
Received 6 February 2023, accepted 19 February 2023, date of publication 1 March 2023, date of current version 13 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3251220

Growth Pattern Fingerprinting for Automatic
Analysis of Lung Adenocarcinoma Overall
Survival
NAJAH ALSUBAIE 1, SHAN E. AHMED RAZA2, DAVID SNEAD3,
AND NASIR M. RAJPOOT2, (Senior Member, IEEE)
1Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
2Department of Computer Science, The University of Warwick, CV4 7AL Coventry, U.K.
3Department of Histopathology, University Hospitals Coventry and Warwickshire (UHCW), CV2 2DX Coventry, U.K.

Corresponding author: Najah Alsubaie (nmoalsubaie@pnu.edu.sa)

This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R321),
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the National Research Ethics Service North West REC under Reference No. 15/NW/0843.

ABSTRACT Lung adenocarcinoma (LUAD) tumour tissue grows into variable morphological architecture
called growth patterns (GPs). The GPs are clinically linked to the biological behaviour of the tumour.
However, due to the complex heterogeneity of the tumours, there is high inter-and intra-observer variability
in the pathologist reporting of GPs. This paper proposes a deep-learning model for automatically classifying
the LUAD growth patterns in whole slide images (WSIs). The model is trained and tested on 78 cases of
LUAD in the digitisedWSI of the sample. For each case, all the growth patterns were automatically classified
and quantified. Our multivariate analysis shows that lepidic and micropapillary patterns are independent
predictors for five-year survival (p<0.05). The proposed model splits our study cohort into short- and
long-term survival with p=0.009.

INDEX TERMS Digital pathology, machine learning, deep learning, whole-slide image, growth pattern,
survival analysis.

I. INTRODUCTION
Identifying LUAD growth patterns is critical for the diagnosis
and prognosis of lung cancer. Growth patterns have variable
textures, shapes, and sizes. They could appear individually or
fused into each other, which makes it challenging to avoid
inter-and intra-observer variability. Tumour growth patterns
(also referred to as adenocarcinoma histology subtypes) are
some of the main histological characteristics that distinguish
LUAD from the other types of non-small cell lung carcino-
mas (NSCLC), such as lung squamous carcinoma [1], [2].
A growth pattern is a pattern the tissue makes when it grows
into a specific morphological architecture. Growth patterns
are clinically linked with the biological behaviour of the
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tumour. According to the latest 2015 WHO classification of
lung tumours [3], LUAD has five growth patterns: acinar,
papillary, micropapillary, solid and lepidic. Figure 1 shows
examples of these patterns. The acinar pattern is identified
by glandular formation containing columnar-shaped tumour
cells forming acini and tubules. A solid tumour is identi-
fied as sheets or nests of tumour cells. The lepidic pattern
is composed of neoplastic cells growing along the alveolar
walls. It often has no architectural complexity and does not
contain the stromal, vascular, or lymphatic invasion. The
papillary pattern is identified by the papillary structure with
fibrovascular cores that replace the alveolar. At least one
blood vessel can be observed within the papillary structure.
Psammoma bodies might also be observed. In comparison,
the micropapillary pattern has smaller papillae. It has no
fibrovascular cores or blood vessels.
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FIGURE 1. Sample images for LUAD tumour growth patterns. The first row shows a sample image for each pattern
with close-up images on the bottom row: (a) solid, (b) acinar, (c) lepidic, (d) papillary and (e) micropapillary.

In 2011, the interdisciplinary research group of the Inter-
national Association for the Study of Lung Cancer (IASLC),
the American Thoracic Society (ATS) and the European Res-
piratory Society (ERS) published the revised LUAD classi-
fication system. The system recommends a semiquantitative
estimation of each pattern in 5% increments [4]. This assess-
ment has several advantages compared to the previous 10%
increments: first, it allows greater flexibility in estimating
the predominant pattern, especially when two patterns have
similar percentages. Second, it reduces the risk of assigning
10% to small-size prognostically significant patterns, such
as micropapillary. Third, it encourages pathologists to report
all small-size patterns in the tumour. LUAD tumours are
heterogeneous; most LUAD histology slides contain a mix-
ture of growth patterns within one tumour section. The new
classification system addresses this issue by introducing the
term ‘‘predominant pattern’’ instead of the term ‘‘mixed pat-
tern’’ that had been used since 2004WHO lung classification
[5]. A mixed pattern tumour has two or more patterns of
different percentages. The term predominant pattern tumour,
however, refers to the pattern with the largest percentage
within a tumour. Other observed patterns should also be
reported. Pathologists comprehensively assess all histology
patterns they observe in the tumour. Then, they report all
the patterns using 5% increments. Finally, they classify the
tumour according to the predominant pattern [4]. In this study,
a machine learning method was proposed for the automatic
recognition of growth patterns and survival prediction. To the
best of our knowledge, no work has been done to automati-
cally classify the five growth patterns in LUAD for survival
analysis. The proposed method mimics the visual inspection
by the pathologist under the microscope at different magnifi-
cation levels to recognise the growth patterns. The proposed
method identified all five growth patterns by examining the
tissue at several magnification levels. Tiles at several magni-
fication levels were used to train the deep learning model and
to examine the significance of the cellular and morphological
features for identifying growth patterns.

II. RELATED WORK
Several studies have established the potential correlation
between histology growth patterns and disease outcomes,

such as overall survival (OS), disease-free survival (DFS) and
response to chemotherapy. The micropapillary-predominant
tumour is commonly associated with poor outcomes.
Zhang et al. [6] andRussel et al. found that it has significantly
poor survival. Cases with micropapillary pattern of at least
5% had worse DFS and were correlated with lymph node
metastasis [7], [8] and poorly differentiated tumours [9].
Others reported that solid had an unfavourable prognosis with
low DFS [1], [10], [11], [12]. Solid and micropapillary were
reported to benefit from chemotherapy [11]. There is a sig-
nificant agreement in the literature that lepidic-predominant
pattern had a good prognosis and could benefit from
chemotherapy [1], [10], [13], [14], [15]. It has also been
shown that lepidic pattern is linked to the biological shift from
in-situ to invasive LUAD [16]. Some studies had reported
that acinar pattern had an intermediate-to-good prognosis [1],
while others had shown that it is correlated with relatively
poor prognosis [17] but may not benefit from chemotherapy
treatment [11].

One reason behind the divergence in results above is the
inter-and intra-observer variability due to the complex hetero-
geneity of LUAD tumours, the broad definition of histology
growth patterns and the different forms and shapes these
patterns could grow into. Erick et al. [18] investigated the
issue of reproducibility in the histology growth pattern of
pulmonary adenocarcinoma. They analysed the agreement
between pathologist observations in typical and challenging
cases for representative tumours and normal tissue samples.
They reported the kappa score values of 0.77±0.07 and
0.38±0.14 for typical and challenging cases, respectively. For
normal cases, however, the kappa score for typical and diffi-
cult cases dropped to 0.55±0.06 and 0.08±0.02, respectively.
Acinar [19], papillary and micropapillary patterns [20] were
found to be the most challenging patterns for the pathologists.

There are several approaches for automatically analysing
LUAD whole slide images. Graham et al. [21] combined
convolution neural network (CNN) classification and sta-
tistical and morphological analysis to classify image tiles
into lung adenocarcinoma or lung squamous cell carcinoma.
Alsubaie et al. [22] automatically classified tumour cells in
LUAD WSI. They found that global nuclear morphomet-
ric features characterised by heatmap statistics significantly
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correlated with LUAD overall survival. Gertych et al. [23]
applied CNN and soft-voting to classify the four growth pat-
terns of LUAD (solid, micropapillary, acinar, and cribriform).
The correlation between the predominant pattern and disease
outcome was not analysed. Xiao et al. [24] proposed to com-
bine GNN and CNN modules to predict the LUAD growth
patterns. The Graph convolutional networks (GCN) model
was trained using the nuclear features, while the CNN model
was trained using the whole image. Their approach requires
huge computational resources for nuclei detection and seg-
mentation. Furthermore, there might be feature redundancy
in the GNN and CNN models. Wei et al. [25] applied the
classical ResNet [26] to classify LUAD into the five growth
pattern subtypes. Predominant patterns were estimated using
a heuristic approach. The dataset was collected from a local
institution, and the survival data were not provided.

III. DATASET AND METHODS
This study has two datasets collected from two different
sources. The first dataset contained 10 H&E LUAD WSIs
and was released by the CPM challenge during MICCAI
2017 [27]. The images were obtained from The Cancer
Genome Atlas (TCGA) repository [28]. WSIs were reviewed
by the pathologist andweremade available in the Aperio SVS
format. The original TCGA filename, the image label and
metadata were removed from the image files. The complete
discussion of this dataset and the CPM-MICCAI207 chal-
lenge can be found in Vu et al. [29]. The clinical information
and patient survival for this dataset were not available. There-
fore, this dataset was utilised to optimise the deep learning
model and was not used for the survival analysis.

The second dataset was collected anonymously from the
University Hospitals Coventry and Warwickshire (UHCW)
NHS Trust in Coventry, UK. Informed consent was obtained
from all participants, and clinical information was anony-
mously collected from clinical records and pathology reports.
This study has approval from the National Research Ethics
Service NorthWest (REC reference 15/NW/0843). The entire
study was performed in accordance with relevant guidelines
and regulations.

This dataset consisted of 78 LUAD H&E WSI and was
collected between 2006 and 2014. H&E slides were digitally
scanned with a resolution of 0.275µm/pixel using VL120
Scanner (Omnyx LLC). The pulmonary pathologist (DS)
reviewed all the slides and excluded 14 slides which were not
suitable for the study (e.g., not LUAD, out-of-focus slides,
lot of artefacts, etc.). Table 1 shows a summary of the patient
clinical information in our cohort. The average age is 68, and
52% of the patients were in the early stage of LUAD.Vascular
invasion was detected in 50% of the cases, and the overall
survival is 51 months on average. From 2006 to 20014, 47%
of the patients in this cohort died.

The study has two parts: in the first part, the classifica-
tion performance of the proposed model was examined at
multiple magnification levels. The magnification level which
achieves the best performance was selected to train the deep

TABLE 1. Summary of clinicopathologic features of the UHCW cohort.

learning model. In the second part, the chosen deep learning
model was used to classify the WSIs. Percentages of each
GP were automatically calculated to perform the survival
analysis. In this paper, we extend our initial findings in [31]
by applying the classification model to another dataset and
analysing the correlation between the percentage of LUAD
growth pattern and overall survival.

The pipeline of our study is shown in Figure 3. Ini-
tially, training the deep learning model to classify each tile
of the WSI into one of the six classes: acinar, papillary,
micropapillary, solid, lepidic and ‘‘others’’; ‘‘others’’ are all
the non-pattern image tiles including the following:

• Background: total or partial glass and appears as a white
region in the WSI;

• Non-tumour tissue: e.g., stromal tissue, smooth muscles
and necrosis;

• A group of scattered tumour cells that do not form any
pattern or structural formation.

Figure 2 shows examples of the class ‘‘others’’. Two
pathologists, DS and AK, annotated 10WSIs of H&E LUAD
using the Automated Slide Analysis Platform (ASAP).
We generated tiles (training images) using the annotated
regions. Tile is extracted at four different magnification lev-
els, such that the context surrounding the centre point is
gradually increased from the highest magnification to the
lowest. The maximum context is captured at the lowest mag-
nification. Therefore, there are four training sets (40×, 20×,
10× and 5×). In each set, we had six classes: solid, acinar,
papillary, lepidic, micropapillary and others. Figure 4 shows
example images for each dataset.
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FIGURE 2. Examples of non-growth pattern tumour tissue. Tissues shown in these images are all
labelled as ‘‘others’’. (a) Distinct tumour cells which do not form any specific pattern.
(b) Necrosis cells are caused by dead cells. (c) Stromal cells and (d) inflammatory cells.

FIGURE 3. Framework for the automatic classification of GP and the LUAD survival analysis. (A) shows the steps
for preparing the training set and building the classification model. (C) shows the GP classification per WIS from
the CPM-MICCAI2017. The figure is generated using MATLAB R2018b [30](D) The final step is the statistical and
survival analysis.

A. GROWTH PATTERN CLASSIFICATION IN THE WHOLE
SLIDE IMAGE
Table 2 shows the tile classification accuracy and the mean
accuracy per magnification level. Implementation details are

given in the Result section in the Supplementary Materials.
Themodel was trained on 40× and had the lowest mean accu-
racy of 86%, while the highest accuracy (93%) was achieved
when training on 5× magnification. Training on images of
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FIGURE 4. Sample training images from the CPM-MICCAI2017 dataset. Each row represents one
magnification level. Each column represents images for the same class extracted in a decreasing
resolution. The context gradually increases when increasing the magnification level while maintaining
the same image size. In the 40× dataset, cellular information is noticeable; As the magnification
decreases, cells show some structural arrangements.

FIGURE 5. Confusion matrices for ResNet50 trained using CPM-MICCAI2017 dataset on four different magnifications (40×, 20×, 10×

and 5× magnifications). A sample training image is shown in the top left corner of each confusion matrix.

20× and 10× magnifications improved the mean perfor-
mance compared to 40×. The reason for accuracy degrada-
tion using 40× might be the lack of structural morphology of
the tumour tissue, which is critical in distinguishing between
the growth patterns. Therefore, there is uncertainty in class
prediction especially patterns with similar morphology (e.g.,
papillary and acinar, acinar and lepidic); see Figure 5 (a).
On the other hand, context captured by 5× magnification

achieved the best performance on tile-level classification.
The increase in perdition accuracy is due to the ability of
the deep learning model to learn the spatial distribution of
nuclei, the overall tissue morphology and the surrounding
context of the pattern. However, the wider context may cause
misclassification, such as the results obtained from the other
and micropapillary classes (see Figure 5 (d). Detailed perfor-
mance for the 20× and 10× are shown in Figure 5 (b,c).
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FIGURE 6. Dice measure for the overall slide pattern classification
accuracy. The y-axis represents the Dice accuracy in [0,1], and the x-axis
shows pattern labels.

FIGURE 7. Confusion matrix for the proposed training model. The model
had difficulty identifying lepidic from acinar and papillary patterns,
reducing overall accuracy.

TABLE 2. Accuracy on validation set for ResNet50 trained using the
CPM-MICCAI2017 dataset on four different magnifications (40×, 20×,
10× and 5×). For each magnification level, the best and worst accuracy
per pattern were highlighted in bold and italic, respectively.

TABLE 3. Validation accuracy for ResNet50 trained using the
CPM-MICCAI2017 dataset on 20×, 10× and the two magnifications
combined (20× & 10×). For each magnification, the best and the worst
accuracy are highlighted in bold and italic, respectively.

Next, we performed a tile-level growth pattern classifica-
tion on the test set of three WSI. The class label with maxi-
mum probability (from all six classes) was used to assign the
final classification per tile. The average Dice coefficient per
magnification level is shown in Figure 6. We found that 5×
performed worse for most of the patterns on WSI tile-based
classification due to the reasons discussed above. We found
that 20× and 10× performed better in the validation and
testing sets. In summary, tiles at 5× and 40× were excluded,
and tiles at 20× and 10× were selected. We retrained the
deep learning model using stacked images from 20× and
10×magnifications. Therefore, we have 224×24×6 training
images. We found that by providing more contextual infor-

mation, the overall performance was increased as shown in
Table 3. Moreover, the classification accuracy for acinar, pap-
illary and the class others were significantly improved. Solid
and micropapillary achieved similar performance compared
to the individual 20× and 10× models. Table 3 shows a
significant decrease in the lepidic pattern; the reason could
be the additional context captured by the 10× tile. Hence,
the classification of the patterns lepidic, micropapillary and
papillary is affected by the fact that the three patterns share
some architectural features, such as the white background and
fibrovascular cores. The corresponding confusion matrix is
shown in Figure 7.
The final step is the WSI classification. We applied the

same tile classification approach mentioned above using the
20×, 10× trained model. Sample WSI tile-based classifica-
tion results are shown in Figure 8. The tumour has a pre-
dominant acinar pattern with few instances of lepidic and
micropapillary patterns. One sample region for each class is
shown with the corresponding box colour on the right. It is
common to have lepidic and micropapillary patterns growing
into each other. Therefore, some misclassification of these
two patterns is expected. However, there are several ways to
overcome this issue. First, annotation plays a vital role in the
accuracy of the deep learning model. Given the subjectivity
that comes with human assessment, it is essential to have con-
sistent, good-quality annotations where patterns are relatively
separated with minimum overlap. Second, all possible varia-
tions of each pattern must be included in the training dataset.
LUAD tumour is heterogeneous; an individual pattern may
grow into several morphological structures. One example is
the solid pattern that could appear as scattered nests of tumour
cells or one sheet of malignant cells with no gland formation.
Another example is the acinar pattern, where glands grow
in different sizes and shapes for varying levels of tumour
differentiation, see Figure 9. Therefore, it is crucial to include
all possible variations of each pattern in the training dataset.
Otherwise fine-tuning might be an alternative solution [32],
[33], [34]. More pattern classification results are shown in the
Supplementary Materials.

B. QUANTIFICATION OF GROWTH PATTERNS AND
CORRELATION WITH LUAD OVERALL SURVIVAL
The second dataset collected from the UHCW was used
to perform the survival analysis. Pathologists DS and AK
annotated samples for each pattern in 19 WSIs. Pathologists
annotated regions of interest and assigned labels according to
the six tissue types: solid, acinar, papillary, lepidic, micropap-
illary and others. Training images were generated by dividing
the WSI into 224× 224 grid. The centre point of each square
was used as a reference point to extract two consecutive image
tiles at 20× & 10× magnifications. Tissue artefacts and
stain variability were considered by applying stain normali-
sation [35] and data augmentations such as flipping, rotation,
adding noise and altering colour contrast. We used 80% tiles
per class for training and 20% per class for validation; this
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FIGURE 8. Sample WSI tile-based classification result on the CPM-MICCAI2017 dataset. The image in the first column (left) shows
the classification results for a mixed pattern WSI. The deep learning model is trained on a combination of image tiles at 20× & 10×

magnifications. Small boxes on the left image are shown with higher magnification on the right. The colour of each box corresponds
to the tissue type. The figure is generated using MATLAB R2018b [30].

FIGURE 9. Sample images for solid (a,b) and acinar (c,d) patterns from the
CPMMICCAI2017 dataset. The solid pattern varies across different tissues. Glandular
formation in the acinar pattern also has a variable appearance in the low (c) and high
(d) grade tumours.

gave 9,168 and 2,292 image tiles per class for training and
testing, respectively. Table 4 shows tile-level classification
accuracy for the UHCW dataset.

The whole slide image was classified at 10× to speed
up the processing time. Each WSI was divided into small
tiles of size 224 × 224. Tiles were extracted at 20× &
10× concatenated on the third dimension. Each case in the
UHCW cohort had five probability maps, each corresponding

to one class. We found the class of the tile by taking the
maximum probability of the five patterns. Figure 10 shows
WSI tile-based classification results.

C. AUTOMATIC QUANTIFICATION OF GROWTH PATTERNS
IN WSIs
The growth pattern was quantified by counting the number
of tiles per pattern; which was then divided by the number of
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FIGURE 10. Tile-base classification for automatic pattern quantification using the UHCW dataset. (a) WSI of the acinar-predominant
pattern. The largest percentage is for acinar, followed by papillary and then solid. The region inside the box is shown in (b). (c) WSI
of the papillary-predominant pattern. The papillary pattern dominates this tumour section, while the remaining tissue constitutes
either non-tumour or stromal tissue. Areas of the papillary pattern are shown in (d).

TABLE 4. Tile-level accuracy for ResNet50 trained using UHCW dataset.
The highest accuracy per pattern is shown in bold.

non-empty tiles in the WSI. Figure 11 (a) shows a box plot of
pattern percentages in the whole dataset. The micropapillary
pattern had the lowest percentage in our cohort. Although
micropapillary normally occurs in small percentages [15],
[36], a large number of cases of the micropapillary pattern
is necessary to analyse the impact on patient survival. The
acinar pattern was the most common in our dataset, i.e., most
cases had a percentage of acinar. The plot shows that the
median acinar percentage was 3% of the tissue size. The
second most frequent pattern was lepidic, with a median
percentage of 4%. Then, papillary with a median of 3%,

solid with a median of 2% and lastly, micropapillary with
a median of approximately 1%. Next is the analysis of the
overall patient survival and the five-year survival.

Figure 11 (b) shows the number of cases for each pre-
dominant pattern. Micropapillary-predominant pattern was
not encountered in our dataset. Acinar is one of the most
common predominant patterns in LUAD and usually has a
good prognosis. Therefore, cases with acinar-predominant
pattern have longer survival and follow-up periods. This
observation applies to our cohort; 23 (29%) cases had the
acinar-predominant pattern. There were 21 cases (27%)
with the lepidic-predominant pattern, 16 cases (21%) with
the papillary-predominant pattern, 18 (23%) cases had the
solid-predominant pattern and 10 cases (10%) had at least 1%
of the micropapillary pattern.

D. SURVIVAL ANALYSIS USING AUTOMATIC
QUANTIFICATION OF PREDOMINANT PATTERN
This section investigated the impact of the predominant
pattern on LUAD patient survival. In Figure 12, the
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FIGURE 11. Growth pattern quantification using the UHCW cohort. (a) Pattern percentages for all
cases. (b) The number of cases per predominant pattern.

TABLE 5. Multivariate analysis of the prognostic significance of growth
pattern. The predictive power of each feature was measured by fitting a
logistic regression model according to patient five-year survival.
Significant p- values are shown in bold. β: correlation coefficient, CI:
confidence interval.

Kaplan-Meier plots show the overall survival probabil-
ity in the UHCW dataset for each predominant pattern.
It shows that patients with the lepidic-predominant and
acinar-predominant patterns had the highest survival, com-
pared to the other predominant patterns, especially in the first
five years (60 months). On the other hand, patients with the
papillary-predominant and solid-predominant patterns had
the lowest survival probability. Our dataset did not have
cases with the micropapillary-predominant pattern. There-
fore, we could not investigate the correlation between patient
survival andmicropapillary-predominant pattern. Other clini-
cal factors such as age and vascular invasion affect the overall
survival, which could be one of the reasons the lepidic curve
fell after 60 months. Next, we looked at each pattern individ-
ually and compared the overall survival for each predominant
pattern against all other patterns. Figure 12 (b) shows that
cases with a papillary-predominant pattern are more likely to
have lower survival than non-papillary cases. Figure 12 (d)
shows that patients with lepidic-predominant pattern had
higher survival probability than cases with other predominant
patterns, especially in the first five years (60 months).

Next, we investigated the impact of the combined five
growth patterns (the five growth pattern fingerprinting) on
LUAD five-year survival. We employed a logistic regression
using the UHCW dataset. The five-year survival was con-
sidered as a binary variable, such that patients with greater

TABLE 6. Multivariate analysis of the prognostic significance of growth
pattern. Significant p-values are shown in bold. β: correlation coefficient,
HR: hazard ratio, CI: confidence interval.

than five-year survival had a value of 1; 0 otherwise. We split
data into 60% for training and 40% for testing. Per case,
the percentage of each growth pattern was computed and
collected into one feature vector. We fit a logistic regres-
sion model using the glm function in R. The model had an
accuracy of 0.826 on the training set and an area under the
curve of 0.65 for the testing set. The predictive power and
the p-value for each growth pattern are shown in Table 5.
The correlation between the model scoring and the overall
survival is also shown in Figure 12 (f). The plot shows that the
model split our cohort into good and bad overall prognosis.
Hence, patients with a higher probability of survival for more
than five years have longer overall survival and vice versa.
A multivariate analysis using growth-pattern-based model
prediction is shown in Table 6. The model is also significant
as an independent predictor based on the univariate analysis
with p = 0.013 and a correlation coefficient of -1.0713, with
a confidence interval [0.147, 0.799].

IV. DISCUSSION
This work presents an automated growth pattern recogni-
tion and classification for LUAD whole slide images, the
most common non-small cell lung carcinomas. Manual size
estimation of growth patterns can be replaced by AI-based
methods, which can be used as a second opinion system. The
key observations from this work are as follows:
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FIGURE 12. (a,b,c and d) are the Kaplan-Meier overall survival plots for each pattern independently against all other
patterns in the UHCW cohort. (e) Kaplan-Meier overall survival plot for all patterns against each other. (f) Kaplan-Meier
plot using model prediction based on WSI percentages of growth patterns. The model prediction is correlated with overall
patient survival.

• The use of a machine learning-based method to tackle
growth pattern quantification could provide an objective
and reproducible estimation.

• LUAD is a complicated tumour where multiple patterns
may intersect within the same tumour. However, it is cru-
cial to estimate each pattern’s percentage as it correlates
with patient survival and disease outcome.

• The deep learning model shows high performance in
locating and classifying the five growth patterns in
LUAD whole slide images.

• Finding of this study correlates with the clinical obser-
vation regarding patient survival. We find that patients
with lepidic-predominant and acinar-predominant have
a higher probability of five-year survival than other
predominant patterns. Therefore, accurate percentage

estimation is necessary to analyse the correlation with
patient survival, hence, the treatment plan.

• Micropapillary pattern normally had worse survival.
However, it grows in small percentages compared to
other patterns in the same slide. Therefore, no micropap-
illary predominant cases were encountered in this
dataset. However, having at least 1% of the micropap-
illary pattern were correlated with five-year survival
p-value<0.032, 5

• This study opens new doors by providing a baseline to
explore the growth pattern classification in histopathol-
ogy images and investigates its impact on disease
outcome. However, its limitation is the size of the
dataset used. In the future, the dataset size should be
increased.
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V. STUDY LIMITATIONS
Based on the specification of our dataset and the results
from our analysis, we hypothesised that quantified percent-
ages of the LUAD growth patterns are potential predictors
of LUAD five-year survival. However, our study has the
limitation that our survival analysis was based on a single
dataset collected from one medical centre. Therefore, the
dataset is relatively small, and some patterns were rare in
our cohort (e.g. micropapillary). Therefore, we were limited
in our experimental setting. Collecting large-scale data from
multiple centres with complete histological and clinical infor-
mation is required.

VI. SUMMARY
This paper proposed a multi-resolution deep learning model
to automatically classify WSIs of LUAD into the five his-
tology growth patterns. We trained our model using a grad-
ually increased context from one magnification level to the
next. We found that the model requires cellular information
and morphological architecture to differentiate between the
growth patterns. We trained the ResNet deep learning model
on image tiles extracted from two magnification levels and
found that the overall accuracy was increased. We analysed
the impact of the predominant growth pattern on LUAD
overall survival. Tile-based classification of growth pattern
is performed to find the predominant pattern per WSI auto-
matically. We then built a five-year survival classification
model using percentages of growth patterns. The lepidic
and micropapillary patterns had a strong correlation with
LUAD five-year survival. The model successfully classified
our cohort into good and bad prognosis.
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