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ABSTRACT Load modeling is essential to distribution system analysis, planning, and control. Therefore,
in this work, effect of non-linear load models has been considered for the optimal site and size of DG and
SC allocation. A new and efficient modified branch and bus ordering-based forward-backward load flow
method has been applied to solve load flow problem in radial distribution system. Recently implemented
several state-of-the-art evolutionary algorithms (EAs) are employed to solve optimal site and size of DG
and SC allocation problems and it is shown that performance of multi-operator/multimethod is better than
other algorithms that are based on a single operator and/or algorithm. Therefore, a new hybrid EA based on
various state-of-the-art operators such as GA, DE, and PSO is designed and applied to solve optimal site and
size of DG and SC allocation problems. Various technical objective functions (index of active and reactive
power loss and voltage deviation index) are considered to show the impacts of non-linear load models. From
the simulation results, it is shown that DG and SC allocation problem is multi-objective. Therefore, further
weighted sum multi-objective technical, economic, and environmental functions are formulated to find the
solution to DG and SC allocation problems. The gathered results demonstrate that the proposedmethodology
significantly minimizes the cost of energy supplied by grid, total operating cost, and active and reactive
power losses. Consequently, it can be stated that the suggested methodology has considerable economic and
technological benefits and may be used to address many optimization issues in various distribution networks.

INDEX TERMS Distributed generation, shunt capacitor, distribution system, constrained evolutionary
algorithm, non-linear load models.

I. INTRODUCTION
A. LITERATURE REVIEW
Current changes in the electric utility structure with the inte-
gration of distributed generation (DG) have created opportu-
nities for many technological innovations to achieve a variety
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of technical and economic benefits such as; reduction in line
losses, fuel cost, peak shaving, voltage deviation, emission
(greenhouse gases), O&M cost, and enhancement in voltage
level, over all energy efficiency, system reliability, power
quality, security for critical loads. Amaximum of above bene-
fits in the distribution are obtained by integrating distributed
generation (DG) of appropriate site and size that add local
active and reactive power directly near distribution system.
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DGs operate at optimal power factor to minimize the active
and reactive losses in the system. By adding reactive power
to the system, shunt capacitor (SC) banks help with reactive
power correction. Both DGs and SC banks, when placed
in appropriate sites with the best sizes, may considerably
improve quality of power, efficiency, and stability in addition
to economic factors [1].

In the past few decades various optimization techniques
were employed to find the optimal allocation of DGs and
SCs, these include hybrid, evolutionary-based, and analytical
methods. Many analytical techniques are used to resolve the
DG allocation problem. Abdelkader et al. [2] proposed an
iterative analytical formula for the DG allocation problems.
The Multiobjective optimal DG allocation based on branch
Loss Bus Injection Index (BLBII) analytical expressions are
formulated and solved in [3]. Various objective functions
proposed in BLBII formulation are active power loss, VD,
energy not served, and VSI. A very simple analytical method
to minimize active power loss for the optimal site and size is
proposed in [4]. In the study, many DG characteristics were
analyzed and examined, and various power considerations
were taken into account. The authors in [5] employed an ana-
lytical approach for integrating the DG with distribution net-
works to reduce losses. Using the aggregated sum technique
for multi-objective optimization, they evaluated their strategy
on single and multiple DG allocations. Another research
[6], which took into account the active and reactive current
components of the DG, employed the analytical technique
for distributing various DG units to reduce losses. The best
outcomes are obtained when the approach first finds a series
of potential buses and then chooses the size of the DGs.
Similar studies based on various analytical expressions can
be found in [7], [8], and [9] with different objectives, test
systems, and analyses as shown in Table 1.

Numerous literary works that merged the individual
SC, DG, or a combination of the two did so using
heuristic or metaheuristic optimization methodologies. For
grid-connected and islanded micro-grid systems, fixed and
switchable capacitors are optimized in [10] using a spot-
ted hyena optimizer (SHO). The gravitational search algo-
rithm (GSA) and sensitivity analysis are used to study the
allocation of SC banks in [11] to reduce the annual cost
of system losses and SC installation. The expenses of run-
ning and maintaining SCs deployed in RDS are not included
in that analysis. To locate and determine the magnitude
of the DGs and SCs concurrently in distribution systems,
the intersect mutation differential evolution (IMDE) method
[1] was developed. The goal was to minimize power loss
and associated expenses. As part of a MOO approach uti-
lizing the aggregates sum technique, both DG-SC is opti-
mized in [12] using the constriction-factor particle swarm
optimization (Cf-PSO). Recent research in [13] focused
on DSTATCOM size and positioning in radial distribution
systems to decrease losses, raise the voltage level, and
maximize the voltage stability index (VSI) under diverse

variable demands using whale optimization algorithms
(WOA). Ali et al. in [14] appropriately sized solar (PV) type
DG and energy storage system (ESS) coupled to distribution
network using fuzzy logic and chaotic slap swarm algorithm
(CSSA). To maximize the VSI and minimize power losses
and VD, the researchers applied their approach for multi-
objective optimization. Optimal allocation of various DG
units using enhanced GA (EGA) was suggested in [15] to
accomplish various objective functions. The multi-objective
optimization issue was addressed by the authors using a
variety of strategies that includes the weighted sum approach,
epsilon constraint method and Pareto Front based. The goals
were to minimize active power loss, and VD whereas, maxi-
mizes VSI. The DG allocation problem in distribution system
was solved using grey wolf optimization (GWO) in [26]
to minimize system losses and improve the voltage profile.
To minimize losses while improving voltage profile and sys-
tem stability, an improved artificial eco-system based opti-
mization (EAEO) [27] is developed and applied to single and
multi-objective problems.

Two different variants of PSO were created in [25] to
address the solution of DG allocation problem. These variants
referred to as adaptive and exponential PSO were compared
in terms of how well they improved distribution system.
The GA was implemented in [24] to manage various capac-
itors and shunt reactors and maximized reactive power in
real-time applications. The improved decomposition-based
EA (I-DBEA) in [21] and Manta Ray foraging optimiza-
tion (MRFO) were implemented in [23] and are employed
to solve Multi-objective DG integration into distribution
problems to minimize VD and losses and maximize VSI.
Some metaheuristic algorithms that include harmony search
algorithm (HAS) [20], water cycle algorithm (WCA) [19],
multi-objective evolutionary algorithm based on decomposi-
tion (MOEA/D) [18], non-dominated sorting GA (NSGA) in
[17], and intersect mutation differential evolution (IMDE) [1]
have been used for finding DG and SCBs allocation. Table 1
explicitly shows the crux of the literature review.

The optimal allocation of DG and SC can highly improve
performance and efficiency of distribution system. Integra-
tion of reactive power of SCs, at optimal site and size, can
also improve power factor of distribution system and hence
improve voltage profile of system.

Load modeling has a significant impact on power sys-
tem studies. Load modeling has received more attention in
recent years because of renewable integration, demand-side
management, and smart metering devices. However, Table 1
clearly shows that the commonly used constant PQ type load
model is widely studied for the DG and SC allocation. In [31],
[33], and [34], a thorough analysis of the load model to
be applied for power flow and dynamic studies is offered.
Authors in [35] and [36] experimentally showed the impact of
loadmodels in planning studies in terms of appropriate capac-
itor placement/switching. According to the authors’ analysis,
switching a capacitor bank to increase the power factor was

21466 VOLUME 11, 2023



A. Ali et al.: Multi-Objective Optimal Siting and Sizing of Distributed Generators and Shunt Capacitors

TABLE 1. Crux of the literature review.

predicted to reduce real and reactive power injections at the
substation since feeder load was modeled as a steady power
source. There is an increase in the measured active and reac-
tive power injections. Utilizing a voltage-sensitive loadmodel
[35] to analyze the experimental data, it was shown that while
feeder losses are decreased as a result of the placement of
the capacitor, the improvement in voltage profile that follows
causes an increase in loads that outweighs the loss reduction.
The positioning of DGs in an optimization setting is compara-
ble to the placement of capacitors previously addressed. Most
of the planning methods invariably use power flow programs
which normally utilize constant real and reactive power load
model representation. It is observed from the literature review
that load models are not included in planning the location
and size, and calculating the said indices except in [22]
who have considered the load model. Moreover, DG alloca-
tion problem must be considered multi-objective function to
assess the benefits of adding renewable DG to the distribution
system.

B. MOTIVATIONS
Direct implementation of FBS load flow results in poor
convergence in residential, industrial, and commercial load
models. Also, the direct FBS method consumes more time
in simultaneous DG and SC allocation. Most of the authors
in the literature consider constant PQ load model only that
computes an unrealistic DG and SC site and size.

Moreover, most of the studies do not include the technical,
economic, and environmental objective functions during opti-
mal siting and sizing of simultaneous DG and SC allocation.
However, even though it represents four different types, the
majority of authors only take into account one model of
the DG unit. Very few studies, such as [22], [37], [38], and
[39], employed three or four load models when assigning DG
units utilizing various optimization strategies. Most authors
consider only a single objective function for the optimal site
and size of DG/SC allocation problems. The aforementioned
drawbacks motivate the author to (i) generalize distribution
system modeling rather than relying on the fixed or constant
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PQ load model reported in the studies above, (ii) take into
account various objectives within the same study to address
various critical parameters, (iii) highlight the cost of DG
and SC devices for overall operating cost, and (iv) consider
different types for the DG unit to generate active and reactive
power.

C. CONTRIBUTIONS
In this work, all six types of nonlinear load models and practi-
cal mix load model are considered, including the constant-PQ
(PQ), constant-current (CI), constant-impedance (CZ), indus-
trial (IND), commercial (COM) and residential (RES) loads.
These models depend on a nonlinear relationship between the
demand and the bus voltage profile. To solve the distribution
systems, modified network bus and branch ordering with
forward and backward sweep (FBS) method are adopted.
State of the art evolutionary algorithm has been implemented
for the DG and SC allocation problem. From the advantages
of different algorithms efficiently solving various DG and SC
allocation problems, it is suggested that the Hybrid algorithm
is the best choice to solve such problems. It is because GA
has better exploration, PSO has better convergence speed
and DE can handle integer-based constraints simply using a
round operator. Therefore, a new hybrid algorithm along with
the representative constraint handling technique is designed
and implemented to solve proposed DG and SC allocation
problem. In this work, single and multi-objective functions
are considered to solve proposed problem. To show the supe-
riority and performance of proposed method hybrid EA along
with the integration of representative CHT and modified FBS
load flow techniques, very small to large scale distribution
systems (33, 69, and 118 bus test systems) are considered.

Moreover, the study includes an analysis of cost of DG and
SC and the total operating cost and cost of emission. Finally,
the capability of the hybrid GA-DE and PSO along with
CHT is compared with the state-of-the-art EAs in solving
such nonlinear optimization problems and is checked through
statistical analysis showing its performance in terms of differ-
ent statistical indicators. The main contribution made by this
research is summarized as follows.
1. An efficient distribution network-based modified bus and

branch order FBS load flow algorithm is applied.
2. A new hybrid Evolutionary algorithm alongwith represen-

tative constraint handling techniques is designed to solve
DG and SC allocation problems.

3. The effects of different nonlinear composite load models
considered in distribution systems to integrate optimal site
and size of DG and SC are investigated.

4. Various conflicting objective functions such as yearly cost
of energy supplied by substation, the cost of DG and SC
units, and the total operating cost are considered to find
the optimal DG and SC allocation.

5. The Hybrid GA-DE-PSO along with representative CHTs
is adopted to solve a single and multi-objective opti-
mization problem consisting of three sub-objectives using
aggregated sum technique.

6. Statistical analysis is performed to quantify the capability
of the proposed algorithm for solving such optimization
problems.

In the remaining sections, section II implements composite
non-linear voltage-dependent load models and an illustrative
example of the radial distribution network for the FBS Load
flow techniques where problem formulation is outlined in
section III. In Section IV state-of-the-art EAs are applied to
explore the competencies of the EAs to solve DG and Sc
allocation problems into 33, 69, and 118 bus test systems.
Also, in section IV hybrid proposed algorithm and constraint
handling techniques are modeled. Analysis and comparison
of simulation results are given in Section V. The main con-
clusion points are drawn in section VI.

II. NONLINEAR VOLTAGE DEPENDENT COMPOSITE LOAD
MODELS AND LOAD FLOW METHOD
A. VOLTAGE-DEPENDENT COMPOSITE LOAD MODEL
To quantify the effect of various load models, 33, 69, and
118 node distribution systems are adopted. The data for p.u.
line impedances, load data, and the line MVA limits are given
in [40]. The effects of selected nonlinear voltage-dependent
composite load models are investigated in different planning
scenarios (test cases). In this work, load models can be math-
ematically expressed as

Pi = P0i
(
c1
∣∣V ∣∣0 + c2

∣∣V ∣∣1 + c3
∣∣V ∣∣2 + c4

∣∣V ∣∣0.18
+ c5

∣∣V ∣∣0.92 + c6
∣∣V ∣∣1.51) (1)

Qi = Q0i

(
d1
∣∣V ∣∣0 + d2

∣∣V ∣∣1 + d3
∣∣V ∣∣2 + d4

∣∣V ∣∣6
+ d5

∣∣V ∣∣4.04 + d6
∣∣V ∣∣3.40) (2)

whereas,P0i andQ0i are the real and reactive demand at nomi-
nal voltage, Pi andQi are the real and reactive power injection
at bus i, parameters (c1, d1), (c2, d2), (c3, d3), (c4, d4),
(c5, d5), and (c6, d6) are the compositions of PQ, CI, CZ, IND,
COM and RES non-linear voltage dependent load models
respectively.While in all composite loadmodels,

∑6
i=1 ci and∑6

i=1 di must be equal to 1. In this paper, a composition of
MIX load models is considered as;

25% of PQ (c1 = d1 = 0.25); and share of all the other loads
are 15% i.e., (c1 = d1 = c2 = d2 = c3 = d3 = c4 = d4 = c5 =

d5 = c6 = d6 = 0.15). Figure 1 shows an increase of active and
reactive power injection at load due to the change in voltage
between 0.95 to 1.05 p.u. The figure shows that at exactly
1p.u load bus voltage injects same active and reactive power
in all the load models. Whereas, load bus voltage below 1p.u
minimum active power injection into the CZ load (90% load
demand), however, maximum injection into the IND (99%
of active demand) on the other hand above 1p.u load bus
voltage, maximumpower injected into the CZ load bus (110%
of PQ load) and minimum power injection into the IND load
bus (101% of PQ load). In reactive power injection, load
bus voltage below 1p.u, minimum reactive power injection
into the industrial (approximate 75%) load model, however,
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maximum injection in case of CI (95% load constant PQ).
At the above 1p.u load bus voltage, maximum reactive power
is injected to the IND load bus (more than 130% of PQ load),
and minimum power is injected to the CI bus (105% of PQ
load).

B. EFFICIENT FBS LOAD FLOW METHOD FOR THE
NONLINEAR LOAD MODELS
For the efficient and fast FBS load flow, it is desirable to
modify branch and bus order proposed in [41] i.e., number
branches with numbers that are equal to the receiving bus
numbers and sending bus numbers should be smaller than
the receiving bus number. To demonstrate how the proposed
branch ordering algorithm is easy to understand by consid-
ering an illustrated example of 15 bus radial distribution
network as shown in Figure 2 (a). In this method initially two
empty variables i.e., bus_order and branch_order is created.
After that, the reference bus number (bus 1 in our case) is
directly inserted in the bus_order and search bus_order entity
in the from bus (f ) column as shown in Table 2. Next, insert
the corresponding entity of to bus (t) column and branch # are
inserted in the bus_order and the branch_order respectively.
The process is continued until all the buses and branches are
inserted in the bus_order and branch_order.Modified new bus
and branch indexes are shown in columns 6 and 8 of Table.

The modified network based on a new branch and bus
indexes is shown in Figure 2 (b). Moreover, as shown in
Figure 2 (c), an extra fictitious branch between reference
bus 1 and fictitious zero buses is inserted to increase each
branch number by 1. Finally, indices of the sending nodes of
branches are stored in vector F such that i = fk. The modified
network vector F and branch number shown in Table 3, offer
an easy way to follow the path between any bus and reference
bus.

For example, if we consider bus 15 (indicated green in
Table 3) of Figure 2 (c), then path to the slack bus consists of
bus 15, 12, 10, 3, 2, and 1 the following branches: considered
bus 15 is the receiving bus, in proposed method receiving
bus is the branch number, therefore, branch i15−→ F12 −→

i12 −→ F10 −→ i10 −→ F3 −→ i3 −→ F2 −→ i2 −→

F1 −→ i1.
Tracing of path visibly shows that During path trace from

bus 15 (only the colored branches and their associated receiv-
ing bus numbers are operated) to reference, therefore, overall
search space complexity is highly reduced. For the illustration
of FBS method a branch k , between bus i and k of mod-
ified radial distribution system is as shown in Figure 3, is
considered.

The FBS approach entails five steps. Set iteration counter
t=1 and all bus voltages to 1p.u initially in step 1. Receiving
end branch flow S tk ) is calculated in step 2 as follows:

S tk = SLk − (PDGk + jQSCCk) + (Yk)∗ × v2k ,

k = 1, 2, . . . , n (3)

whereas; S tk and SLk are the complex power drawn by receiv-
ing end bus k and the load on bus k , PDGk and jQSCk are the
DG and SC injections at bus k , (Yk)∗×v2k is the power injected
into the shunt branch component. In the third step, first to
compute power at far end bus S fk as;

S fk = S tk + Z ks

∣∣∣∣S tkvk
∣∣∣∣2

k = n, n− 1, n− 2, . . . ., 2 (4)

After that, sending power of branch k is added to the receiving
power of the branch whose index is equal to i = fk as:

S ti = SLi + S fk (5)

In the fourth step, sending end bus voltage Vi is computed as;

Vk = Vi − Z ks

∣∣∣∣∣S
f
k

Vi

∣∣∣∣∣
∗

(6)

Finally in the fifth step, check the termination condition as∣∣∣V t
i − V t−1

i

∣∣∣ < 10−8 (7)

If Eq. (7) is true, terminate the condition, else go to step 2 and
continue.

III. PROBLEM FORMULATION
DG and SC planning problem formulation is classified as
mixed integer nonlinear programming (MINLP). During
problem formulation, the following assumptions were made.

➢ DG units are operating at a constant power factor or near
unity. In this study, DG units are assumed to operate at
a unity power factor [1].

➢ Dispatchable inverter-based DGs are considered.
➢ Both DG and SC capacities are continuous.

Optimal DG allocation is a constrained optimization prob-
lem (COP) and without loss of generality COP can be
described as:

min
x⃗
f (x⃗), x⃗ = (x1, . . . , xD) ∈ S

Li ≤ x⃗i ≤ Ui

s.t.

{
gj(x⃗) ≤ 0, j = 1, . . . , l
hj(x⃗) = 0, j = l + 1, . . .m

(8)

x⃗i is the ith decision vector, D is the number of decision
variables, Li and Ui are the lower and upper bounds of ith

decision variable, S = 5D
i=1 [Li, Ui] denotes the feasible

decision space, f (x⃗) is the objective function, gj(x⃗) and hj(x⃗)
are the l and m inequality and equality constraints. DG and
SC allocation extensively depends on the selection of objec-
tive function and constraint-handling techniques (CHT). The
proposed method aims to achieve three types of objective
functions these are technical, economic, and environmental.

A. TECHNICAL OBJECTIVE FUNCTIONS
In this work, three non-normalized indices of technical
objective functions are considered to show the impact of
voltage-sensitive nonlinear composite load models [31].
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FIGURE 1. Active and reactive load bus injection subject to change in bus voltage magnitude in p.u.

TABLE 2. Formation of bus and branch order of 15-bus radial distribution network.

TABLE 3. Branch number and sending end buses of illustrative example and Color shows the Tracing of path from bus 15 to reference bus.

1) REAL AND REACTIVE POWER LOSS INDICES (ILP
AND ILQ)
The real and reactive power loss indices are defined as:

f1 =
[PLDG]
[PL]

× 100 (9)

f2 =
[QLDG]
[QL]

× 100 (10)

PLDG and QLDG are the active and reactive power with DG,
PL andQL are the active and reactive power loss without DG.

The lower the values, the better the benefits in terms of active
and reactive power loss reduction accrued to DG location and
size.

2) VOLTAGE PROFILE INDEX (IVD)
It is related to the maximum voltage drop which, in this case,
considers the maximum drop between each node and the
root node. This index could also be used to find prohibitive
locations for DG considering preestablished voltage drop
limits. In this way, the lower the index, the better the network
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FIGURE 2. (A). Proposed 15-bus network. (B). Modified 15-bus network using new bus and branch indexes. (C). Increase each branch number by
insertion of Fictitious branch.

FIGURE 3. Representation of k th branch between buses i and k .

performance. The IVD can be defined as follows:

f3 = 100 × maxni=2

(
|V 1| − |Vi|

|V1|

)
(11)

whereas, |V 1| is the voltage magnitude of reference bus volt-
age and |Vi| voltage magnitude of load buses.

B. ECONOMIC OBJECTIVE FUNCTIONS
Deliberation of only technical objective functions are not an
accurate representation of distribution company requirements
but the cost of annual energy supplied by grid and DG and
SC is the main factor that must be considered. Therefore,
in this paper minimization of the overall cost of active power
generation (CTOT ) [19] is considered one of the objective
functions. CTOT is computed as;

CTOT = min
NDG∑
i=1

(CSS + CDGi + CSC ) (12)

whereas, CSS , CDGi and CCB cost of power supplied by sub-
station, DG, and SC, which is computed as,

CSS = a× Pintake

(
$
h

)
(13)

whereas, Pinake is the active power supplied by grid station
and the parameter a ($/MWh) is 44 ($/MWh) taken from [43].
Cost of active power generated by DG (CDGi ) is computed as;

CDGi = b+ c ∗ PDGi

(
$
h

)
(14)

where, PDGi is the active power injected by DG, the cost
parameters b and c are 51.99 ($/h), 9.5 ($/MWh) respectively.
Cost of reactive power supplied by shunt capacitors is
computed as;

CSC =

∑NC
i=1(ei + Cci|Qci|)
lifetime ∗ 8760

(
$
h

)
(15)

whereas, ei and Cci are the SC bank cost parameters equal
to 1000 ($/h) and 30 000 $/MVArh, respectively taken from
[44]. Figure 4 shows the comparison of cost of substation
(CSS ), cost of DG (CDG), cost of shunt capacitor (CSC ) and
total cost (CTOT ) of the proposed nonlinear composite load
models considering bus voltage variation between acceptable
limit of 0.95 to 1.1 p.u. For the intuition of cost variation
w.r.t to voltage-dependent load models, the x-axis shows the
variation in voltage in (p.u), y-axis is the power injected by
Substation (SS), DG, SC, or combination of these sources and
z-axis is the cost of active or reactive power injection. The
figure clearly shows that the cost is linear in PQ load models,
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whereas, highly nonlinear in other load models. Above 1p.u
voltage cost variation is increased highly, especially in green
color (industrial load model) of capacitor cost.

C. ENVIRONMENTAL OF
Greenhouse gases (GHG) produced by CO2, SO2, and NOx
are considered as most effective pollutants. The mathematical
formulation of this OF can be described as follows [9]:

E =

NDG∑
i=1

(
EDGi + EGrid

)
(16)

whereas,

EDGi = (CODGi2 + NODGix + SODGi2 ) × PDGi (17)

EGrid = (COGrid2 + NOGridx + SOGrid2 ) × PgGrid (18)

In this study EDGi = 0.

1) MULTIOBJECTIVE FUNCTION
In this case, weighted sum multi-objective function [19] that
is comprised of technical (active power loss), environmen-
tal and economic are combined. This objective function is
defined as:

f4 = 0.5 ∗ PL + 0.25 ∗ Cost + 0.25 ∗ E (19)

whereas, during optimization, all the weighted objective
functions are normalized for fair comparison.

2) EQUALITY CONSTRAINTS

NG∑
i=1

PGi = PD + PLoss (20)

NG∑
i=1

QGi = QD + QLoss (21)

whereas, PGi and QGi are the active and reactive injection,
PD and QD are the active and reactive load.

3) INEQUALITY CONSTRAINTS
During optimization Following inequality constraints are
considered;

Vmin
i ≤ |Vi| ≤ Vmax

i (22)

Iij ≤ Imaxij (23)
NDG∑
i=1

PDG,i ≤ PmaxDG ,

NDG∑
i=1

QDG,i ≤ QmaxDG (24)

NDG∑
i=1

PDG,i ≤ 0.9 ∗ PD,

NDG∑
i=1

QDG,i ≤ 0.9 ∗ PD (25)

NSC∑
i=1

QSC,i ≤ 0.9 ∗ QD (26)

where, Vmin
i and Vmax

i are the minimum and maximum
voltage at bus i. PmaxDG and QmaxC are the maximum ratings
of DG and SC,NDG and NSc are the number of DGs and
SCs, PD and QD are the active and reactive power demand.
However, installing DG units in the distribution network has
a significant effect, as the network was originally planned
for passive circuits. Improper allocation of DG units in the
distribution system might lead to detrimental effects; there-
fore, the accommodation of high penetration of DG units in
the power system has to be planned carefully through the
allocation of DG units to maximize their benefits without
violating constraints.

IV. PROPOSED OPTIMIZATION ALGORITHM
In the recent two decades, EAs were highly emphasized to
solve constrained optimization problems (COPs). According
to the no-free lunch theorem [45], none of them is universal,
and a good understanding of the different methods is neces-
sary to identify the most appropriate one in the context of
specific applications. When solving COPs using evolutionary
algorithms (EAs), the search algorithm plays a crucial role.
In general, we expect that the search algorithm can balance
not only diversity and convergence but also constraints and
objective function during the evolution. Various state-of-the-
art EAs have been applied to solve DG and SC allocation
problems. It is found that GA [46] finds the best solution,
whereas convergence speed is better found in PSO [47] and
IMODE [48] strategy gives better trade-off between various
operators for the exploration and diversity. Figure 5 shows
the convergence curve of optimal site and size of DG and
SC allocation of small to very large-scale radial distribution
networks.
Figure 5 clearly shows that optimal DG and SC allocation

problems in 33-bus and 69 bus effectively solved by GA
[46], PSO [47], and IMODE [48]. PSO [47] has a higher
convergence speed in 33 and 69-bus but it is stagnated in a
locally optimal solution. The convergence speed of IMODE
is slow but it explores the entire space. On the other hand, in a
large-scale 118-bus distribution system, GA beats. GA attains
better convergence compared to other state-of-the-art EAs.
Inmost of the small andmedium scale networks, performance
of GA [46], SHADE [49], C2oDE [50], and IMODE [48]
have marginal differences. For this purpose, this paper offers
a hybrid constrained evolutionary algorithm along with the
integration of representative constraint handling techniques
to effectively solve DG and SC allocation COP. Various
operators of GA [46], DE [51], and PSO [47] are employed to
generate offspring’s have better exploration and exploitation
properties for the solution of DG and SC allocation COP.
In recent years, several multi-methods and multi-operator-
based algorithms have been proposed for solving optimiza-
tion problems. Generally, their performance is better than
other algorithms that are based on a single operator and/or
algorithm. However, they do not perform consistently well
over all the problems tested in the literature [48].
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FIGURE 4. Cost of active and reactive power w.r.t bus voltage variation.

FIGURE 5. Convergence curve state-of-art EAs considering 33, 69, and 118-bus radial distribution system on constant PQ load model.

Therefore, in the proposed algorithm, three operators of
GA, DE, and PSO are used to generate three vector strategies
with distinct advantages. Specifically, crossover operators of
GA are applied to obtain better convergence and two trail

vector generation strategies of DE are employed to balance
diversity and convergence. In addition, the velocity, local
best, and global best of PSO operators are guided by GA
and DE operators to tackle better convergence speed. During
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FIGURE 6. Flow chart for the implementation of proposed hybrid EAs.

evolution, these three operators are used to generate three
offspring for each input vector. Afterward, the feasibility
rule (emphasize the convergence) is employed to select Np
offspring from 2Np. Selected NP offspring are comparedwith
the parents using ECM (to employ trade-off between conver-
gence and exploration) to select final Np population members
for the next iterations. Here, FR is employed to preselect
the best Np children generated by the proposed operators.
Since the feasibility rule prefers constraints, the ε constrained
method (ECM), which can incorporate the information of
objective function to a certain degree, is used to compare each
parent vector with its offspring vector. Therefore, the new
comparison rule can further promote the balance between

exploration and exploitation. Moreover, a restart scheme is
designed to help the population jump out of a local optimum
in the infeasible region for extremely complex problems.
The flow chart of proposed hybrid GA-DE-PSO operators
along with representative constraint techniques is shown in
Figure 6.

After initialization and evaluation of objective functions,
the population is decomposed into equal sections for each
operator as described in [48]. In GA operator, binary tour-
nament selection is employed to select 1/3 of initially gen-
erated population for mating pool. Then simulated binary
crossover (SBX) operator [46] is applied to explore the search
space. In SBX, two population members such as x⃗ tr1 and x⃗

t
r1
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are randomly selected to generate two offspring’s v⃗t1 and v⃗t2
as

v⃗t1 =
1
2

(
x⃗ tr1 + x⃗ tr2

)
−

1
2
β(x⃗ tr1 + x⃗ tr2)

v⃗t2 =
1
2

(
x⃗ tr1 + x⃗ tr2

)
+

1
2
β(x⃗ tr1 + x⃗ tr2) (27)

where β is called the spread factor and is computed as;

βi =


(2 × rand)

1
ηc+1 if rand ≤ 0.5;(

1
2(1 − rand)

) 1
ηc+1

otherwise.
(28)

Parameter ηc is the distribution index of SBX, ui ∈ [0, 1].
Only the crossover operator may stagnate in the local optima.
Therefore, a polynomial mutation operation with small prob-
ability is applied to enhance the exploration capability of
algorithm. The polynomial mutation operator is given as

uti,j = x ti,j +
(
x(U )
i,j − x(L)i,j

)
δi, (29)

where, x(U ) and x(L) are the lower and upper bounds of
decision variable, and the parameter δi is given as;

δi =

{
(2 × rand)

1
ηm+1 − 1 if ri < 0.5;

1 − [2(1 − rand)]
1

ηm+1 else
(30)

where, ηm is the distribution index and the operator
rand is a random number generator. After GA operators,
randomly selected 1/3 of the population members called
particles, of the population are selected to apply PSO opera-
tor. PSO is a stochastic global optimization method inspired
by the choreography of a bird flock. PSO relies on the
exchange of information between individuals, called par-
ticles, of the population. In PSO, each particle adjusts its
trajectory stochastically towards the positions of its own
previously best performance (pbest) and the best previous
performance of its neighbors or the whole swarm (gbest).
At the t th iteration, v⃗ti = (vti,2, . . . , x⃗

t
i,D) shows the velocity of

particle and x⃗ ti = (x⃗ ti,1, . . . , x⃗
t
i,D) is the position of a particle.

The velocity and position updating rules at t+1 iteration are
given as

νt+1
i,j = ωνti,j + c1rI

(
pbest ti,j − x ti,j

)
+ c2r2

(
gbest − x ti,j

)
(31)

x t+1
i,j = x ti,j + νt+Ii,i (32)

where j ∈ {1, . . . ,D}, ω ∈ [0, 1] is the inertia factor, c1 and c2
are positive constants, r1 and r2 are two uniformly distributed
random numbers in the range [0,1]. Here, the variable v⃗ti
is limited to the range ±Vmax. When a particle discovers a
position that is better than any it has found previously, it stores
the new position as the corresponding pbest.
The rest of 1/3 population members generate offspring

by employing similar strategies as given in [48]. The most
widely used DE mutation operators are:
DE/rand/1

v⃗ti = x⃗ tr1 + F ·
(
x⃗ tr2 − x⃗ tr3

)
(33)

DE/rand/2

v⃗ti = x⃗ tr1 + F ·
(
x⃗ tr2 − x⃗ tr3

)
+ F ·

(
x⃗ tr4 − x⃗ tr5

)
(34)

DE/current-to-rand/l

v⃗ti = x⃗ ti + F ·
(
x⃗ tr1 − x⃗ ti

)
+ F ·

(
x⃗ tr2 − x⃗ tr3

)
(35)

DE/rand-to-best/l

v⃗ti = x⃗ tr1 + F ·
(
x⃗ tbest − x⃗ tr2

)
+ F ·

(
x⃗ tr3 − x⃗ tr4

)
(36)

DE/current-to-best/l

v⃗ti = x⃗ ti + F ·
(
x⃗ tbest − x⃗ ti

)
+ F ·

(
x⃗ tr1 − x⃗ tr2

)
(37)

where x⃗ tr1, x⃗
t
r2, x⃗

t
r3, x⃗

t
r4 and x⃗ tr5 are five mutually distinct

target vectors randomly selected from the population, x⃗best
is the best target vector in the current population, and rand
is a uniformly distributed random number between 0 and 1.
In this work, DE/current-to-rand/1 and DE/rand-to-best/1 can
speed up the convergence. In DE/current-to-rand/1, each tar-
get vector learns from a randomly selected individual, thus
promoting diversity. However, DE/rand-to-best/1 can push
towards better solutions in the sense of convergence speed.
After producing offspring by the proposed operators, the

feasibility rule and the ε constrained method (ECM) are
combined elaborately for selection. In COP, after the effective
generation of offspring, it is desirable to maintain population
size to delete undesirable and infeasible solutions. Therefore,
in the proposed algorithm, two representative constraint tech-
niques are employed to select the survival of fittest particle
at the end of each iteration. From the generation of 2Np
offspring, feasibility rule (FR), which emphasizes the feasible
solutions, is applied to select Np child solutions. In FR two
children are randomly selected (say u⃗i and u⃗j) and compare
them as follows;
1) If both u⃗i and u⃗j are feasible, select the one which has a

minimum objective function value.
2) If both u⃗i and u⃗j are infeasible, select the one which has

minimum constraint violation.
3) If u⃗i is feasible and u⃗j is an infeasible, select feasible one.

To obtain better exploration epsilon constraint method (ECM)
is employed to select the final population between parents and
offspring for the next generation. In ECM let be assumed that
u⃗i is superior to x⃗i at the selection stage if and only if the
following conditions are satisfied

1. f (u⃗i) < f (x⃗i) , if G (u⃗i) < E and G (x⃗i) < E
2. f (u⃗i) < f (x⃗i) , if G (u⃗i) = G (x⃗i)

3. G (u⃗i) < G (x⃗i) (38)

whereas, parameter E = Eo
(
1 −

t
T

)cp, if the ratio between
current and maximum generation (t/T) is less than 50%, oth-
erwise 0. However, Eo is the initial threshold and initially, it is
equal to the maximum constraint violation. The parameter cp
can be calculated as:

cp = −
logε0 + λ

log(1 − p)
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where λ is set to 6 and p controls the exploitation of objective
function. Moreover, a restart scheme is proposed to help the
population jump out of a local optimum in the infeasible
region for some extremely complicated DG and Sc allocation
problems. By assembling the above techniques, a constrained
hybrid EAs is proposed that combines the better properties of
GA, DE, and PSO. In the proposed algorithm, the strategy for
the selection of the operator is based on IMODE [48].

V. SIMULATION RESULTS
In the following subsections, first, compute the performance
parameters of the proposed FBS method without DG and
SC. Next, the performance and effectiveness of the proposed
algorithm are statistically compared with the state-of-the-art
EAs and the recent algorithms available in the literature.

Finally, the proposed technique is applied to the IEEE
33-bus and 118-bus systems to demonstrate the effects of real-
istic non-linear load models on various conflicting objective
functions with the integration of DG, SC and simultaneous
DG-SC.

A. DATA PREPARATION, TEST SYSTEMS,
AN PERFORMANCE OF PROPOSED FBS
METHOD WITHOUT DG
Total complex power load demand (P0 + jQ0) for the 33, 69,
and 118 bus systems are 3.715 + j2.300, 3.802 + j2.695,
and 22.7097 + j17.04107 respectively. In this subsection,
all seven load models are simulated and resolved through
the proposed FBS method, the effect of load models on the
following studies was made:
1. MVAsys/Sintake = [(Pintake)2 + (Qintake)2]1/2

2. Pintake = real(Sintake)
3. Qintake = imag(Sintake)
4. Ploss and Qloss
The simulation results of the suggested test system without
DG at a base value of 1MVA are displayed in Table 4.
Figure 7 shows the voltage profile of all the 33, 69 and

118-bus tests system. From the figure, it is proved that the
higher the voltage dependencies more the voltage profile is
improved and less power is injected into that bus. Power injec-
tion and voltage profiles are highly dependent on non-linear
load models. Overall voltage profile is better in commercial
load models and hence low power injection in such cases.
Performance and validation of the proposed FBS load flow
method are as clearly shown in Figure 7, where the proposed
method converges efficiently in all the non-linear load mod-
els. The figure shows that in base case condition, voltage
profile at all the buses is equal to or less than 1 p.u. In a
given condition 100% load power is injected into the PQ-
bus, therefore, in this case, voltage profile is poor compared
to other load models. On the other hand, minimum power is
injected into the industrial and commercial load models.

Therefore, fewer power losses are shown in industrial
or commercial load models and voltage profile is highly
enhanced in all the systems in the base case condition of IND
or COM load models.

B. STATISTICAL COMPARISON OF PROPOSED
ALGORITHM WITH THE AVAILABLE STATE-OF-ART EAs
In this section, to access the performance of proposed
algorithm, three study cases of DG, SC and DG-SC are
considered. In small 33-bus and 69-bus system DG, SC allo-
cation consists of 6, 6 dimensions (D), both DG and SC
consist of 12 D. Whereas, in 118-bus test system DG and
SC consists of 14 D, both the DG and SC allocation length
of decision variable is 28. Maximum function evaluation
is 3000 in 33 and 69-bus whereas, 6000 in 118-bus net-
work at 30 population size Np. Study cases proposed in this
study, systematically investigate the performance of proposed
hybrid algorithm, since these exhibit a variety of characteris-
tics such as different dimensions, objective functions, active
and reactive power injection, nonlinear nature of objective
functions, and various constraints. Additionally, all test cases
are independently run 30 times, and the tolerance value for
power balance equality constraints is set to 10−8 p.u.
Table 5 shows the statistical performance of proposed algo-

rithm compared with the other state-of-the-art evolutionary
algorithms (i.e., GA [46], DE [51], PSO [47], ABC [52], CSO
[53], FROFI [54], IMODE [48], C2oDE [50] and SHADE
[49]), where FR, Best, Worst, and Avg denote the feasibility
ratio, best objective function value, worst objective function
value, and average of objective function and computational
time complexity values obtained over 30 independent runs.
Results in Table 5 proved that proposed algorithm statisti-
cally outperforms existing algorithms. Among the ten algo-
rithms in all the cases of 33 and 69 bus tests system GA
[46], DE [51], PSO [47], CSO [53], FROFI [54], C2oDE
[50], SHADE [49] and proposed algorithm successfully solve
DG, SC and DG-SC allocation problem. Further, in the best
value marginal difference is shown, whereas in the worst
and mean values of proposed algorithm outperform the other
EAs. IMODE consistently fails to find feasible solutions. The
proposed algorithm finds better or similar results compared
with other EAs. However, in 118-bus it outperforms with
marginally higher time complexity. Figure 8 shows the con-
vergence curve of competitive EAs. The convergence curve
of proposed algorithm, especially in all the cases of large-
scale 118-bus radial distribution systems, is better compared
to all other EAs. The simulation results and convergence
waveform proved that proposed algorithm can find the global
or near-global optimal solution.

C. EFFECT OF LOAD MODELS CONSIDERING DG, SC, AND
CUMULATIVE DG-SCC
In this subsection following three case studies are developed
to find the optimal DG and SC allocation in radial distribution
system.

Case 1. Multiple DGs only
Case 2. Multiple SCBs only
Case 3. Hybrid DG and SC allocation
In the proposed study cases, effect of load models, on the

following studies is to be made:
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TABLE 4. Results of load flow method in base case without DG/SC.

TABLE 5. Statistical results of 33, 69, and 118-bus test systems of constant PQ load model.

VOLUME 11, 2023 21477



A. Ali et al.: Multi-Objective Optimal Siting and Sizing of Distributed Generators and Shunt Capacitors

FIGURE 7. Base Case voltage profile of 33, 69, and 118 bus test system.

1. MVAsys = [(Pintake + PDG)2 + (Qintake)2]1/2

2. Sintake = Sload + Sloss
3. Pintake = real(Sintake)
4. Qintake = imag(Sintake)
5. Real and reactive power loss reduction
6. Percentage increase (+ve) or decrease (−ve)MVA±

sys =(
MVAsys, base−MVAsys, DG

MVAsys, base

)
× 100

1) OPTIMAL ALLOCATION OF DG, SC, AND DG-SC EFFECT
OF LOAD MODELS ON 33-BUS
In this subsection, the most widely used technical objective
functions that are index of active power loss f1, reactive
power loss f2 and voltage deviation f3, along with proposed
non-linear load models are used to find the optimal DG and
SC allocation. Simulation results of proposed hybrid EA for
the optimal DG, SC and DG-SC size/locations under the
seven different composite voltage-dependent load models are
listed in Table 6. Table 6 demonstrates how the appropriate
position and size of DG and SC allocation were significantly

impacted by the nonlinear load model. In case 1, real and
reactive power loss is minimum subject to minimize f1 and
f2, optimal DG is located at bus [10], [23], [28] and [10],
[23], [26] respectively of the 2.786 cumulative DG capacity.
However, the voltage deviation index f3 objective function
emphasizes the voltage profile near unity and at near unity
injection into the load bus is higher compared to less than
unity, therefore, the red color shown in Table 6 gives higher
power losses compared to f1 and f2. In the PQ load model,
injection into load bus is independent of voltage, therefore, f1
and f2 reduce more active and reactive losses compared to f3
in all the cases. Whereas, case 3 reduces more than 95% of
power loss (11.9 kW and 9.7 kVAr) in PQ load model and it
outperforms case 1 (only DG) and case2 (only SC).

In case 1, minimum active and reactive power losses are
shown in industrial load models considering indexes of active
f1 and reactive f2 power losses that are 56.1 kW and 38.7 kVAr
subject to marginal extra injection compared to f1.
Figure 9 shows the bar chart of proposed parameters and

percentage increase and decrease ofMVAsys of different load
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FIGURE 8. Convergence curves of 33, 69, and 118-bus test system.

TABLE 6. Simulation results of cases 1, 2, and 3 of the 33-bus networks.

models. In case 2: only SC injection marginally improves the
performance of the power system.Maximum Sc injection can
see in 1725 kVAr considering voltage deviation as the objec-
tive function. Minimum DG injection is shown in RES load
model considering the reactive power index as an objective
function. Figure 9 shows the impacts of DG and SC on various

nonlinear load models. From Figure 9, it is observed that,
in PQ load model, there is a decrease in MVAsys that is due
to the optimal placement of DGs and SCs.

On the other hand, in all the remaining load models
%MVAsys is increased. In cases 1 and 3 maximum value of
MVAsys is more than 5% is computed in f3 CZ load model.
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FIGURE 9. Parameters of different load models and percentage increase or decrease of MVAsys.

It means that more than 5% of extra power is injected into
the CZ load models to meet the load demand. Whereas,
in case 2, maximum MVAsys is injected in f2 of IND load
model. To maximize the benefits of DG and SC allocation,
appropriate site and size of DG and SC must be taken into
consideration. Otherwise, improper DG and SC allocation
that disregards the effects of a real-time voltage-dependent
load model results in increased power losses and violates
system restrictions.

The voltage profile of the 33-bus test system is shown in
Figure 10.

In this figure voltage profiles of all the study cases are
within acceptable limits. In case 1 (DG only) voltage profile
is equal to marginally less than unity, on the other hand
injecting only reactive power in case 2, the voltage profile
is marginally enhanced compared to base case condition.
It is shown that a highly enhanced voltage profile and hence
minimum active and reactive power losses are found in case 3,
where, simultaneous DG and SC are employed. In 33-bus test
system, higher voltage drop is shown between buses 10-18
and 26-33. Therefore, DG and SC are allocated in the 10-18
and 26-33 buses to enhance voltage profile and reduce power
losses. In case3, voltage profile is increased above 1p.u in
CZ, COM, RES, and IND load models and optimal site and

size considering f3 an objective function is highly deviated
compared to other objective functions. Moreover, simulation
results of 33-bus test system proved that enhancement of
voltage profile is highly dependent upon the load models.
Moreover, with simultaneous integration of DG and SC such
as in case 3, active and reactive power loss is highly reduced.

2) EFFECT OF LOAD MODELS ON THE OPTIMAL
ALLOCATION OF DG AND DG-SC ON 118-BUS
Simulation results of the proposed hybrid EA for the optimal
DG and DG-SC capacities/locations under the seven differ-
ent composite voltage-dependent load models are listed in
Table 7. In this Table in DG allocation, active and reactive
power losses are minimum subject to minimize f1 and f2,
optimal DG is located at bus [112, 34, 99, 104, 55, 63, 70] and
[74, 34, 112, 105, 70, 104, 55] respectively of the 12.314 and
12.715 MW of cumulative DG capacity respectively. How-
ever, the voltage deviation index f3 objective function empha-
sizes the voltage profile near unity and at near unity injection
into the load bus is higher compared to less than unity,
therefore, the red color shown in Table 7 gives higher power
losses compared to f1 and f2. In PQ load model, injection
into the load bus is independent of voltage, therefore, f1 and
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FIGURE 10. Voltage profile of DG, SC, and DG-SC allocation of the 33-bus test system.

TABLE 7. Simulation results of case 1, 2, and 3 of 118-bus network.

f2 reduces more active and reactive losses compared to f3
in all the cases. Whereas, case3 reduces more than 90% of
active and reactive power losses (137.7 and 100.6) in PQ

load model and it outperforms case 1 (only DG) and case 2
(only SC). In case 1, minimum active and reactive power
losses are shown in industrial (IND) load models considering
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FIGURE 11. Impacts of different load models and percentage increase or decrease of MVA system.

indexes of active f1 and reactive f2 power losses that are
401kW and 306.2 kVAr subject to marginally higher injection
compared to f1. Active power injection of DG is increased
when both DG and SC are integrated. Figure 11 shows the
bar chart of proposed parameters and the percentage increase
and decrease ofMVAsys of different load models.

From Figure, it is observed that, in the PQ load model,
there is a decrease in MVAsys, and due to placement of DGs
and SCs. Furthermore, MVA of the DISCO also gets reduced
in PQ load models. Hence, when constant load model is
assumed, the reduction in and is directly translated as the
reduction in overall system MVA which gives an erroneous
indication of higher benefits of DG placement. However,
negative values of %MVAsys regarding base case condition,
as shown in Figure 11, indicates that extraMVAsys is required
to meet nonlinear load models. In DG-SC allocation per-
centage increase of MVAsys is more than 7% is computed in
RES and COM load model subject to minimizing f3 objective
functions.

It means that more than 7% of extra power is injected into
the RES and COM load models to meet the load demand.
Figure 12 shows the voltage profile of 118-bus test system.
Figure shows that voltage level at all the buses is within
acceptable limits. DG allocation only, the voltage profile is
equal to or marginally less than unity in f1 and f2. The figure
of voltage profile shows that the enhanced voltage profile
and hence minimum active and reactive power losses are
found in DG-SC allocation, where, simultaneous DG and
SC are employed. Moreover, f3 emphasize the improvement
of voltage profile at the same time extra-MVA is consumed
due to the higher value of voltage. Usually, DG and SC
integration causes improvement in voltage profile and reduc-
tion in losses in a constant PQ load model. However, there
would be a dire need for care of voltage enhancement that
causes extra injection into the voltage-dependent nonlinear
load buses that lead towards inappropriate DG and SC allo-
cation. In DG-Sc allocation, the voltage profile is increased
above 1p.u in CZ, COM, RES, and IND load models and
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FIGURE 12. Voltage profile of all the study cases of 118-bus test system.

TABLE 8. Cost analysis of DG_SC allocation in 33-bus tests system.

optimal site and size considering f3 an objective function is
highly deviated compared to other objective functions. More-
over, simulation results of 118-bus test system proved that
enhancement of the voltage profile is highly dependent upon
the load models. Results clearly show the performance and
superiority of proposed algorithm to solve complex DG and
SC allocation problems. Moreover, simultaneous integration
of DG and SC can highly reduce active and reactive power
loss.

D. MULTIOBJECTIVE ECONOMIC AND ENVIRONMENTAL
IMPACTS OF DG AND SC ALLOCATION IN 33 AND
118-BUS SYSTEM
In this part, the cost analysis and other performance param-
eters of assigning a 3-DG and a 3-SC to the 33-bus system
are investigated. The findings are shown in Table 8. For all
load models, the min/max voltage values are restricted to
the standard limitations of ±5%. The reduction of real and
reactive loss with DG-SC allocations in the 33-bus network
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FIGURE 13. Voltage profile of 33-bus test system, Simultaneous DG, and SC allocation.

TABLE 9. Cost analysis of DG_SC allocation in 118-bus tests system.

is listed in Table 8. The minimum losses depend on the load
model type. Minimum values of active and reactive power
losses are computed in CZ load model. The minimum voltage
found in RES load model is 0.967 p.u @18 bus and maxi-
mum bus voltage has appeared in MIX load model which is
1024 p.u @33 bus. Total operating cost CTOT is maximum
obtained in COM load model with 237.5 thousand dollars.

In the PQ load model, there is 4.203% of MVA capacity
is reduced due to DG and SC allocation. However, other
nonlinear load models consume extra MVA capacity from
the system. Out of which, maximum extra MVA capacity is
consumed in CZ load model which is 4.1532%. The min-
imum value of emission is 1880.9 thousand tons per hour
can be seen in the MIX load model. It is clear how the
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FIGURE 14. Voltage profile of 118-bus test system, simultaneous DG, and SC allocation.

load model affects the voltage profile. As illustrated in
Figure 13, the voltage profiles for the integration of three
DG and SC pairs are drawn and compared with the base
case.

For all forms of nonlinear loads, it is obvious that inte-
grating the DG and SC pairings improves the voltage pro-
file. Additionally, the voltage profile is further improved by
expanding the DG and SC pair. All case studies’ voltage
profiles fall within the accepted ranges. In the remaining part,
the cost analysis and other performance factors of assigning a
7-DG and a 7-SC to the 118-bus system are investigated. The
findings are shown in Table 9.

The reduction of active and reactive power losses with dif-
ferent DG/SC allocations in the 118-bus distribution network
is listed in Table 9. As can be seen, the reduction of losses
depends on the demand type. Minimum values of active and
reactive power losses are computed in CZ load model which
are 199.5 kW and 133.9 kVAr respectively. The minimum
voltage found in MIX load model is 0.9634 p.u @54 bus and
the maximum bus voltage that appeared in IND load model
is 1.018 p.u @74 bus.

Total operating cost CTOT is maximum obtained in CI load
model with 726.09 thousand dollars. In PQ load model there
is 4.6115% of MVA capacity is reduced due to DG and SC
allocation. However, other nonlinear load models consume
extra MVA capacity from the system. Out of which, maxi-
mum extra MVA capacity consumed in COM load model is
5.0013%. The minimum value of emission is 12199.75 thou-
sand tons per hour can be seen in PQ load model. The effect
of the load type on the voltage profile is apparent. The voltage
profiles for the cases of integrating seven DG and SC pairs are
drawn and compared to the base case, as shown in Figure 14.
The voltage profile for all nonlinear load types are improved

by integrating the DG and SC pairs, it is obvious. Further
improving the voltage profile is achieved by increasing the
DG and SC pair. The voltage profiles for each case study are
within the accepted ranges.

VI. CONCLUSION
In this paper, a new fast and efficient forward-backward
sweep (FBS) load flow method based on branch and bus
ordering is successfully applied to solve the load flow prob-
lem considering nonlinear voltage-dependent composite load
models for various small (33-bus) to large scale (118-bus)
radial distribution system. Recently, several state-of-the-art
EAs are employed to solve optimal site and size of DG and
SC allocation problems. Several multi-methods and multi-
operator-based algorithms have been proposed for solving
optimization problems. Generally, their performance is bet-
ter than other algorithms that are based on a single oper-
ator and/or algorithm. Therefore, a new hybrid EA based
on various state-of-the-art operators such as GA, DE, and
PSO is designed and applied to solve optimal DG and SC
allocation problems. Moreover, statistical results show that
the performance of proposed algorithm is better or almost
comparable to other state-of-the-art EAs. Various technical
objective functions (index of active and reactive power loss
and voltage deviation index) are considered to show the
impacts of non-linear load models. The index of active and
reactive power loss emphasizes the loss reduction, whereas,
the index of voltage deviation emphasizes the enhancement
of the voltage profile. From the simulation results, it is shown
that DG and SC allocation problem is multi-objective. There-
fore, in this paper weighted sum multi-objective technical,
economic, and environmental objective functions are con-
sidered. The gathered results demonstrate that the proposed
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method significantly lowers the cost of energy supplied by the
grid, total operating cost, and power losses. On the other hand,
system stability and the voltage profile have both improved.
Consequently, it can be stated that the suggestedmethodology
has considerable fiscal and technological benefits and may
be used to address optimization issues in various distribution
networks.
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