female and 67 male, ranging
from 2.5 to 75. 38 of the 115 people had epilepsy, and 77 had
healthy individuals. Table 11 represents comparison between
various mentioned datasets. Figure 14 shows the prevalance
of various popular EEG datasets for ES.

IX. CHALLENGES AND FUTURE DIRECTIONS
A. UNAVAILABILITY OF OPEN ACCESS LONG TERM EEG
DATA
Long-term EEG data is vital for the accurate prediction and
detection of ES. The most unfortunate fact is the scarcity of
open access long-term EEG datasets [166]. Only a chunk of
the data may be publicly accessible, as the entire dataset is
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not shared. As a result, real-time detection of ES remains dif-
ficult. However, the clinical dataset has been used in research
into real-time ES prediction. But the collection process of
the clinical datasets is very slow, tedious, and complex. As a
result, there is an emergency need for open access to EEG
databases containing long-term recordings. Wireless EEG
headsets can be helpful to collect long term data rather than
wired headsets.

B. MISSING DATA
As an EEG headset is implanted on the volunteer’s head
and the communication between the headset and the data
storing and converting device is completely wireless, there
is a clear possibility of data dropout (missing data). Due to
missing data, the quality of data decreases rapidly and also
decreases prediction quality. Adding a missingness indicator
and predictor before the converter will help remove the miss-
ing data problems. TheMissingness indicator will warn about
missing data. Based on the previous data, an auto predictor
will generate predicted brain impulse data.

C. TIME REQUIRED TO PROCESS EEG DATA
It is essential to keep the time complexity of a real-time ES
prediction and monitoring system as low as possible. Using
the raw data, one can decrease the time complexity of a
real-time system. But the upsetting fact is that one can not
work with the raw data; rather, one has to operate the feature
extraction method to extract features from raw data. DL can
solve this problem because it automatically extracts features
from raw data.

D. BLACK-BOX NATURE OF ML
Due to the ML technique’s black-box nature, doctors and
patients are less likely to trust it. The reliability of ES predic-
tion using ML and DL is always a concern to general users.
So, a technique is needed that will predict like ML, but the
prediction’s reasons will be very clear and well explainable
to the general user. Explainable AI (XAI) can serve this need.
With the help of XAI, users can analyze the reasons behind
any specific decision.

E. HETEROGENEOUS NATURE OF SEIZURES
The variability in the causes of ES, trouble in finding the area
of incidence, and a poor understanding of how and why the
seizures propagated are the significant reasons for the failure
of the massive usage of ML in ES prediction [167]. To create
a strong solution, researchers must first understand the vari-
ous potential causes of ES. Researchers should avoid binary
classifiers and use multimodal classification algorithms to
predict ES.

F. EXPENSE AND USABILITY OF EEG HEADSET
EEG headsets are costly because of the price and a large num-
ber of electrodes. EEG testing can take a reasonable period,
and the subject must remain calm during the procedure. It is

difficult to implant electrodes in the correct location; even a
conducting gel is required before placing such electrodes in
the scalp. Though dry electrodes are invented, they are really
expensive. Usually, wet Ag/AgCl is used to manufacture
electrodes, but active dry electrodes are a great solution for
a less expensive EEG headset. Researchers should focus on
inventing more cost-effective materials for the electrodes.

G. DATA DIMENSIONALITY
Brain signals are complex and non-linear. To capture this non-
linearity, multiple channeled EEG headsets are required. For
reducing computational complexity, these multi-channeled
data should be converted into a single channel. But the matter
of fact is all channels don’t contain useful data. So, finding
the important data channel is necessary, and Signal Quality
Index (SQI) is an adaptive algorithm to choose the best data
channel. Significant effort has been put into creating adaptive
algorithms for selecting the best EEG channel using vari-
ous dimensionality reduction techniques such as PCA, ICA,
etc. Moreover, developing an optimal technique for reducing
the dimensionality of EEG signals and selecting the most
important channel in a multi-channel EEG system could be
a potential work field.

H. THE TRADE-OFF BETWEEN TECHNICAL COMPLEXITY
AND DATA VOLUME
Smaller headsets with fewer electrodes are more convenient
to use. It will also reduce the technical difficulty. However,
because there are fewer electrodes, the volume of gathered
data or training sets is reduced. However, heavy training
sets can yield more accurate outcomes, but they are also
computationally expensive. A major difficulty in creating
a BCI is a trade-off between the technical complexity of
understanding the participant’s brain activity signals and the
volume of training required for successful functioning. More
and more researches can be performed to create a benchmark
to solve this specific challenge.

I. REAL-TIME IoT-BASED ES PREDICTION, DETECTION,
AND MONITORING
IoT allows continuous monitoring of a patient as well as
early seizure prediction [168]. IoT-based systems must be
low-powered and have low computational complexity. Bro-
kers in the Cloud, Fog, and Mist work on EEG data based on
its type and necessity. In IoMT systems, edge fog computing
can be used to detect epileptic seizures using lossless EEG
data [169]. On-site patient monitoring and real-time brain
signal processing are extremely difficult tasks. As instant
EEG data processing is a real concern for IoT-based mod-
els, more and more research is on this particular topic. The
researcher should strike a good balance between data volume,
model memory, and processing speed to ensure real-time data
processing. Because patients’ data are stored and transmitted
via the internet in an IoT framework, ensuring online data
security for IoT systems is also a hot topic for research. Even,
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FIGURE 15. Challenges and future directions.

for developing IoMT systems, digital twin and metaverse can
be a good option for understanding the characteristics of the
physical devices [169], [170].

J. SECURITY AND PRIVACY THREATS
Serious security breaching problems may arise in the field
of EEG data-oriented IoT frameworks. As IoT frameworks
are entirely dependent on internet connectivity, attackers
and intruders are often more privileged to hack sensitive
brain data and manipulate that information [171]. Typical
BCI authentication methods are 2-factor authentication, pat-
terns, PIN, passwords, and fingerprints. Denial of action
or service, data theft, faking patients’ identities, and ille-
gally tracking patients’ geolocation are some of the com-
mon security and privacy concerns in IoT-based e-Healthcare
models. Some standard solutions to remove these problems
are: controlling data access, implementing a firewall, pro-
viding data integrity, ensuring authentication, and Encrypt-
ing all information. Message Authentication Code (MAC),
Hash algorithm, Message Digest version 5 (MD5), Triple
Data Encryption Standard (DES), and Advanced Encryption

Standard (AES) are some popular and powerful encryp-
tion algorithms. Researchers should develop novel, light-
weighted encryption algorithms for the IoT framework based
on the techniques mentioned above.

K. INFILTRATION OF EEG RECORDINGS
Artifacts, which are especially evident on scalp recordings
of EEG, are noises generated by activities that do not arise
in the brain yet unfeasible to be eliminated at the moment
of recording. Artifacts can emerge as a result of eye blinks,
chewing, muscle movement of scalp musculature or less
prevalently because of heartbeat. Incorrect way of EEG head-
set usage or environmental interference can cause noise in
EEG recordings. These artifacts are relatively easy to detect
and categorize for an expert. However, their removal in digital
analysis is more complex, since it is difficult to remove the
artifact without also compromising themeasurement of actual
brain activity. Training the system to distinguish and manage
artifacts, removing them through separation algorithms or
various filtering methods, alternatively excluding the signals
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TABLE 12. Challenges and potential solutions of EEG-IoT based epileptic seizure Detection.

or channels which are contaminated from the analysis are
some of the probable strategies to manage artifacts.

L. 24/7 MONITORING
Commonly used EEG headsets can collect data when they
stay in contact with the patient’s body. For creating a large
dataset, it is essential to continue data recording for around
24 hours. To create an ES patients monitoring system,
patients have to wear the EEG headset continuously, which
is very tedious and inconvenient. To resolve this problem,
researchers should create cost-effective wireless EEG head-
sets. Creating non-invasive and non-contact technologies,
such as electromagnetic techniques, may provide a great solu-
tion to this problem. A summarized version of challenges and
potential solutions are presented in Table 12. A visual repre-
sentation of all challenges and future directions are depicted
in Figure 15.

X. CONCLUSION
EEG has been introduced approximately a hundred years
ago, remains the chosen way for much relevant literature,
from neuroscience study to real-time applications, from func-
tional brain imagery, through movement to interface brain-
computer applications. While EEG has historically played a

focal role in assessing neural function, this paper explores
the contributions made to seizure detection and prediction
techniques, where different ML and DL approaches are suc-
cessfully used. This review focuses on recent ML, DL, and
IoT-based ES detection, prediction, and patient monitoring
approach. After reviewing 56 research articles, it is very clear
that SVM, RF, and KNN are the most powerful ML-based
classifiers. Nowadays, more and more research is going on
hybrid ML-based classification schemes, and those research
approaches provide better outcomes than traditional ML.
Hybrid RNN, Hybrid LSTM, and Deep RNN are the most
promising DL-based classifiers and contain a lot of research
opportunities. Real-time detection, prediction, and monitor-
ing of ES can provide a better life to the patients.With the help
of IoT-based prediction and monitoring, real-time services
like early prediction, and emergencymedical support can eas-
ily be provided. There are a lot of research opportunities on
early seizure prediction and IoT-based real-time monitoring
approaches. For removing data limitations, various research
work should be done on unsupervised and semi-supervised
methods. This review highlights the performance, limitation,
and usage of various ML, DL, and IoT-based seizure classifi-
cation and monitoring approaches. Researchers should focus
on the adaptability, scalability and interpretability of ML
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algorithms. This work will also provide a clear direction to
future researchers for developing more efficient and feasible
research works in this field.
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