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ABSTRACT Synthetic biometric samples are created with an ultimate goal of getting around privacy
concerns, mitigating biases in biometric datasets, and reducing the sample acquisition effort to enable large-
scale evaluations. The recent breakthrough in the development of neural generative models shifted the focus
from image synthesis by mathematical modeling of biometric modalities to data-driven image generation.
This paradigm shift on the one hand greatly improves the realism of synthetic biometric samples and therefore
enables new use cases, but on the other hand new challenges and concerns arise. Despite their realism,
synthetic samples have to be checked for appropriateness for the tasks they are intended which includes new
quality metrics. Focusing on sample images of fingerprint, face, iris and vascular patterns, we highlight the
benefits of using synthetic samples, review the use cases, and summarize and categorize the most prominent
studies on synthetic biometrics aiming at showing recent progress and the direction of future research.

INDEX TERMS Biometrics, biometric modeling, face, fingerprint, iris, synthetic data, vascular patterns.

I. INTRODUCTION
The need for a new survey on synthetic biometrics is argued
by the rush development and popularization of Deep Con-
volutional Neural Networks (DCNN) moving the focus in
image generation frommathematical modeling to data-driven
synthesis. This can be seen as a paradigm change because of
an overall change in techniques to be used and requirements
on auxiliary data.While in early studies the problem of gener-
ating synthetic biometric samples was addressed by (mathe-
matical) modeling of physiological structures and acquisition
procedures [1], modern studies rely on Generative Adversar-
ial Networks (GAN) transferring the underlying image char-
acteristics from training data to synthetic biometric samples.
Moreover, the existing surveys on this topic are quite outdated
having been published in 2004 [2] and 2006 [1].

The most powerful driver for the recent development
of synthetic biometrics is the introduction of regulations
on protection of private data such as the General Data
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Protection Regulation (GDPR) in the EU [3]. Biometric data
are a special kind of private data protected by Article 9 of
the GDPR. Biometric data cannot even be anonymized due
to its nature. This fact dramatically hinders usage of real
biometric samples not only in industrial but also in aca-
demic research. Synthetic biometrics solves this problem by
introducing virtual individuals. And biometric samples of
virtual individuals can be made public without any legal
concerns.

If done properly, replacement of datasets of real biometric
samples by synthetic datasets is a step towards open research
which requires the reproducibility of experimental results by
any independent third party and hence public sharing of both
algorithms and datasets used in studies [4].

Besides privacy protection, an important use case of
synthetic data is augmentation of training and evaluation
datasets. Synthetic samples may compensate for unavailable
data aiming at covering all possible natural variations as well
as unnatural malicious modifications. Taking control over
sample variation and sample attributes as well as ensuring
equal distribution of sample attributes (e.g. race, gender, age)
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in datasets enables fair and unbiased application of machine
learning.

The main advantage of neural generative models in com-
parison to traditional modeling is the realistic appearance
of generated samples. In recent studies, GAN models have
been already used for rendering photorealistic face, iris and
fingerprint images. However, the number of publicly avail-
able datasets of synthetic biometric images is very limited,
as well as the commonly agreed evaluation methodology
for appropriateness of synthetic biometric datasets is still not
presented.

Our main contribution is in reviewing the use cases of
synthetic samples as well as summarizing and categorizing
the most prominent studies on synthetic biometrics aiming at
showing recent progress and the direction of future research.

The remainder of the paper is organized as follows:
Section II elaborates on the nature of synthetic biometric
samples and categorizes use cases, requirements on synthetic
data and generation techniques. Section III outlines tradi-
tional modeling studies to create synthetic fingerprints, faces,
irises and vascular patterns. Section IV focuses on data-driven
image generation of the samemodalities. The public synthetic
biometric datasets and synthesis tools are listed in Section V.
Our summary is drawn in Section VI.

II. FUNDAMENTALS
A. SYNTHESIS IN BIOMETRICS
Following the argumentation in [5], we notice that the ‘‘bio-
metric data’’ is an ambiguous term, so is a synthesis of
‘‘biometric data’’. This survey focuses on biometric samples
as ‘‘biometric data’’ acquired by biometric sensors and repre-
sented in the form of images which is the case for several of
the most established biometric modalities: face, fingerprint,
iris, and vascular traits. Synthesis of other types of ‘‘biometric
data’’ e.g. feature measurements, matching scores and deci-
sion data is beyond the scope of this work.

1) SYNTHESIS AS MODELING
In the encyclopedia of biometrics, Buettner [6] defines the
ultimate goal of biometric sample synthesis as the applica-
tion of computer-aided parametric modeling to creation of
a synthetic corpus of biometric samples which is indistin-
guishable from a corpus of real biometric samples obtained
from people. The parametric models are either mathematical
equations describing physics of biometric sample acquisition
or statistical models derived from empirical analysis of real
biometric samples.

Buettner stresses that modeling helps on the one hand to
fundamentally understand which factors affect the digitiza-
tion process of biometric modalities for a specific sensor
type and on the other hand to efficiently generate synthetic
images that are visually similar to real biometric samples
which in turn may improve testing of biometric algorithms.
This perfectly fits into an analysis-by-synthesis paradigm

in which the models of real-world phenomena are learnt to
predict perceptual observations [1].

2) SYNTHESIS AS TEMPLATE INVERSION
In fact, biometric analysis can be seen as a special case of
representation learning, a process in which a raw object is
translated to an abstract feature vector that is suitable for
object recognition. From this simplistic perspective, synthesis
of biometric samples has been seen as an inverse task to
biometric analysis [1] in which a raw biometric signal is
reconstructed from its abstract representation.

Let us refer to the result of biometric analysis as a bio-
metric template, then biometric template inversion is a spe-
cial case of parametric modeling in which the identity of a
subject is given by the data stored in a template. In early
stages of research it was believed that biometric samples can-
not be reconstructed from templates. Meanwhile, this belief
has been contradicted. In [7] one can find an overview of
approaches to invert biometric templates.

For face, the identity is directly associated with a facial
image and there is no commonly agreed convention on
features to be stored apart from a frontal face image [8].
Hence, for face, the problem of template inversion exists
only for deep learning based representations. The de facto
standard for iris representation is a 2048-bit binary code
called IrisCode [9]. How IrisCode can be turned into an iris
image is demonstrated in [10]. For fingerprint, the template
comprises a list of minutiae represented by type, x- and
y-coordinates, and an orientation angle [11]. The most recent
study on fingerprint reconstruction is in [12]. Note that for
the template inversion task the visual realism of the resulting
pattern is not always a primary objective.

3) PARADIGM’S CHANGE
Similar to how the focus of biometric research has been
changing from the proof of the concept to applicability of bio-
metrics, to security issues in biometric systems e.g. template
protection, to intentional attacks mitigation like Presentation
Attack Detection (PAD), the focus of synthetic biometrics
has been changing from physics-based modeling to statistical
modeling and finally to data-driven synthesis.

Physics-based modeling relies on studying physics of an
object of interest and its interaction with an environment
to predict possible projections onto the sensor space. Sta-
tistical modeling relies on statistical analysis of the object’s
representations to predict the representations of modified
objects. Data-driven synthesis relies on collecting enough
representations for learning of a deep neural network that is
then capable of generating random representations as well as
representations of modified or even unseen objects.

B. USE CASES FOR SYNTHETIC SAMPLES
Since synthetic biometric samples can be generated with
significantly less effort in terms of time and manpower than
collecting real biometric samples, the general motivation of
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FIGURE 1. Use cases for synthetic biometrics; arrows for specification of use cases and dashed arrows
for implication of one use case in another.

creating synthetic samples is a lack of collected samples of
a specific kind [5]. To be more precise, synthesis helps to
compensate for biases and simulate natural (e.g. aging, envi-
ronmental influences) or malicious (e.g. presentation attacks)
variations at less cost. Use cases for synthetic data in medical
research are listed in [13].

We propose to assign use cases to one of the four cat-
egories: (1) Identity-aware synthesis of virtual subjects,
(2) Data augmentation for missing variability and attackmod-
eling, (3) Cancelable biometrics, and (4) Inverse biometrics;
see Fig. 1. The first two use cases are common for all kinds
of synthetic data without special focus on biometric samples.

1) IDENTITY-AWARE SYNTHESIS OF VIRTUAL SUBJECTS
The first use case can be interpreted as replacement of real
data by synthetic data which helps getting around data pri-
vacy concerns [4]. Introduction of virtual subjects with the
corresponding biometric modalities has two major goals:
(i) Sharing data for open research and challenges, and
(ii) Privacy-preserving development of biometric systems
including training and evaluation.

2) DATA AUGMENTATION
Data augmentation is a common approach for bias mitiga-
tion. In fact, it is tremendously hard or almost impossible
to collect data that cover most of the possible presentation
variations of a biometric modality or even collect data from
minority group people. At the same time, missing important
variations in training samples lead, on the one hand, to biased
models and, on the other hand, to high classification error
rates. Moreover, biometric classification models are often
subjected to intentional attacks that could be modeled in
synthetic samples. All in all, there are two major goals of
data augmentation: (i) Training more robust algorithms and
(ii) Thorough evaluation of already trained classification

models (better testing of biometric algorithms). Data
augmentation for advanced model training has received mas-
sive attention in recent studies in e.g. fingerprint classifi-
cation [14] and face recognition [15]. GANs designed for
face representation modeling are capable of building a robust
individual face model from a single still image [16], [17]. In a
trivial case, data augmentation can be performed by modest
image deformations which do not destroy the initial structure
of a biometric modality, or by identity-aware synthesis of new
images.

3) CANCELABLE BIOMETRICS
Cancelable biometrics addresses the usage of synthetic sam-
ples in place of real biometrics in stored templates. Such a
replacement grants a biometric authentication system flex-
ibility towards the case of a compromised reference data
storage. If an individual synthetic template has been stolen,
it can be easily replaced by another synthetic template. This
use case has been first mentioned in [1] and elaborated in [18]
on example of fingerprints and in [19] on example of faces.
Although this use case can be seen as an implication of the
first use case (replacement of a real subject by a virtual one)
with the same requirements on the synthetic samples, we sin-
gle it out because cancelable biometrics targets security rather
than privacy concerns. Note that, similar to the first use case,
it is essential here that synthetic samples obfuscate individual
characteristics i.e. do not match real reference samples.

4) INVERSE BIOMETRICS
Inverse biometrics addresses reconstruction of biometric
samples from biometric templates. Inverse biometrics itself
is not directly a use case of synthetic biometric samples but
rather a tool for creating those and a proxy to performing pre-
sentation attacks on biometric systems. It is also an important
tool for identity-aware synthesis of virtual subjects.
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FIGURE 2. Different use cases imply different requirements on synthetic
samples and the requirements in turn imply different generation
methods.

Note that a strong generative model applied for inver-
sion of biometric templates is a powerful instrument in the
hands of a perpetrator. The capability of reconstructing bio-
metric images from ‘‘irreversible’’ templates may lead to
identity theft in the case of a compromised biometric refer-
ence dataset. Moreover, modeling of multi-identity biometric
images such as face morphing [20] by e.g. blending GAN
embeddings and a subsequent image reconstruction [21] or
direct image blending [22] is a serious threat to identity
verification systems. Even simple face swapping in e.g. deep-
fakes [23] can be used as a means of mass consciousness
manipulation.

C. GENERAL REQUIREMENTS ON SYNTHETIC SAMPLES
It is clear that different use cases imply different requirements
on synthetic samples (see Fig.2 for visualization). For the first
use case the original identities must be disguised and several
impressions of the same biometric entity are required. For the
second use case the variability of samples must be increased
by preserving the identity. The main objective in the third use
case is concealing the original identity and stable generation
of biometric substitutes. Nevertheless, general requirements
on synthetic biometric samples can be formulated to assure
the utility of samples in general and for a special use case.

Inappropriate synthetic samples, no matter for which pur-
pose they are used, lead to non-meaningful results. To the
best of our knowledge, the first attempt to formulate require-
ments on biometric generative models is done in [5]. The
authors propose three criteria: flexibility, parsimony and con-
sistency. Flexibility means that the generative model has
enough parameters to model data under study. Parsimony
means that the generativemodel is as simple as the data allows
but not simpler. Consistency means that the distribution of
synthetic samples is sufficiently close to that of real samples.
Out of the three proposed criteria, the first two are rather
the guidelines for model design, while the consistency can
be practically validated in synthesized images. The proposed
metric is goodness-of-fit criteria measured in a Chi-square or
Kolmogorov-Smirnov test.

However, a commonly agreed methodology on how to
practically assess the quality and utility of synthetic biomet-
ric samples still does not exist. In our previous study [24],
we propose seven requirements on synthetic biometric

samples and/or generative models on example of synthetic
fingerprint images:

• (R) Synthetic images should appear realistic which
encompasses two aspects: real and synthetic samples
cannot be told apart, neither by the naked eye nor by
analyzing image statistics.

• (I) Synthetic images should be of sufficiently high
resolution.

• (A) Synthetic images should preserve privacy, mean-
ing that the virtual individuals cannot be linked to real
individuals.

• (D) Synthetic images assembled into a dataset should be
diverse enough to describe the broad variety of repre-
sentations of a biometric modality caused by physical
interactions with an environment.

• (C) The generative model should be capable of con-
trollable generation of samples meaning that not only
non-mated but also mated samples can be produced.

• (B) Synthetic images should reflect basic characteristics
of the ground truth images.

• (E) In a synthetic dataset, the distributions of subject
attributes such as gender, age or ethnicity should be
controlled to avoid biases.

Although the requirements are formulated focusing on
fingerprint images, we believe that they can be simply gen-
eralized for images of other biometric modalities and more-
over for any kind of synthetic images generated by a neural
generative model. We also believe that linking the proposed
requirements to metrics specific for images under considera-
tion can grow into an established evaluation methodology for
synthetic data.

An evaluation methodology for synthetic data looking at
realistic recognition accuracy values and the similarity of
comparison score distributions to real data for the case of
fingerprints is suggested in [25] and for the case of person
re-identification data in [26].

Medical studies such as [27] have an alternative perspec-
tive on utility evaluation of synthetic data.

D. GENERATION METHODS
In general, there are three approaches for obtaining synthetic
biometric samples: adaptation, synthesis and reconstruction
from a biometric template.

In the case of adaptation, an existing biometric sample is
modified to mimic certain acquisition conditions such as sen-
sor characteristics, environmental variability, or physiology-
based variations. For fingerprints, there is an adaptation tool
called StirTrace [28]. Adaptation is a commonly used tech-
nique for data augmentation. An exhaustive review of face
data augmentation approaches is presented in [15].

Synthesis aims at creating artificial samples from scratch
according to a predefined sensor, physiological and environ-
mental conditions making use of a pre-trained conditional
generative model e.g. Glow [29] for faces or SFinGe [30] for
fingerprints.
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TABLE 1. Studies on model-based synthesis/reconstruction of biometric images.

Reconstruction from a biometric template aims at
interpreting the essential identity-specific information from
a biometric template and generating artificial samples by
parameterizing a previously learned generic model towards
the identity.

III. TRADITIONAL MODELING
The most prominent and recent studies on model-based syn-
thesis of biometric images and reconstruction from biometric
templates are listed in Table 1.

A. FINGERPRINTS
Historically, first conclusive modeling efforts were made for
fingerprints back in the first half of the 20th century [58].

A simple yet practical model for ridge pattern orientation
based on singular points (cores and deltas) is proposed in [31]
and applied in SFinGe [30] for algorithmic synthesis of real-
istic fingerprints. In [32], it is shown how ridge orientations
can be modeled by fitting Legendre polynomials. Modeling
of fingerprints in [30] goes far beyond modeling of master
fingerprints i.e. iterative application of Gabor filters, tailored
to local orientation and frequency. A crucial step is mimick-
ing distortions to simulate traction and torsion forces applied
to a finger during its placement on the sensor as well as ren-
dering texture and adding noise. However, the applied texture
and noise models are not well justified leading to inability
of reproducing texture that is statistically representative for
real fingerprints. In [33], texture and noise are derived from
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real fingerprint images enabling realistic textures in synthetic
images. Simulation of a fingerprint generation process by
Petri net is proposed in [34] with the focus on mimicking
skin diseases. The net depicts synthesis states and possible
transitions between them. First, master fingerprint is created,
then environmental influences are added, then user and fin-
ger conditions, then fingerprint damages, and finally sensor
characteristics. The study in [35] focuses on modeling con-
tactless fingerprints. Synthetic samples are designed to reflect
properties of capturing process, subject characteristics, and
environmental influences.

Inversion of fingerprint templates was first addressed by
Hill back in 2001 [59]. However, the intensive research
started in 2007 with the studies of Cappelli et al. [36] and
Ross et al. [37]. In contrast to fingerprint drawing from
scratch, the locations of singular points are derived from the
given minutiae and further on the orientation map. Ridge
frequencies are also adjusted to minutiae. Apart from the
zero-pole model [31], ridge patterns can be estimated using
the minutiae triplet model [37] or the AM-FM model [38],
[39] which makes use of eight neighboring minutiae. Recon-
struction of ridges based on patch dictionaries, proposed
in [40], allows for idealistic ridge patterns.

B. FACE
Modeling of faces has always been an intensively stud-
ied topic of computer vision. Indeed, face recognition is
only one domain in a broad variety of applications making
use of highly realistic synthetic faces. The first important
mathematical concept allowing for modeling face attributes
and preserving individual characteristics was proposed by
Sirovich and Kirby [41] way back in 1987. Later on, Turk and
Pentland [42] called this concept ‘‘Eigenfaces’’ and demon-
strated its application to face recognition. Eigenfaces is a
domain specific rephrase of eigenvectors known as an integral
part of Principal Component Analysis (PCA). The main idea
is that a face image is decomposed in a linear combination
of Eigenfaces and the coefficients of Eigenfaces define face
appearance. Individual characteristics, environmental influ-
ences and other appearance variations are modeled by modi-
fying one or several coefficients. The next step was made by
Cootes [43] who split face into texture and a graph of facial
landmarks and applied PCA to texture and geometry sepa-
rately. Image rendering is then done by texture warping. This
move allows for better modeling of face poses. The break-
through in face modeling is achieved by Blanz and Vetter [44]
with the concept of a morphable 3D face model. Practically,
for geometry representation, facial landmarks are replaced by
a 3D head shape and PCA is used, as before, for modeling
variations in pose, illumination, expression, etc. This model
has been actively used in most face modeling studies until
the paradigm change in 2014 due to the success of DCNN
in classification tasks and introduction of GAN [60]. A head
model suitable for deformation in anthropometrically mean-
ingful ways using the underlying muscle and bone structure

is proposed in [45]. The head growth from early childhood
to adult can be simulated. In fact, complex 3D models can
be perfectly combined with facial landmark localization and
texture warping to rotate or frontalize faces in 2D images [61]
which in turn greatly improves the performance of face
recognition.

We intentionally omit ‘‘face reconstruction from a tem-
plate’’ because of an absence of commonly agreed conven-
tion on ‘‘face features’’ so that the standard face template
is a high-quality frontal face image. Hence, face reconstruc-
tion makes sense only for deep-face features addressed in
Section IV-B.

C. IRIS
Modeling of iris images is a relatively young research field
having its roots in the early 2000s. The ocularist’s approach
to iris synthesis [46] overlays semi-transparent texture lay-
ers built from topological and optic models. The layers
are designed to mimic stroma, collarette, limbus, pupil and
sphincter muscle components. It has been stated that such
fake iris patterns printed onto vanity contact lenses pose a
threat to iris identification systems. Synthesis of iris images
based on PCA and super-resolution is proposed in [47].
In [48], iris is modeled by Markov Random Fields (MRF)
applied to stitching of texture primitives representing radial
furrows, crypts and limbus. The study in [49] is a further
development of [48] in which MRF modeling is applied to
background texture, and radial furrows, concentric furrows,
collarette and crypt are synthesized as texture patches and
embedded into the texture. An anatomy-based method for
synthesizing iris images with the focus on compiling a large
database of synthetic irises is proposed in [50]. The authors
put emphasis on ‘‘realism’’ stating that a synthetic iris should
not only look like a real iris but also have statistical charac-
teristics of a real iris.

Iris reconstruction from binary IrisCode relies either on a
deterministic approach based on Gabor filtering [51] or on a
probabilistic approach based on genetic algorithms [52].

D. VASCULAR BIOMETRICS
A review on several synthesis techniques for hand-related
vascular biometric samples provided in [62] is not restricted
to palm vein data as suggested by the title. The first
work in this field is more recent as compared to other
modalities - [53] proposes a method for creating hand vein
sample data, employing (randomly positioned) ‘‘key points’’
which are interconnected by a random process and dilated
to achieve vessel apprearance. Texture is generated using
a contrast variation model. As introduced in [54] similar
methodology for finger veins, based on setting slightly dis-
turbed vein nodes, which are interconnected by randomly
steered vessel growth and NIR variability is also modeled to
result in realistic appearance.

Eye-related traits have been considered in the context
of creating synthetic data - in particular retina recognition,
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as fundus imagery is an important diagnosis element in
ophthalmology as well. In [55], a patch-based approach is
used to create retinal backgrounds and foveae, model-based
texture synthesis techniques have also been employed for the
generation of realistic optic discs and vessel networks. The
approach has been refined in [56], where the Active Shape
model and Kalman filtering combined with an extension
of the Multiresolution Hermite vascular cross-section model
facilitates realistic vessel network modeling.

Finally, also sclera data has been subject to synthe-
sis attempts: [57] proposes to apply an earlier published
non-parametric texture synthesis technique which relies on
systematically selecting random patches from ‘‘primitive
images’’ (i.e. seed or source images) to produce similar
texture, using a part of the UBIRISv1 dataset as primitive
images.

IV. DATA-DRIVEN SYNTHESIS
Neural generative models have been applied in biometrics
for many purposes. The most prominent are biometric image
completion [95], image quality enhancement [96], image
style transfer [97], generation of random realistic biometric
samples [78] and conditional generation for identity-aware
image reconstruction or retaining/obfuscation of soft biomet-
ric attributes [98]. The majority of neural generative models
are based on GAN. Since face as biometric modality has
always been a pioneering one in computer vision research, the
majority of feasibility studies on GAN-based synthesis deal
with face images, but the developed GAN architectures can
be applied to other biometric images as well. GAN models
allow for creating realistic patterns and transferring domain
characteristics from an existing dataset. These two aspects are
very challenging for model-based generation and are natively
supported in data-driven generation. The most prominent
and recent studies on data-driven synthesis/reconstruction of
biometric images are listed in Table 2.

The key feature of data-driven synthesis is that no knowl-
edge about image semantics is required. However, the pre-
requisite for training of a generative model is a large set of
diverse real biometric samples. Here, one can see a logical
mistake. If real biometric samples are already presented, why
do we use them for training and not for the initial task e.g.
evaluation of a biometric system? The first reason is privacy
protection. Indeed real biometric data can hardly be used in
open research. Second, a synthetic dataset can be made of
arbitrary size enabling training of DCNN from scratch.

A. FINGERPRINTS
In [63], a Wasserstein GAN is applied for generating master
fingerprints that match multiple original fingerprints. The
Finger-GAN proposed in [64] is a connectivity imposed fin-
gerprint generation GAN that is introduced and applied to
simulate images from two fingerprint datasets: FVC2006 and
PolyU. The SynFi approach in [65] enables high-resolution
realistic fingerprints generation by combining GAN with
a super-resolution network. In [66], a combination of

a convolutional autoencoder and an improved Wasserstein
GAN is used for synthesizing 512 × 512 pixel rolled and
plain fingerprints. In [67], the feasibility of three estab-
lished NVIDIA GAN architectures: progressive growing
GAN, StyleGAN and StyleGAN2 is validated for realistic
fingerprint pattern generation. TheClarkson Fingerprint Gen-
erator (CFG) [68] is trained using StyleGAN and propri-
etary dataset captured with a Crossmatch Guardian scanner.
In [69], a CycleGAN is applied for texture transfer from
real fingerprints to Anguli generated fingerprints with added
sweat pores. Then a super-resolution network increases the
image size. The PrintsGAN is proposed in [70] for fingerprint
synthesis from DeepPrint representation with control over a
fingerprint identity.

In fact, there are two ways of fingerprint synthesis with
a pre-defined identity. The first is in combining model-based
reconstruction fromminutiae and further application of style-
transfer (e.g. CycleGAN) to add realism and transfer domain
characteristics, as in [69]). The second way is to use condi-
tional GANwith identity as a condition. If identity is given by
a deep representation, as in [70], the identity-aware synthesis
is straightforward. If identity is not explicitly presented or
given by minutiae, an additional encoding step is required.

Fingerprint reconstruction from a minutiae template is
addressed in [71] using a conditional GAN (pix2pix) origi-
nally proposed in [72]. In [73], a convolutional minutiae-to-
vector encoder is used in combination with StyleGAN2 for
identity-preserving, attributes-aware fingerprint reconstruc-
tion from minutiae. In [12], fingerprint reconstructions from
deep network embedding and from minutiae are compared
qualitatively and quantitatively regarding the inversion attack
performance.

B. FACE
Modeling of face as a vector in a latent space of a gener-
ator network is a current research trend. Making moves in
the latent space of the generator both person identity and
facial attributes can be modified on demand. Sophisticated
GAN models allow for face learning from a single still
images and therefore unconstrained face recognition [17].
The most successful face modeling networks are Glow [29]
from OpenAI and StarGAN [75] from CLOVA AI Research.
However, the best visual quality have face images randomly
produced by NVIDIA GAN models: progressive growing
GAN [77], StyleGAN [78], StyleGAN2 [79], StyleGAN2-
ada [80] and StyleGAN3 [81]. The majority of recent face
modeling approaches build on NVIDIA architectures trying
to extend it by a conditional generation mechanism. This can
be done either by statistical analysis of the latent space [99],
[100], or by semi-supervised disentanglement learning [101],
or by detecting ‘‘StyleSpace channels’’ for attribute con-
trol [102].

The problem of reconstructing face images from deep
embeddings goes far beyond the field of inverse biometrics.
The question is whether an image encoded by one deep
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TABLE 2. Studies on data-driven synthesis/reconstruction of biometric images.

convolutional model can be successfully reconstructed by
another deep convolutional model trained with previously
unseen samples. For the case of facial images, the positive
examples of such reconstruction are demonstrated in [82],
[83], and [84]. All approaches mentioned reconstruct face
images from FaceNet embeddings.

C. IRIS
There are only few studies on GAN-based iris synthesis. Iris-
GAN is proposed in [85] to generate irises from random
variables using a deep convolutional GAN. The synthetic
irises lack realism and mostly suffer from unrealistic pat-
terns around the iris boundary. In [86], a conditional GAN

(pix2pix) is applied to iris synthesis aiming at data aug-
mentation to improve accuracy of iris recognition. In [87],
the Relativistic Average Standard Generative Adversarial
Network (RaSGAN) is applied to synthesize high-quality
images tomimic iris presentation attacks and hence to support
presentation attacks detection (PAD) against unseen attacks.
Aiming at compensating for under-represented iris presen-
tation attacks in the training set, the Cyclic Image Transla-
tion Generative Adversarial Network (CIT-GAN) is proposed
in [88] to enable domain style transfer and improve PAD
accuracy.

GAN-based iris reconstruction from three types of iris
templates is introduced in [90] referred to as RESIST. Apart
from a traditional Gabor filter template, two deep templates
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TABLE 3. Public synthetic datasets / generation software.

are addressed: embedding of DenseNet with and without
normalization. The RESIST architecture is a modified U-Net
(pix2pix) extended by L1 perception loss and SSIM loss.

For both iris recognition and periocular recognition, GAN-
based synthetic eye images are created using a segmenta-
tion mask as input and being gaze-preserving as described
in [103].

D. VASCULAR TRAITS
In [91], GAN-based data augmentation is proposed for
enhanced training in CNN-based finger vein recognition,
where the suggested FCGAN approach outperforms other
GAN architectures. Here, classically augmented finger vein
sample images are used as training data. Contrasting to this
approach, [92] generates the vascular network using a classi-
cal approach, while generating the texture for the image using
a GAN approach. Similarly, a nature-inspired algorithm is
used in [93] to form the vessel pattern, and the StyleGAN2
for texture generation.

A good overview on GAN-based synthetic retina
(fundus) images generation methods (including an analysis
of weaknesses) is contained in [112]. Among other tech-
niques, [113] uses a multiple-channels-multiple-landmarks
(MCML) approach in which vessel structure is combined
with optical disc and optical cup images, which are then fed
into pix2pix or CycleGAN architectures to generate realistic
texture. A multitude of different CNN architectures is used
and compared overall. A related approach is taken in [112],
where a VAE is employed to create vessel trees, which are
then used by a GAN architecture to create full fundus images.
After training, this results in an end-to-end system. In [114],
a pix2pixHD GAN is used to create synthetic retinal images,
where ophthalmologists were not successful in discriminat-
ing real from artificial data.

V. DATASETS AND CHALLENGES WITH SYNTHETIC DATA
A. DATASETS
Due to recent data protection regulations, many biometric
datasets were removed from the public domain. For instance,
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NIST has taken down forensic fingerprint datasets NIST SD4,
NIST SD14 and NIST SD27, and Microsoft has taken down
MS-Celeb-1M database of 10 million faces scraped from
the internet. This tendency explains the growing interest in
synthetic biometric datasets that can replace the real ones.
There is a number of studies on compilation of large synthetic
datasets for almost all biometric modalities. In [66], [67],
and [68] there are approaches for fingerprints, in [99], [100],
and [115] for faces, and in [50] for irises. However, the
amount of publicly available datasets is quite limited. Table 3
summarizes public synthetic datasets.

B. CHALLENGES
After it has been established that synthetic faces can be
successfully applied in face recognition and even completely
substitute for real faces [100], [107], [116], [117], the next
step is organizing large-scale biometric campaigns in which
recognition models are trained solely from synthetic samples
addressing the whole variety of biometric modalities. To the
best of our knowledge, the only such competition related
to biometrics and focusing on face morphing attack detec-
tion took place within the International Joint Conference on
Biometrics 2022.1

VI. CONCLUSION
The abundance of recent studies on generation of synthetic
biometric samples suggests that interest in experimenting
with synthetic data is currently very high and is even grow-
ing. There is a belief that by 2024, 60% of the data used
for the development of AI-based solutions will be syntheti-
cally generated,2 and by 2030, synthetic data will completely
overshadow real data in AI models.3 Although there is still
controversy on whether the synthetic datasets can replace real
biometric datasets, the number of published neural generative
approaches for biometric images increases. While face bio-
metric still enjoys a sufficient number of publicly available
datasets, many fingerprint datasets have been removed from
public domain due to privacy concerns. Synthetic biomet-
ric samples have a versatile use spreading from augmenta-
tion of training and test data to enabling privacy-friendly
evaluation of biometric algorithms and sharing data for
open research. Hence, many researchers seek for publi-
cally available synthetic biometric datasets. Synthetic bio-
metrics also have a close relation to several security-related
domains such as inverse biometrics, cancelable biometrics
and privacy-enhancing technologies implicating an improve-
ment of security if synthetic samples are involved. Utility
evaluation of synthetic biometric samples is the major chal-
lenge now.We believe that linking the requirements proposed

1https://sites.google.com/view/ijcb-syn-mad-2022, accessed 26.01.2023
2Andrew White, Gartner Blog, https://blogs.gartner.com/andrew_white/

2021/07/24/by-2024-60-of-the-data-used-for-the-development-of-ai-and-
analytics-projects-will-be-synthetically-generated, accessed 26.01.2023

3Alexander Linden, Gartner Q&A, https://www.gartner.com/en/newsroom
/press-releases/2022-06-22-is-synthetic-data-the-future-of-ai, accessed
26.01.2023

in this paper to metrics specific for images under considera-
tion can grow into an established evaluation methodology for
any kind of synthetic images generated by a neural generative
model.
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