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ABSTRACT Batch Normalization (BatchNorm) is an effective architectural component in deep learning
models that helps to improve model performance and speed up training. However, it has also been found
to increase the vulnerability of models to adversarial attacks. In this study, we investigate the mechanism
behind this vulnerability and took first steps towards a solution called RobustNorm. We observed that
adversarial inputs tend to shift the distributions of the output of the BatchNorm layer, leading to inaccurate
train-time statistics and increased vulnerability. Through a series of experiments on various architectures and
datasets, we confirm our hypothesis. We also demonstrate the effectiveness of RobustNorm in improving the
robustness of models under adversarial perturbation while maintaining the benefits of BatchNorm.

INDEX TERMS Batch normalization, adversarial robustness, transfer learning.

I. INTRODUCTION
Deep learning [46] models have shown impressive perfor-
mance on a wide variety of tasks computer vision, such as
image recognition [31], [42], [76], object detection [27], [39],
[58], [59], semantic segmentation [10], [52], etc. However,
these deep models are vulnerable to small and imperceptible
perturbations in the input [8], [28], [54], also known as adver-
sarial examples. These small changes in the input can fool the
state-of-the-art models and degrade their performance signif-
icantly. The adversarial vulnerability of the deep models has
serious security and robustness consequences [6], [44], [50].

A plethora of research has been dedicated to under-
stand the reasons for this intriguing behavior of neural
networks [15], [25], [28], [34], [37], [64], [66]. These expla-
nations include inherent linearity of non-linear deep models
[28], excessive invariance [37], sensitivity to input distribu-
tion [15], non-robust yet highly predictive features in the
input space [34], etc. However, Galloway et al. [23] studied
this problem from an architectural angle. They empirically
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showed that BatchNorm also contributes to this vulnerability.
{In this study, we investigate the mechanism behind this
vulnerability and took first steps towards a solution called
RobustNorm.

BatchNorm [36] was designed to reduce the internal
covariate shift by normalizing the input of each layer with
batch statistics (mean and variance). However, batch statis-
tics are only available during training since their calcula-
tion needs batched inputs. To circumvent this, BatchNorm
keeps an estimate of population statistics during training and
utilizes these estimated statistics during inference. In stan-
dard training, population statistics are estimated from clean
inputs. We {hypothesized that the inherent distribution shift
present in adversarial inputs makes these estimated statistics
inaccurate as they are estimated for clean images.

{To validate our hypothesis, we conducted a series
of experiments using various architectures, diverse attack
methods, and various levels of perturbation. Specifically,
we replaced the train-time estimated batch statistics with
validation-set statistics calculated using adversarial inputs.
Our experiments on a range of datasets and architectures
demonstrated a significant improvement in robustness. These
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FIGURE 1. A conceptual illustration of the effect of adversarial
distribution shift on BatchNorm. In the plot, blue line represents an ideal
distribution that BatchNorm expects and orange line shows the data
distribution of inference-time examples. Input distribution is a good
approximate ideal distribution for clean images, but the distribution gets
shifted when adversarial noise is added to the input image. This shift
invalidates the implicit assumption of BatchNorm that the train and
validation data will be from the same distribution. This makes population
statistics estimated during training (with clean images) inaccurate and
contributes to the adversarial vulnerability of neural networks.

results support our observation that the use of incorrect batch
statistics can affect the vulnerability of models to adversarial
attacks. We further explored the generalizability of this trend
under various conditions, including different architectures,
perturbation levels, and adversarial training, to confirm the
validity of our hypothesis.

{Based on our observations, we propose that a normal-
ization approach that does not rely on the estimation of
population statistics may improve the robustness of models.
To address this, we propose an improved variant of Batch-
Norm called RobustNorm. Our experiments demonstrate that
RobustNorm performs well in terms of robustness while
retaining the other benefits of BatchNorm.

We also extended our hypothesis for transfer learning.
In transfer learning, models trained on the source dataset
(pre-trained models) are often used as feature extractors.
A classifier is then trained on these features extracted for
the target dataset. The feature extractor uses batch statistics
that are estimated from the source dataset. We show that
by updating batch statistics on the target dataset, we can
achieve significant accuracy gains. We also observed that
the accuracy increase depends on the similarity between the
source and target dataset. Concisely, our contributions are as
follows.

• {We investigated how BatchNorm causes adversarial
vulnerability in deep models by conducting formulating
the shift hypothesis and conducting a diverse set of
experiments to validate this effect

• {Based on our observations, we took first towards amore
robust normalization approach

• We showed that our batch-norm-explanation can be
extended beyond adversarial attacks by illustrating
results on transfer learning

II. RELATED WORK
Since the inception of adversarial attacks for neural net-
works [66], many explanations have been proposed to
understand the adversarial vulnerability of neural networks.
Szegedy et al. [66] linked adversarial vulnerability to blind
spots in the discontinuous classification boundary of the neu-
ral network, Goodfellow et al. [28] showed that it is because
of the local linearity of neural networks. Recent works have
connected adversarial vulnerability with many factors like
random noise [19], [22], spurious correlations learned by
neural networks [34], insufficient data [61], high dimensions
of input data [20], [26], distributional shift [15], [37] etc. Our
work is different in the sense that we do not try to under-
stand the broader phenomenon but rather the contribution of
a BatchNorm. Our work is related to Galloway et al. [23]
who empirically showed that BatchNorm is one cause of the
adversarial vulnerability of neural networks. However, our
focus is on understanding how BatchNorm causes this.

{Recent works have explored the effect of BatchNorm
and estimated statistics on the adversarial vulnerability of
deep models. To start with, Benz et al. [5] investigated the
contribution of Non-Robust Features (NRFs) in increasing
the performance of models. They show that BatchNorm’s
use of NRFs is the predominant reason for the improve-
ment in the performance of deep models. The second line of
work has also utilized a hypothesis similar to ours for dif-
ferent purposes. Xie and Yuille [72] proposed a two-domain
hypothesis for clean and adversarial images and showed
that it could be leveraged to improve adversarial training.
Xie et al. [75] showed that by using different batch statistics
for clean and adversarial images during training, it is possi-
ble to achieve state-of-the-art ImageNet results without any
extra data. Schneider et al. [62] illustrated that a model can
achieve better robustness against many common corruptions
by replacing statistics estimated from clean images with the
statistics estimated from corrupted images.

BatchNorm [36] was introduced to reduce the internal
covariant shift of deep models. It improved the stability and
optimization of neural networks. Since then, many different
variants of BatchNorm have also been proposed. Each Batch-
Norm variant intends to solve a particular problem of the
original formulation. LayerNorm [4] solves the problem of
fixed batch size training making it useful in sequence models;
BatchReNorm [35] and GroupNorm [70] eases the problem
of small-batch training making it functional for tasks like
detection or segmentation, and InstanceNorm [67] reduces
intra-batch dependency making it applicable in style transfer.

Many other variants such as Normalization Propaga-
tion [2], Batch Re-normalization [35], instance normaliza-
tion [67], batch instance normalization [67], Kalman batch
normalization [69], decorrelated normalization [32], switch
normalization [48], sparse switchable normalization [63],
switchable whitening [56], dynamic normalization [49] has
also been introduced recently to overcome different issues.
Similarly, efforts have been made to extend BatchNorm to
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other domains as well [7], [12], [24], [53], [60], [70]. How-
ever, our work is different from these works as we took first
a more robust normalization approach.

III. PRELIMINARIES
We consider a supervised classification task for data {x, y}ni=1.
Our goal is to learn a feature extractor f = F(x) and a
classifier C such that y = C(f,w). In adversarial settings, the
objective of the adversary is to add small additive perturbation
δ ∈ Rn in clean image x: xadv = x + δ while satisfying
following constraints. First, adversarial image should follow
a perturbation budget ϵ: ∥xadv − x∥p ≤ ϵ. Second, the adver-
sarial image (xadv) should look visually similar to the original
image x. Third, the trainedmodel should incorrectly label i.e.,
C(F(xadv)) ̸= y.

A. ROBUSTNESS EVALUATION
Adversarial accuracy (or adversarial robustness) is accu-
racy of model on adversarially perturbed test set. Generally,
we evaluate robustness of a model with PGD-20 attack with
α = 2/255 and reported ϵ value following standard prac-
tice [51]. However, adversarial examples can be generated
in many different ways. To make our results more rigor-
ous, we also used diverse set of adversarial attack methods.
We have used different variants of gradient based attacks:
Fast Gradient Sign Method (FGSM) [28], Basic Iterative
Method (BIM) [44], Projected Gradient Descent (PGD) [51],
Momentum Iterative fast gradient sign Method (MIM) [17],
Carlini-Wagner attack (CW) [8]. {For adversarial attack bud-
get (ϵ), we use a scale of 0-255 for color images (CIFAR and
ImageNet) and 0-1 for black and white images (MNIST). The
different scale is based on range of value different datasets
use.

For PGD attack, we also report results for two versions:
one with 20 iterations and one with 100 iterations. We also
use a parameter-free and reliable attack calledAuto-PGD [13]
or APGD-CE. To show that our results are not effected by
gradient masking, we also used query-based blackbox attack
called Square attack [1]. The square attack do not use model
information (e.g., gradient) and, therefore, it is immune to
problems like gradient masking. We set number of queries
to 5000 for all of our evaluations.

B. PURPOSE OF THE WORK
Following [9], here we describe the purpose of our work. The
intention of this work is neither to propose a new defense
mechanism like [51] nor a broader explanation for the adver-
sarial phenomenon like [34] etc. Instead, our purpose is to
understand the contribution of a specific component of CNNs
in this vulnerability. For this reason, we have used ϵ values
smaller than commonly used for some of our experiments.
However, we also report results on borad range of ϵ.

C. TRANSFER LEARNING
For transfer learning, we considered that the feature extractor
f = F(x) is already trained on the source dataset (ImageNet)

and we want to learn a classifier C for the target dataset on
top of it.

FIGURE 2. The difference between validation-set batch statistics
estimated population statistics under adversarial attack: µB − µ̂P ,
σ2

B − σ̂P . The x-axis represents channels of the network and y-axis
represents batches. Each line shows difference of estimated and
calculated value for one channel.

IV. HOW DOES BatchNorm CAUSE ADVERSARIAL
VULNERABILITY
BatchNorm estimates the population statistics during training
by using moving averages of batch statistics. These estimated
values are used during inference. However, one inherent
assumption of this process is that training and inference
data come from the same underlying distribution. Adversarial
attacks introduce a targeted shift in the distribution of input
data. This shift breaks this assumption. In the following
sections, we explain how BatchNorm works, and empirically
demonstrate our hypothesis through various experiments.

TABLE 1. The effect of using batch statistics (B) vs estimated population
statistics (P) on adversarial accuracy. Batch statistics are calculated from
one batch of images (batch to be classified) from the validation set and
estimated population statistics are estimated during training. The results
are shown for five different datasets and five different attacks. We have
used ResNet18 for ImageNet and ResNet20 for all other datasets. This
table proves our hypothesis by showing an increase in accuracy if we use
batch statistics that more representative of an adversarial shift in
distribution.

A. HOW BatchNorm WORKS
In this section, we briefly explain the working principle of
BatchNorm. BatchNorm uses batch statistics during training
and estimated population statistics during inference.
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TABLE 2. The effect of using population vs batch statistics on adversarial accuracy for several models on CIFAR10 dataset. The column Stat. shows type of
statistics used for BatchNorm, P stands for Population Statistics (µ̂P , σ̂2

P ) and B stands for Batch Statistics calculated from validation batch at inference
(µB and σ2

B).

1) BATCH STATISTICS
Consider a mini-batch B of sizeM , containing samples xi for
i = 1, 2, . . . ,M . In the training procedure, the normalized
feature maps x̂i are computed as:

x̂i =
xi − µB

σB
, (1)

where batch statistics are the sample mean µβ and sample
variance σ 2

β computer over the batch B as:

µB =
1
M

M∑
i=1

xi; σ 2
B =

1
M

M∑
i=1

(xi − µB)
2. (2)

Besides, a pair of values γ , β are used to shift and scale the
normalized value x̂i as:

yi = γ x̂i + β. (3)

For the sake of simplicity, we will omit this in our future
discussions.

2) ESTIMATED POPULATION STATISTICS
During inference, it is not possible to calculate batch statistics
(µB and σB) as only one sample is available. To circumvent
this problem, BatchNorm needs an estimate of population
statistics. This estimate of population statistics is computed
by maintaining the moving averages of the batch statistics
during training. Formally, the moving average (also called
tracking) of mean and variance are computed as follows:

µ̂P = (1 − τ )µ̂P + τµB, σ̂ 2
P = (1 − τ )σ̂ 2

P + τσ 2
B, (4)

where µ̂P are estimated population means, µ̂P are estimated
values of population variance, and τ is a hyper-parameter that
weighs previous moving average and current batch statistics.
These population statistics are used during inference as:

x̂test =
xtest − µ̂P

σ̂P
. (5)

B. DEVIL IS IN THE ESTIMATED STATISTICS
During the inference, BatchNorm normalizes the input with
µ̂P and σ̂ 2

P . These statistics are estimated on clean inputs
during training. The adversarial attack introduces a shift in
the input and makes the estimated µ̂P and σ̂P inaccurate.
We show a hypothetical depiction of this idea in Figure 1.

To show this difference, we forward propagated all the val-
idation set samples of CIFAR10 with PGD adversarial attack
and calculated batch statistics (µB, σ 2

B) of each channel of a
trained ResNet20. Their difference with estimated population
statistics (µ̂P and σ̂ 2

P ) is shown in Figure 2 where x-axis
represents channels and the y-axis represents the difference
for validation batches. The figure shows that estimated pop-
ulation statistics do not match the batch statistics under the
PGD attack.

Recent works [15], [38] have also highlighted the link
between the shift in the input data distribution and robust-
ness. The same observation has also been used to augment
adversarial examples to get SOTA results for image recogni-
tion [73]. Based on these observations, wemade the following
hypothesis:
Hypothesis: BatchNorm’s population statistics (µ̂P and

σ̂P ) are estimated from (x, y) ∼ P and an implicit assumption
is that inference images will also come from the same distri-
bution. However, the addition of adversarial noise δ in clean
images shifts this distribution. This shift makes population
statistics inaccurate. The use of these incorrect statistics
makes a neural network with BatchNorm more vulnerable to
adversarial inputs.

To empirically validate this hypothesis, we conducted mul-
tiple experiments in different settings. We describe these
experiments in the following sections.

1) EXPERIMENT 1 — REPLACING TRAIN-TIME ESTIMATED
STATISTICS WITH VALIDATION-SET BATCH STATISTICS
One way to verify our hypothesis is to use an adver-
sarially perturbed validation set to calculate the batch
statistics instead of train-time estimated population statis-
tics. This means replacing µ̂P , σ̂ 2

P with µBv , σ
2
Bv where
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Bv = {xv1, . . . ., x
v
M } is the mini-batch of perturbed validation

set. Note that this is only possible for a large enough valida-
tion set. Our only purpose here is to show the validity of our
hypothesis.

We report results for five different datasets and five differ-
ent adversarial attacks in Table 1. For MNIST and Fashion-
MNIST, we use an 8-layer ResNet. We trained these two
models for 50 epochs with a learning rate of 0.1. The learning
rate is decreased by 10× at the 30-th epoch. For CIFAR10 and
CIFAR100 experiments, we use a ResNet20. We train it for
150 epochs. The default learning rate of 0.1 is decreased at
80-th and 120-th epochs. For ImageNet, we use a ResNet18
and trained it for 100 epochs. The default learning rate of
0.1 is decreased at 30-th, 60-th, and 90-th epochs. We follow
Section III for robustness evaluation.
The clean accuracy decreases when we use BatchNorm

with batch statistics, so we may expect a similar decrease in
adversarial accuracy. However, we observe an increase. For
instance, on MNIST, we get 7% BIM adversarial accuracy
with population statistics but replacing themwith batch statis-
tics from the validation set increase this to 69%. A similar
effect is also visible across all the attacks, datasets, and
training modes.

2) EXPERIMENT 2 — EVALUATION ON DIVERSE ATTACKS,
ARCHITECTURES AND PERTURBATION LEVELS
The previous experiment uses ResNet architectures. To make
this evaluation more rigorous, we repeated the previous
experiments (e.g., replacing estimated statistics with batch
statistics) on diverse sets of architectures, more challenging
adversarial attacks, and larger perturbation budgets.

For this experiment, we use three different types of archi-
tecture. First, we use standard ResNet [31] with three differ-
ent depths: 20, 38, and 50. Second, we use WideResNet [77]
with a depth of 16 and a width of 10. The WideResNet
are similar to ResNet in general architecture, but they have
a larger capacity as the number of channels is increased
significantly. Third, we also use VGG [65] with depths of
11 and 16. VGG is significantly different from ResNet as it
does not use skip connections.

For robustness evaluation, we use three attacks: PGD-20,
PGD-100, and APGD-CE. PGD-20 and PGD-100 use 20 and
100 iterations of gradient descent to find adversarial attacks.
APGD-CE attack is a more reliable attack and it does not
require any parameters. All of these attacks are generated
with four perturbation (ϵ) levels: 1, 2, 4, 8.
The results are shown in Table 2. The P column stands for

population statistics, i.e., standard BatchNorm layer, and the
B column stands for using batch statistics instead of popula-
tion statistics. The robustness of models using batch statistics
is higher at all perturbation levels. For instance, the PGD-20
robustness of a ResNet50 with ϵ = 2 is 14.03 when the model
uses population statistics. But, it increases to 22.93. The
same model has APGD-CE robustness of 0.77 at the same
perturbation level as population statistics. This robustness

increases to 6.22%when the samemodel uses batch statistics.
These results shows that our hypothesis holds across different
architectures, adversarial attacks, and perturbation levels.

3) EXPERIMENT 3 — ROBUSTNESS OF VARIANTS OF
BATCHNORM
Based on different intuitions and insights, many alternatives
to BatchNorm have been introduced. Some of these variants
do not require estimation of population statistics e.g., layer
normalization [4], Fixup Initialization [33] etc. Our hypoth-
esis suggests that the adversarial accuracy of these variants
should be higher than BatchNorm. To test this, we performed
experiments with three different variants of BatchNorm for
CIFAR10. The results are shown in Table 3. The clean accu-
racy of these alternatives is less than BatchNorm, so we
should expect a similar drop in adversarial accuracy. On the
contrary, there is an increment of adversarial accuracy. For
instance, if we train a neural network with LayerNorm, clean
accuracy decreases from 92.1% to 89.4%. However, adver-
sarial robustness for PGD attacks increases significantly from
23.1% to 30.1%. This increment in robustness shows the role
of estimated statistics in the vulnerability of CNNs.

TABLE 3. Effects of replacing BatchNorm with alternatives that do not
require any moving average, therefore immune to adversarial shift.
Although all of these alternatives have inferior clean accuracy; they
always outperform BatchNorm in adversarial accuracy.

4) EXPERIMENT 4 — ADVERSARIAL TRAINING
Adversarial training leverages adversarially perturbed exam-
ples to train a neural network. An adversarially trained Batch-
Norm layer estimates population statistics with adversarial
examples. Therefore, we should expect better adversarial
accuracy, which has already been shown [51]. We should also
expect a smaller gap between using population statistics and
input batch statistics (the setup we have used in Experiment
1). This indeed is true and adversarial training bridges the
gap between estimated population statistics and validation
set batch statistics based BatchNorm, as shown in Table 4.
For instance, on the CIFAR10 dataset, the gap between
BatchNormwith validation set batch statistics and population
statistics is 100% for regular training, but it shrinks to 30%
for adversarial training. These results show the importance
of the reliability of train-time estimated population statistics
and their effect on the adversarial performance of a neural
network.

5) EXPERIMENT 5 — GRADIENT MASKING AND BLACKBOX
ATTACK
Recently, [3] showed that obfuscated gradients may give a
false sense of better robustness. To show that our experiments
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FIGURE 3. Robustness of six different models against query-based blackbox square attack [1]. Robustness of each model is evaluated with batch
statistics (µB, σ2

B ) and population statistics (µ̂P , σ̂2
P ). Robustness of models using batch statistics is much better than models using estimated

population statistics.

TABLE 4. {Percentage adversarial accuracy gained compared with
baseline when we use batch statistics instead of train-time estimated
population statistics. Results are shown for training with clean images
(normal training) and training with adversarially perturbed images
(adversarial training). As expected, adversarial training shrinks the gap.

do not suffer from this problem, we repeated Experi-
ment IV-B2 on a query-based BlackBox attack called Square
attack [1]. This attack utilizes a random search to find adver-
sarial attacks. Since this attack does not use any gradient
information, it can not have the gradient obfuscation issue.

We set the number of queries to 5000 as used by [13]. The
robustness of six different models on four different perturba-
tion levels (ϵ ∈ {1, 2, 4, 8}) are reported in Figure 3. Results
for each model is reported with population statistics (P)
and batch statistics (B). Replacing population statistics with
batch statistics significantly improves square-attack robust-
ness. These results show that our experiments do not suffer
from gradient obfuscation problems.

C. SHIFT HYPOTHESIS AND TRANSFER LEARNING
To further test our ‘‘Shift Hypothesis’’, we turn our attention
to transfer learning. In transfer learning, we want to transfer
the learning of the model trained on a large source dataset to
a similar but smaller target dataset. There are many ways to
do transfer learning. For instance, using a pre-trained model
as a feature extractor and training and classifier on top of
it, fine-tuning a few last layers of the pre-trained model on
the target dataset, or fine-tuning the whole model on the
target dataset [16], [40]. However, the first configuration is of
particular interest to us. In this configuration, a model trained
on the source dataset is not updated on the target dataset
set and uses BatchNorm statistics estimated from the source
dataset for feature extraction. We hypothesize that updating
BatchNorm’s estimate of population statistics on the target
dataset can help achieve better accuracy.

To test this, we have used 10 transfer learning datasets
listed as follows: Birdsnap [30], Stanford Cars [41],
Describable Textures Dataset (DTD) [11], CIFAR10 and

100 [43], UCSD Birds [68], Oxford Flowers [55], Oxford-
IIIT Pets dataset [57], Caltech101 [21], Caltech256 [29].
We used Pytorch pre-trained ResNet501 as a feature extractor
and trained a classifier on top of it without any bells and
whistles. To update the BatchNorm layer, we reinitialize
the running mean and variance of the BatchNorm layer and
calculated them from the target dataset. We also retrained the
weight and biases of BatchNorm since they are dependent on
sample mean and variance.

We report results in Table and Figure 4. The table shows
test accuracy, and the Figure shows the training conver-
gence for these datasets. These results show that we can
achieve significant improvement in both accuracy and con-
vergence speed by updating BatchNorm on target datasets.
For instance, on the Stanford Cars dataset, the improvement
in accuracy is absolute 12%, and on Birdsnap, it is 11.2%.
However, an even more interesting observation is the rela-
tion of gain of accuracy and the target dataset’s similarity
with ImageNet. For instance, UCSD-Birds and Birdsnap are
birds dataset. However, as shown in the USCD-Birds dataset
website,2 many images of it overlap with ImageNet. This
similarity affects the gain of accuracy obtained by updating
BatchNorm i.e. improvement for Birdsnap is 10% compare
to 2% for USCD-Birds. Similarly, CIFAR10 and 100 are tiny
images of size 32 compared to ImageNet’s size of 224 and
the absolute gain in accuracy is 19% and 23 % respectively.
Note that updating BatchNorm always increases accuracy.

V. TOWARDS A ROBUST NORMALIZATION
In Section IV, we empirically show that train-time estimated
population statistics of BatchNorm make a deep model more
vulnerable to adversarial distribution shift. A straightforward
solution - as shown in the experiments (Table 1) - is to
use the batch statistics calculated from the inference inputs.
However, during training, activations are normalized by the
statistics estimated from the large batch. This introduces
an intra-batch dependency [35] for BatchNorm. This issue
makes BatchNorm dependent on the moving average esti-
mated for inference. In the experiments of the last section,
we used a batch size of 128 (same as the training batch size) to
validate our hypothesis. However, if we use a small inference

1https://pytorch.org/docs/stable/torchvision/models.html
2http://www.vision.caltech.edu/visipedia/CUB-200.html
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TABLE 5. Role of BatchNorm Statistics for Transfer Learning: Comparison of test accuracy with and without updating BatchNorm statistics on the target
dataset. We used a ResNet50 pre-trained on ImageNet as a feature extractor and trained a classifier for the target dataset. For the second case, we also
updated BatchNorm statistics on the target dataset.

FIGURE 4. Comparison of convergence for training with and without updating BatchNorm for 10 different transfer learning datasets.

FIGURE 5. (a) Comparison of estimated values of standard deviation σ̂P
for ResNet50 trained normally and adversarially on ImageNet.
Adversarially trained model has larger values on average as well as has a
few outliers. (b) To further see the difference, we visualized the
normalization effect of the normally trained and adversarially trained
model on unit values. Adversarially trained model limits the output range
more harshly compared to a normally trained network.

batch size to calculate statistics, BatchNorm performance
descends to zero, as shown in Figure 7. This decrease in
performance illustrates that we can not use batch statistics as
a solution to this problem.

Recent work on robustness has also shown a connection
between the removal of outliers in activations and robust-
ness [18], [74]. Based on these heuristics, min-max normal-
ization becomes a good candidate since it re-scales input
(controlling exploding activations), only requires maximum
and minimum values, which are not dependent on the distri-
bution, and can remove outliers. We keep using mean consid-
ering the importance of centering the data [60]. We define a
simplified version of our RobustNorm as:

yi =
xi − µB
rB

, (6)

where xi is i-th example of batch B, range is rB =

uB − lB, maximum is uB = max
1≤i≤M

(xi) and minimum is

lB = min
1≤i≤M

(xi).

From Von Szokefalvi Nagy inequality (r2B ≤ 2nσ 2
B, where

n is the number of samples to estimate the range), we can

say that range suppresses activations with higher intensity
than the variance. BatchNorm uses linear transform to project
activations to an appropriate range. However, in our case,
the range makes it harder to learn this projection at the start
of learning. To make the control more flexible, we intro-
duced a new hyper-parameter – norm power (p). Finally,
we define Robust Normalization (RobustNorm or RN) as
follows:

yi =
xi − µB
rpB

. (7)

VI. EXPERIMENTS
A. EXPERIMENTAL SETUP
We have used two architectures, ResNet [31] with 20,38
and 50 layers and VGG [65] with 11 and 16 layers.
We have used five different datasets for robustness eval-
uations: MNIST [45], Fashion-MNIST [71], CIFAR10,
CIFAR100 [43] and ImageNet [14]. We have always used
a learning rate of 0.1 except for no normalization scenar-
ios where convergence is not possible with higher learning
rates. In that case, we have used a learning rate of 0.01.
We decrease the learning rate ten times at 80th and 120th
epoch for CIFAR10, 100; at the 30th epoch for MNIST,
Fashion-MNIST; and at 30th, 60th and 90th epoch for
ImageNet.

B. EVALUATION ON CIFAR
We evaluated the robustness of RobustNorm for two different
datasets. RobustNorm’s accuracy is higher in the presence
of adversarial attacks (Figure 6). Specifically, RobustNorm
increases the adversarial accuracy of ResNet20 from 22%
to 70% for CIFAR10 (note that the epsilon value is 1/255).
All the results are shown in Figure 6.

C. EVALUATION ON CIFAR10 WITH DIFFERENT
ARCHITECTURES AND ATTACKS
To further verify the effectiveness of RobustNorm, we trained
two models on BatchNorm and RobustNorm. Both mod-
els were trained for 100 epochs with an initial learning
rate of 0.1 and cosine annealing learning rate decay [47].
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FIGURE 6. Comparison of accuracy of the model with different
normalization (RN: RobustNorm, BN: BatchNorm) for ResNet20. In the
presence of adversarial attacks, RobustNorm performs better than
BatchNorm.

TABLE 6. Robustness of BatchNorm and RobustNorm against four
different adversarial attacks. Robustness for each attack is evaluated
against four levels of perturbation (ϵ) values. RobustNorm performs well
against all of these attacks and perturbation budgets.

For RobustNorm, we use p = 0.2. We evaluated both of
these models on four different attacks: PGD-20, PGD-100,
APGD-CE [13] and Square Attack [1].We used four different
perturbation levels e.g., ϵ ∈ {1, 2, 4, 8} for robustness evalua-
tion. The results are shown in Table 6. RobustNorm performs
better than BatchNorm against a diverse set of attacks and
perturbation levels.

D. EVALUATION ON ImageNet
To test the effectiveness of RobustNorm at scale, we per-
formed experiments for RobustNorm on ImageNet. Results
are shown in Table 7. RobustNorm beats BatchNorm for all
the attacks by a wide margin. Note that we have not used any
fine-tuning for hyper-parameter p.

E. EVALUATION ON SMALLER BATCH SIZES
RobustNorm performs better compared to BatchNorm when
we do not use batch statistics as shown in Figure 7. But,
it still suffers some loss of accuracy. Since mean (µ) is a
distribution statistic, we use its estimate calculated during

TABLE 7. Comparison of RobustNorm (RN) and BatchNorm (BN) for
ImageNet. We have used ResNet18 and ϵ = 1/255. RobustNorm performs
better than BatchNorm for all the attacks.

FIGURE 7. Comparison of BatchNorm(BN) and RobustNorm(RN) for small
inference batch sizes. RobustNorm performs much better when we only
use inference input to compute statistics but it still suffers some loss of
accuracy. We achieve performance gain by using the estimated value of
the population mean.

training. This improved the performance of RobustNorm for
small batch size is shown in Figure 7. To understand the effect
of µ̂P on adversarial accuracy of RobustNorm, we perform
experiments with varying values of ϵ. As shown in Figure 7,
adversarial accuracy of RobustNorm with µ̂P is comparable
to RobustNorm while also having consistent small inference
batch performance.

F. ABLATION STUDIES
In this section, we have validated and explored different
properties of RobustNorm.

1) ANALYSIS OF POWER HYPERPARAMETER
The RobustNorm introduces a new hyperparameter called
power or p of the range rB. We found p = 0.2 having
faster convergence (see Figure (8), red shows p = 0.2) and
generality across datasets. Therefore, we have used it for all
our experiments. Later, we observed that faster convergence
does not necessarily mean better adversarial robustness (see
Figure 9). For instance, RobustNorm with p = 0.2 performs
worse in terms of adversarial accuracy when compared to
other values. Similarly, p = 0.05 has better adversarial
robustness in RobustNorm when using the population mean.
Therefore, it has room for more improvement by tuning this
hyperparameter.

2) SCALIBILITY TO DIFFERENT ARCHITECTURES
We also evaluate RobustNorm to show its scalability on
different neural network architectures and depths. We choose
ResNet, and VGG architectures as a wide variety of neural
networks evolved from these networks. Similarly, VGG was
designed before BatchNorm, so it is also interesting to see
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FIGURE 8. Training curves on CIFAR10 dataset for RobustNorm.
We compare the loss (left) and accuracy (right) of RobustNorm with
different hyperparameter power (p) values. Note that p = 0.2 (red line)
converges faster than other.

FIGURE 9. The effect of hyperparameter p on adversarial robustness. The
results are shown for CIFAR10 and ResNet20.

TABLE 8. Scalibility of RobustNorm across different architectures and
depths. BN: BatchNorm, RN: RobustNorm, and RN w/ µ̂P : RobustNorm
with the population mean. Note consistent performance of RobustNorm
across architectures and depths.

its performance under different normalizations. To show the
scalability of RobustNorm for different depths, we choose
two commonly used depths of ResNet (38 and 50) and VGG
(11 and 16). Results for the experiments on these archi-
tectures for CIFAR10 are shown in Table 8. RobustNorm
outperforms BatchNorm by wide margins in all of these
networks. For instance, RobustNorm has a margin of 50%
with ResNet38, 31% for ResNet50, 15% for VGG11, and
28% for VGG16 when the input has BIM adversarial noise.
Similar trends are also visible under different attacks.

VII. CONCLUSION
In this paper, we have investigated the role of Batch-
Norm in the adversarial vulnerability of convolutional neural
networks. We observed that BatchNorm estimates popula-
tion statistics from natural images during training, and the

addition of adversarial noise introduces a targeted distribu-
tion shift in the input during inference. We hypothesized
that this shift makes train-time estimated statistics inaccu-
rate, thereby contributing to the adversarial vulnerability of
BatchNorm. We validated our hypothesis by showing adver-
sarial accuracy differences between statistics calculated from
perturbed validation-set batch and train-time estimated statis-
tics. We also showed that normalizations that do not require
these train-time estimated values perform better compare
with BatchNorm. Based on these insights, we proposed a
variant of BatchNorm, which increases the robustness while
keeping other benefits of BatchNorm. We have also extended
our hypothesis for transfer learning, where we showed that
we it is possible to get a significant accuracy gain by updating
batch statistics on the target dataset.
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