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ABSTRACT This work introduces the following concepts of directional and estimated directional Pareto
front to encourage multi-objective decision making, especially when the Pareto front exists in limited regions
in the objective space. The general output of multi-objective optimization is a set of non-dominated solutions
to approximate the Pareto front. When the Pareto front exists in limited regions, few solutions are obtained
and presented to the decision maker. The limited output representing the objective value trade-off is a barrier
to multi-objective decision making. The directional Pareto front introduced in this study is a superset of
the Pareto front and supplements the objective value trade-off between the Pareto fronts. The estimated
directional Pareto front is a response surface that represents the directional Pareto front using a limited
number of points, which are objective vectors of the obtained solutions. The experimental results show that
the directional Pareto front and the estimated front provide an objective value trade-off even in areas where
the Pareto front does not exist and enhances the explanation of the objective space of the target problem.

INDEX TERMS Multi-objective optimization, multi-objective decision-making, evolutionary algorithm,
response surface methodology.

I. INTRODUCTION
Real-world optimization problems often involve multiple,
conflicting objectives and become multi-objective optimiza-
tion problems. The evolutionary algorithm is a powerful
approach to tasks [1], [2]. Multi-objective optimization aims
to acquire a solution set that approximates the Pareto front
and optimal trade-off amongmultiple objectives. Pareto dom-
inance is an essential criterion for comparing the solutions.
Evolutionary multi-objective optimization generally outputs
non-dominated solutions from the examined solutions during
the search. After the optimization, we show the obtained
non-dominated solution set to the decision maker. The deci-
sion maker then selects one of the non-dominated solutions
while considering the objective value trade-off. This process
is called multi-objective decision making [3]. Each multi-
objective optimization problem has its own characteristics.
Irregular Pareto front handling has received increasing atten-
tion in the research area of evolutionary multi-objective
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optimization [4], [5], [6], [7]. The irregular Pareto front
has a region in which the Pareto front does not exist in
the objective space. Pareto fronts commonly called degener-
ate, disconnected, and inverted ones are irregular. Research
on irregular Pareto front handling aims to focus on the
existing area of the Pareto front and obtain non-dominated
solutions approximating the irregular Pareto front. However,
acquiring only non-dominated solutions and showing them
is not always the best method for multi-objective decision
making, especially when the Pareto front exists in lim-
ited regions. In this case, the presentation of only non-
dominated solutions may cause decision makers to have
doubts and questions. Are there any other solutions to be an
optimal trade-off? How do objective values change in non-
existent areas of non-dominated solutions? These estimates
would be increased by larger, non-existence regions of the
Pareto front relative to the existence regions of the Pareto
front in the objective space and cause a barrier in multi-
objective decision-making. Explaining the non-existing areas
of non-dominant solutions is a promising way to solve
this issue.

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 20619

https://orcid.org/0000-0003-3748-9797
https://orcid.org/0000-0003-0889-278X


T. Takagi et al.: Directional Pareto Front and Its Estimation to Encourage Multi-Objective Decision-Making

In this study, we introduce the concept of the directional
Pareto front, which is a superset of the Pareto front. The
directional Pareto front involves an objective value trade-off
even in regions where the Pareto front does not exist. The pre-
sentation of the directional Pareto front enhances the explana-
tion of the objective value trade-off, particularly in the case
where the Pareto front exists in limited regions. Clarifying
the objective value changes in the non-existence area of the
Pareto front would help in multi-objective decision-making.
We also introduce the estimated directional Pareto front. The
objective value trade-off is represented by points that are
the objective vectors of the obtained solutions. The general
method to increase the resolution of the objective value trade-
off is to increase the number of points, solutions. However,
this is often impossible, particularly for problems requiring
computationally expensive objective functions. To address
this issue, a unit hyperplane-based response surface method
was proposed to estimate the Pareto front [8]. The estimated
Pareto front continuously suggests the Pareto front using a
response surface passing through the obtained objective vec-
tors.We utilize this method to obtain the estimated directional
Pareto front in this study. We select several evolutionary
algorithms that acquire solutions to approximate the Pareto
front and the directional Pareto front. We quantitatively and
qualitatively assess the approximation qualities of the Pareto
and directional Pareto fronts on several benchmark problems
that have non-existence regions of the Pareto front in the
objective space.

The contributions of this paper are summarized as follows:
1) The concept of directional Pareto front is proposed.

The directional Pareto front is defined as objective
vectors of non-dominated solutions on lines pass-
ing through the ideal point in the objective space.
The directional Pareto front represents changes in the
objective value even where the Pareto front does not
exist. The directional Pareto front provides a guide
for decision-making and understanding the target opti-
mization problem, especially when the Pareto front
exists in limited regions of the objective space.

2) It is shown that several evolutionary algorithms for
acquiring directionally non-dominated solutions which
approximate the directional Pareto front.

3) It is shown that the method and effect of directional
Pareto front estimation, which estimates changes in
objective values of the directional Pareto front between
obtained objective vectors. The estimated Pareto front
suggests changes in the objective value of the direc-
tional Pareto front even where objective vectors are not
obtained.

4) A metric IGD′ to evaluate the approximation quality of
the directional Pareto front is proposed.

II. MULTI-OBJECTIVE OPTIMIZATION PROBLEM
A multi-objective optimization problem involves m objective
functions f1, f2, . . . , fm for a design variable vector x =

(x1, x2, . . . , xd ) in d-dimensional variable space X and is

FIGURE 1. The Pareto front F∗, the supplemental Pareto front F−, and
the directional Pareto front F+.

defined as

Minimize f (x) = (f1(x), f2(x), . . . , fm(x)). (1)

The task is to acquire a solution set to approximate the
optimal trade-off among the objective functions f1, f2, . . . , fm.

III. PARETO FRONT AND ITS ESTIMATION
To represent the optimal trade-off among the objective func-
tions, we describe the Pareto front and the estimated Pareto
front.

A. DOMINANCE
The Pareto front requires dominance. For the two solutions,
x and y, x dominates y (x ⪯ y) if and only if

∀i ∈ {1, 2, . . . ,m} : fi(x) ≤ fi(y ∧

∃j ∈ {1, 2, . . . ,m} : fj(x) < fj(y). (2)

B. PARETO FRONT
Among a set of solutions, those that are not dominated by any
other solution are said to be non-dominated solutions. The
non-dominated solutions in the variable space X are said to
be Pareto optimal solutionsX ∗

= {x ∈ X | ∄y ∈ X : y ⪯ x}.
The set of objective vectors of the Pareto optimal solutions
X ∗ is called the Pareto optimal front F∗

= {f (x) | x ∈ X ∗
}.

The Pareto optimal front is just called the Pareto front in this
work.

Fig. 1 shows an example of m = 2 dimensional objective
space. The red line represents the Pareto front, F∗. The
general output of multi-objective optimization is a set of non-
dominated solutions to approximate the Pareto front F∗.

C. ESTIMATED PARETO FRONT
1) OVERVIEW
A non-dominated solution set represents the objective trade-
off as a point set in the objective space. The general method
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to increase the resolution of the objective trade-off is to
increase the number of points, examined solutions. However,
we often face limitations in increasing the number of solution
evaluations; for example, the execution of objective func-
tions requires computationally expensive calculations. For
this situation, Pareto front estimation has been studied so far.
It estimates the Pareto front in the objective space where the
objective vectors of examined solutions do not exist and/or
the Pareto optimal solutions in the variable space where the
examined solutions do not exist.

2) RELATED WORKS
Polynomial function fitting has been employed for the Pareto
front estimation. A generalized polynomial function is given
by α1f

β1
1 + α2f

β2
2 + . . . + αmf

βm
m = 1. A single scalar

β1 = β2 = . . . = βm was adjusted in [9] and [10] with fixed
α = (1, 1, . . . , 1). A single vector α = (α1, α2, . . . , αm) was
adjusted in [11] with fixed β = (1, 1, . . . , 1). Both vectors α

and β were adjusted in [12]. For complicated Pareto fronts,
the combination of different polynomial functions was pro-
posed [13]. Note that the above polynomial function fitting
approach estimates the Pareto front during multi-objective
optimization online and utilizes the estimated Pareto front as
search guidance.

Mainly for the resolution enhancement of the Pareto front
as the post process of multi-objective optimization, PAINT
(PAreto INTerpolation) was proposed [14]. PAINT first gen-
erates a set of simplexes constructed by combinations of
given objective vectors as vertices. PAINT then eliminates
certain simplexes by using several dominance-related rules
and outputs the remained simplexes as a result. PLI (Pareto
Liner Interpolation), an extension of PAINT, employs a set
of uniformly distributed reference vectors and provides inter-
polation points as intersections of simplexes and reference
vectors [15], [16]. Also, as the generalized Bézier curve
fitting, the Bézier simplex fitting was proposed for the Pareto
front estimation [17].

The response surface approach [18] has been employed
for estimating the Pareto optimal solutions and the Pareto
front. The radial basis function neural network (RBFNN)
[19], [20] was employed in [21] and [22], and its model
was trained by objective vectors assuming a subset of the
Pareto front and their variable vectors assuming a subset of
the Pareto optimal solutions. The output is a set of estimated
Pareto optimal solutions in the variable space, and the esti-
mated Pareto front is obtained by executing the objective
functions to the estimated Pareto optimal solutions. The Krig-
ing [23], [24] was employed in [8], and its model was trained
by known objective vectors assuming a subset of the Pareto
front. The output is an estimated Pareto front in the objective
space without considering the variable space. A characteristic
of the Kriging-based Pareto front estimation expresses both
the estimated objective vectors and their confidence levels.

In this paper, we pick the Kriging-based Pareto front esti-
mation proposed in [8] for the following reasons: (i) we focus

FIGURE 2. Objective value estimation using response surface based on
the unit hyperplane [8].

on a post-process of multi-objective optimization to improve
the resolution of the Pareto front not on the multi-objective
optimization, (ii) we focus only on the Pareto front in the
objective space and not on the Pareto optimal solutions in the
variable space, (iii) the Kriging-based Pareto front estimation
can obtain the estimated Pareto front without additional exe-
cutions of the objective functions after the estimation model
is trained, and (iv) the Kriging-based Pareto front estimation
can provide not only estimated objective vectors but also their
confidence levels.

3) KRIGING-BASED PARETO FRONT ESTIMATION
The Kriging-based Pareto front estimation [8] generates an
estimated Pareto front as a Kriging-based response surface
based on the unit hyperplane in the objective space. The gen-
erated response surface passes through the points of solutions
obtained in the objective space.

This method requires an objective vector set that corre-
sponds to a solution set obtained through optimization. First,
we transform each objective vector f into its L1-norm n(f ) =∑m

i=1 fi and its L1-unit vector e(f ) = f /n(f ). We then
generate a Kriging-based estimation model [24] based on
L1 unit vector set as the input and L1 norm set as the output.
The generated Kriging-based estimation model outputs an
estimated L1 norm n̂ for any L1 unit vector, e. The estimated
L1-norm n̂ can be converted into the estimated objective
vector f̂ (= n̂·e). In other words, the generated Kriging-based
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FIGURE 3. DTLZ1S2 problem.

estimation model provides an estimated objective vector f̂
for a given L1 unit vector e, which indicates the direction in
the objective space. We input a large uniformly distributed
L1 unit vector set E to the generated Kriging-based estimation
model. The output is the estimated Pareto front, F̂∗

= {n̂ · e |

e ∈ E}. Because the estimation model is generated by the
Kriging method, the confidence level of the estimation can
also be represented.

Fig. 2 shows an example with m = 2 objectives.
We have five examined solutions, and their objective vec-
tors f 1, f 2, . . . , f 5 are shown as filled red circles. First, in
Fig. 2 (a), for each objective vector, we calculate its L1 norm
n depicted as a blue line, and unit vector e shown as an
open red circle. Then, we generate Kriging-based estimation
model based on the obtained unit vectors e1, e2, . . . , e5 as
inputs and their norms n1, n2, . . . , n5 as outputs. Fig. 2 (b)
shows estimated norms n̂ obtained by the generated Kriging
model. The horizontal axis is set as an element e1 of the
unit vector e = (e1, e2). The five open circles correspond to
five known objective vectors. The black line is the estimated
n̂ output from the generated Kriging model by inputting a
large uniformly distributed unit vector set E . The gray area
represents the confidence range, which was also obtained
from the Kriging model. Fig. 2 (b) can be projected to the
objective space shown as Fig. 2 (c) by using n̂ · e = f̂ , and
the black line in Fig. 2 (c) becomes the estimated Pareto front
F̂∗ in this case. Thus, a limited number of objective vectors
f 1, f 2, . . . , f 5 can be complemented by the estimated Pareto
front F̂∗.

IV. ISSUE FOCUS: INSUFFICIENT REPRESENTATION
OF OBJECTIVE VALUE CHANGE
A. SAMPLE PROBLEM
We use DTLZ1Sρ problem, which is defined as

fj(x) = f DTLZ1j (x) · 2
(
1 +

ρ · | sin(2πx1)|
3

)
× (j = 1, 2, . . . ,m), (3)

where f DTLZ1j is the jth objective function of the DTLZ1

problem [25], which is a frequently used benchmark problem.

FIGURE 4. Pareto front approximation of DTLZ1S2.

FIGURE 5. Directional Pareto front approximation of DTLZ1S2.

Fig. 3 shows an m = 2 dimensional objective space of the
DTLZ1S2 problem, which is the DTLZ1Sρ with ρ = 2.
DTLZ1S2 has only three Pareto optimal solutions, and
the Pareto front is F∗

= {(1.0, 0.0), (0.5, 0.5), (0.0, 1.0)}.
Fig. 3 shows the Pareto frontF∗ with the red points. The gray-
dominated points indicate the objective value change between
the separated Pareto front parts.

B. VISUAL EXAMPLE
Fig. 4 (a) shows a non-dominated solution set approximating
the Pareto front F∗ for the DTLZ1S2 problem. Fig. 4 (b)
shows the estimated Pareto front F̂∗ generated by the non-
dominated solution set shown in Fig. 4 (a).

From Fig. 4 (a), the decision maker sees three
non-dominated solutions. The decision-maker cannot see
the objective value change between two neighboring non-
dominated solutions. The decision-maker cannot even see
whether there are solutions between two neighboring non-
dominated solutions.

Fig. 4 (b) shows a black line passing through three non-
dominated solutions. The black line represents the response
surface, which is the estimated Pareto front F̂∗. Because the
estimated Pareto front F̂∗ is constructed only from the three
non-dominated points, it differs from the actual objective
value change shown by the gray points in Fig. 3. The decision
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maker will misunderstand the objective value change from
the estimated Pareto front F̂∗ generated by the solutions
distributed in limited areas in the objective space.

When the Pareto front F∗ exists in limited regions, the
presentation of only non-dominated solutions may cause the
decision maker to have doubts and questions. Are there
no other non-dominated solutions? How do objective val-
ues change in non-existent areas of non-dominated solu-
tions? These doubts and questionsmay hindermulti-objective
decision-making. Explaining the non-existent areas of non-
dominated solutions is a promising way to solve this issue.
However, when the obtained solutions are distributed in
limited areas, we cannot expect the accuracy of the esti-
mated Pareto front F̂∗ constructed using the obtained non-
dominated solutions. If we could represent the objective value
change even in non-existence areas of the non-dominated
solutions, it would enhance the explanation of the objective
space to the decision maker and encourage multi-objective
decision-making.

V. DIRECTIONAL PARETO FRONT AND ITS ESTIMATION
To represent the objective value trade-off, even in areas where
the Pareto front does not exist, we introduce the concepts
of directional Pareto front and estimated directional Pareto
front.

A. DIRECTIONAL DOMINANCE
A directional Pareto front requires the concept of directional
dominance. For two solutions x and y, in this study, we say
that x directionally dominates y (x ⪯

+ y) if and only if

e(f ′(x)) = e(f ′(y)) ∧ x ⪯ y, (4)

where e(f ′) is the L1 unit vector of normalized objective
vector f ′ described in Section III-C, f ′

=
f−z∗
n∗−z∗ , z

∗
=

(z∗1, z
∗

2, . . . , z
∗
m) is the ideal point, its elements are z∗i =

minx∈X fi(x) (i = 1, 2, . . . ,m), n∗
= (n∗

1, n
∗

2, . . . , n
∗
m)

is the nadir point, its elements are n∗
i = maxx∈X ′ fi(x)

(i = 1, 2, . . . ,m). The first condition is the equality of
two L1 unit vectors in the objective space. The second con-
dition is the conventional dominance criterion described in
Section III-A. Thus, the directional dominance criterion com-
pares two objective vectors sharing the same unit vector by
the conventional dominance.

We explain the directional dominance relation using the
visual example shown in Fig. 1. Fig. 1 has three objective
vectors f (x1), f (x2), and f (x3) respectively depicted by red,
gray, and blue filled circles. Their unit vectors e1, e2, and
e3 are respectively depicted as green circles. First, we com-
pare x1 and x2. Their unit vectors e1 and e2 are different, that
is, e1 ̸= e2. Since the first condition ofEq. (4) is not satisfied,
we say x1 and x2 are directionally non-dominated by each
other. Next, we compare x1 and x3. Their unit vectors e1 and
e3 are the same, that is, e1 = e3. Since the first condition
of Eq. (4) is satisfied, we then compare x1 and x3 using the
conventional dominance for the second condition of Eq. (4).
We see x1 dominates x3, that is, x1 ⪯ x3. Since both the

first and second conditions of Eq. (4) are satisfied, we say
x1 directionally dominates x3, that is, x1 ⪯

+ x3.

B. DIRECTIONAL PARETO FRONT
In this study, the directionally non-dominated solutions in the
variable space X are said to be directional Pareto optimal
solutions X+

= {x ∈ X | ∄y ∈ X : y ⪯
+ x}, and

the set of objective vectors of the directional Pareto optimal
solutions X ∗ is said to be the directional Pareto front F+

=

{f (x) | x ∈ X+
}. Each objective vector f (x) ∈ F+ is

closest to the ideal point z∗ on the line passing through f (x)
and the ideal point z∗ in the objective space. In this study,
the difference between the directional Pareto front F+ and
Pareto front F∗ is said to be the suppremental Pareto front
F− (= F+

\F∗).
The visual example of Fig. 1 shows the Pareto front F∗

with the red lines, the supplemental Pareto front F− with
the gray line, and the directional Pareto front F+ with the
combined red and gray lines. We assume that x1 is a Pareto
optimal solution and a directional Pareto optimal solution, i.e.
x1 ∈ X ∗ and x1 ∈ X+. Consequently, objective vector f (x1)
is a member of the Pareto front F∗ and also the directional
Pareto front F+, i.e. f (x1) ∈ F∗ and f (x1) ∈ F+. x2 is
dominated by x1 and not a Pareto optimal but we assume
that x2 is a directional Pareto optimal solution, i.e. x2 ∈ X+.
Consequently, objective vector f (x2) is a member of the
directional Pareto frontF+, i.e. f (x2) ∈ F+. x3 is dominated
by solutions including x1. Also, x3 is directionally dominated
by solutions including x1 on the radial line passing through
the ideal point and the objective vector f (x3) in the objective
space. From Fig. 1, we see the red Pareto front includes f (x1)
but not f (x2). We see the combined red and gray directional
Pareto front includes both f (x1) and f (x2). Thus, the direc-
tional Pareto front involves dominated objective vectors such
as f (x2) if they are non-dominated on their radial lines. x2 is
not preferred in general multi-objective optimization since
solutions including x1 dominate x2. However, directionally
non-dominated solutions such as x2 represent the trade-off
among objective values even though they are dominated in
the viewpoint of the conventional dominance, and they would
help to further explain the objective space and encourage
multi-objective decision-making.

Here, note that each unit vector e in Fig. 1 can be classified
into one of the following three cases.
Case (i): If the non-dominated solution exists on the unit

vector e, it passes through the Pareto front in red.
Case (ii): If the non-dominated solution does not exist but

at least one dominated solution exists on the unit vec-
tor e, it passes through the supplemental Pareto front
in gray.

Case (iii): If any solutions do not exist on the unit vector e,
it does not pass both the Pareto front in red and the
supplemental Pareto front in gray.

In Fig. 1, e1 and e3 are the case (i), e2 is the case (ii),
and e4 is the case (iii). Fig. 1 involves the mapped areas of
the variable space X with light blue. The case (iii) arises

VOLUME 11, 2023 20623



T. Takagi et al.: Directional Pareto Front and Its Estimation to Encourage Multi-Objective Decision-Making

due to the absence of these areas in the objective space.
The cases (ii) and (iii) represent the non-existent area of the
Pareto front.

C. ESTIMATED DIRECTIONAL PARETO FRONT
To obtain the estimated directional Pareto front, we utilize
the unit hyperplane-based response surface method [8] men-
tioned in Section III-C. In Section III-C, we obtained the
estimated Pareto front F̂∗ by inputting non-dominated solu-
tions. On the other hand, we obtain the estimated directional
Pareto frontF+ by inputting the directionally non-dominated
solutions. In other words, the input data are different from the
conventional Pareto front estimation [8] described in Section
III-C. After the estimation model is generated, we input a
large, uniformly distributed L1 unit vector set E into the
estimation model and obtain an estimated objective vector
set, which is the estimated directional Pareto front F̂+

=

{n̂ · e | e ∈ E}. Similar to the estimated Pareto front F̂∗, the
confidence level of the estimated directional Pareto front F̂+

can be represented as well.

D. VISUAL EXAMPLE
Fig. 5 (a) shows a directionally non-dominated solution
set approximating the directional Pareto front F+ of the
DTLZ1S2 problem.Fig. 5 (b) shows the estimated directional
Pareto front F̂+ obtained by the same directionally non-
dominated solution set.

The directionally non-dominated solutions shown in
Fig. 5 (a) represent not only the Pareto front F∗ but also
the supplemental Pareto front F−. The decision maker can
see the objective value change between the separated Pareto
fronts F∗. In Fig. 5 (b), the black line passing through the
directionally non-dominated solutions is the response sur-
face, which is the estimated directional Pareto front F̂+.
It continuously represents the objective value change between
separated Pareto fronts F . The gray areas represent the con-
fidence levels of the estimated directional Pareto front.

VI. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS
A. OVERVIEW
In each of multi-objective evolutionary algorithms, its solu-
tion comparison criterion impacts the characteristics of the
obtained solution set.

The majority of algorithms employ the dominance
described in Section III-A. Several criteria extending dom-
inance have been studied. The ϵ-dominance [26], the
expanded dominance [27], and the cone ϵ-dominance [28]
expand the dominance area and encourage to dominate other
solutions. They make fine-grained solution rankings and
strengthen the selection pressure for the search. These meth-
ods work to obtain solutions to approximate the Pareto front
but not to approximate the directional Pareto front.

θ-dominance [29] and SDR (strengthened dominance rela-
tion) [30], [31] have a common concept, which suppresses
the influence range of dominance in the objective space.

These criteria make fine-grained solution rankings inside
the influence range. These criteria can be viewed as relaxed
versions of the directional dominance to encourage solution
comparisons. These criteria work to acquire solutions to
approximate not only the Pareto front but also the directional
Pareto front.

Several criteria using sacralized objective values have also
been studied. The Tchebycheff distance [32], [33] determines
the superiority of solutions for a given weight vector and
is compliant with the dominance. The Tchebycheff distance
works to acquire solutions to approximate the Pareto front.

PBI (penalty-based boundary intersection) [34] and APD
(angle-penalized distance) [35] determines the superiority of
solutions for a given weight vector based on the relations
between the weight vector and the objective vectors. For
the directional difference between a weight vector and an
objective vector, PBI uses the perpendicular distance between
them, and APD uses the angles between them. These criteria
can be viewed as relaxed versions of the directional domi-
nance to encourage solution comparisons. These criteria work
to acquire solutions to approximate not only the Pareto front
but also the directional Pareto front.

As algorithms employing the above criteria, in this
study, we selected MOEA/D [34], NSGA-III [36], NSGA-
II/SDR [30], θ -DEA [29], and RVEA [35] based algorithms.

B. MOEA/D-rTCH AND MOEA/D-PBI
MOEA/D [34] optimizes m objective functions using a set of
weight vectors to decompose the objective space. MOEA/D
prepares a set of uniformly distributed weight vectors, L =

{λ1, λ2, . . . ,λN }. Each weight vector λj = (λj1, λ
j
2, . . . , λ

j
m)

denotes a point on the unit hyper plane. For each weight
vector λj, we assign one solution xj and construct the pop-
ulation P = {x1, x2, . . . , xN }. Newly generated solutions are
compared based on their scalarizing function values using
weight vectors. In this study, we select MOEA/D-rTCH
using the reciprocal Tchebycheff scalarizing function [33]
and MOEA/D-PBI using the PBI scalarizing function [34].

The reciprocal Tchebycheff scalarizing function is
defined as

Minimize grTCH(x|λ) =
m

max
i=1

|fi(x) − zi|/λi. (5)

The reciprocal Tchebycheff criterion complies with domi-
nance, and MOEA/D-rTCH acquires non-dominated solu-
tions approximating the Pareto front.

The PBI scalarizing function is defined as

Minimize gPBI(x|λ) = d1(x) + θd2(x), (6)

where

d1(x) = ∥(f (x) − z)Tλ∥/∥λ∥, (7)

d2(x) = ∥f (x) − (z− d1(x)λ/∥λ∥)∥ , (8)

z denotes the ideal point. d2 is the perpendicular distance
from objective vector f (x) to weight vector λ. d1 is the
distance from the obtained ideal point z to the point that
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perpendicularly projects f (x) on the weight vector λ. For
both d1 and d2, the shorter the value, the better it is. The
balance between d1 and d2 is determined by parameter θ .
The PBI criterion has a characteristic similar to directional
dominance and acquires directionally non-dominated solu-
tions approximating the directional Pareto front. The first
equality condition in Eq. (4) is relaxed by parameter θ and
encourages solution comparisons for each unit vector.

C. NSGA-III
NSGA-III [36] is anNSGA [37] algorithm series. Tomaintain
a uniform distribution of the population in the objective space,
NSGA-III uses perpendicular distances between solutions
and reference lines, whereas NSGA-II [38] uses crowding
distances, which are determined by the relative positions of
the solutions in the objective space. Reference lines pass
through the base and reference points, which are generated
in the same manner as the weight vectors in MOEA/D.

In each generation, NSGA-III classifies the combined pop-
ulation of the parent and offspring populations into several
fronts, solution sets, via non-dominated sorting. The par-
ent population for the next generation is selected from the
higher fronts with higher non-domination levels. Each parent
candidate solution is paired with its closest reference line.
A solution with a reference line having a small number of
paired solutions and a solution with a shorter perpendicular
distance is preferred as the parent population for the next
generation.

Although NSGA-III uses a set of reference lines, non-
dominated solutions are preferred and dominated solutions
are not preferred as the parent population for the next pop-
ulation. NSGA-III acquires non-dominated solutions that
approximate the Pareto front. Algorithms combining the
dominance and the decomposition such as NSGA-III and
MOEA/DD [39] tend to employ the dominance-based cri-
terion with the first priority and the decomposition-based
criterion with the second priority. Since the directionally
non-dominated solutions involve dominated solutions that
are discarded with the first priority, these algorithms cannot
maintain the directionally non-dominated solutions in the
population.

D. NSGA-II/SDR
NSGA-II/SDR [30] is based on NSGA-II and employs the
strengthened dominance relation (SDR) instead of the con-
ventional dominance relation used in conventional NSGA-II.
For the two solutions, x and y, x dominates y in SDR if and
only if {∑m

i=1 fi(x) <
∑m

i=1 fi(y), θxy ≤ θ,∑m
i=1 fi(x) ·

θxy

θ
<

∑m
i=1 fi(y), θxy > θ,

(9)

where θxy = cos−1(f (x), f (y)), and θ is a user-defined angle.
SDR uses a line passing through each objective vector and
the base point. SDR strengthens the superiority judgment of
solutions inside the angle θ from the line. SDR weakens the

superiority judgment of solutions outside the angle θ from the
line. SDR does not comply with dominance. A case arises in
which two solutions are non-dominated in the SDR criterion,
even if one dominates another in the conventional dominance
when their angles differ greatly. SDR has a characteristic sim-
ilar to directional dominance and acquires directionally, non-
dominated solutions approximating the directional Pareto
front. The first equality condition in Eq. (4) is relaxed by the
user-defined angle θ around each unit vector and encourages
solution comparisons for each unit vector.

E. θ-DEA AND θ-DEA−

θ -DEA [29] also uses a weight vector set. In each generation,
θ -DEA performs two non-dominated sortings based on the
conventional dominance and the θ -dominance sequentially.
Each solution is associated with its closest weight vec-

tor. Consequently, each weight vector creates a cluster of
solutions. For the two solutions, x and y, x θ -dominates y
if and only if x and y are in the same cluster of a weight
vector λ and gPBI(x|λ) < gPBI(y|λ). The two solutions in
the different clusters are not θ -dominated. Two solutions in
the same cluster are compared based on their PBI scalarizing
function values.

The conventional θ -DEA discards directionally non-
dominated solutions by non-dominated sorting based on con-
ventional dominance and acquires non-dominated solutions
that approximate the Pareto front. To obtain directionally non-
dominated solutions, in this work, we employ a variant named
θ -DEA−, which disabled non-dominated sorting based on the
conventional dominance.

F. RVEA AND RVEA*
The RVEA [35] also uses weight vectors and decomposes
the objective space with them. RVEA performs a population
partition in which each solution is associated with a weight
vector with the minimum angle. In each parted population,
RVEA selects the solution with the minimum APD (angle-
penalized distance). APD is similar to PBI described as
Eq. (6). APD uses the norm of the objective vector f instead
of d1 and a relative angle between f and weight vector λ in the
parted population instead of d2. Consequently, APD also has a
characteristic similar to the directional dominance. The first
equality condition in Eq. (4) is relaxed by the angle-based
penalty to the target weight vector and encourages solution
comparisons for the weight vector.

RVEA does not involve non-dominated sorting and
acquires directionally non-dominated solutions. The same
study also proposed RVEA*, which arranges weight vectors
to adopt irregular Pareto front shapes. RVEA* avoids having
weight vectors for the non-existent area of the Pareto front in
the objective space and acquires non-dominated solutions to
approximate the Pareto front.

VII. EXPERIMENTAL SETUP
A. PROBLEMS
We used the DTLZ7 [25], UF9 [40], DTLZ1S1, and
DTLZ1S2 problems. The number of objectives was set to
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FIGURE 6. The Pareto front F∗, the supplemental Pareto front F−, and the directional Pareto front F+.

m = 3, and the dimension of the variable space was set to
d = m − 1. In addition, we normalized the range of the
objective space to hold the Pareto front in [0, 1]m=3. Fig. 6
shows the objective spaces of their problems. As mentioned
in Section V-B, each unit vector e in the objective space is
classified into one of the cases (i), (ii), and (iii). In Fig. 6,
unit vectors of the case (i) pass through the Pareto front
F∗ with red, unit vectors of the case (ii) pass through the
supplemental Pareto front F− with gray, and unit vectors
of the case (iii) pass through the yellow area without any
solutions. Note that the yellow areas are handwritten inFig. 6.
The two cases (ii) and (iii) are the non-existent area of the
Pareto front. Fig. 6 (b) of UF9, Fig. 6 (c) of DTLZ1S1, and
Fig. 6 (d) of DTLZ1S2 show the non-existent area of case (ii)
only. Fig. 6 (a) of DTLZ7 shows the non-existent areas of
both cases (ii) and (iii).

B. ALGORITHMS
We used MOEA/D-rTCH, MOEA/D-PBI, NSGA-III,
NSGA-II/SDR, θ -DEA, θ -DEA−, RVEA, and RVEA*
algorithms. We expected that MOEA/D-rTCH, NSGA-III,
θ -DEA, and RVEA* would obtain non-dominated solutions
approximating the Pareto front. In addition, we expected that
MOEA/D-PBI, NSGA-II/SDR, θ -DEA−, and RVEA would
obtain directionally non-dominated solutions approximating
the directional Pareto front. Since the general aim of multi-
objective optimization is the Pareto front approximation,
note that any fair comparison of these algorithms for the
directional Pareto front approximation cannot be conducted
essentially. Note that experiments in this work aim to show
the possible options to obtain directionally non-dominated
solutions from the conventional candidate algorithms.

As common settings, we used simulated binary crossover
(crossover ratio 1.0 and distribution index ηc = 20) and
polynomial mutation (mutation ratio 1/d and distribution
index ηm = 20). The population size is set toN = 120 and the
total number of generations is set toG = 3, 000. InMOEA/D,

the neighborhood size was set to T = 12. For the PBI
scalarizing function, θ = 10 was employed. We utilized
the implementation of PlatEMO [41]. Each algorithm was
executed 31 times for each problem.

C. METRICS
For the approximation quality assessment of Pareto frontF∗,
we used the conventional IGD [42]. IGD needs a reference
objective vector set R that is a subset of the Pareto front
F∗, i.e. R ⊆ F∗. IGD is the average distance from every
reference objective vector in R to its closest objective vec-
tor among the obtained solution set. For the approximation
quality assessment of the directional Pareto front F+, in this
work, we introduce IGD′ as an extension of the conventional
IGD. IGD′ needs a reference objective vector set R′ that is
a subset of the directional Pareto front F+, i.e. R′

⊆ F+.
IGD′ is the average distance from every reference objective
vector inR′ to its closest objective vector among the obtained
solution set. For both IGD and IGD′, the smaller the values,
the better. Only the difference between the conventional IGD
and IGD′ in this work is the reference setsR andR′.
We describe how to generate the reference objective vector

set R′ for IGD′. For each of the DTLZ7 and UF9 prob-
lems, we first set a 100 × 100 grid on f1 − f2 space, then
generated 10,000 points on the two-dimensional space, and
calculated the third objective value based on f1 and f2 val-
ues for each point in the f1 − f2 space. We employed the
generated 10,000 points in the m = 3-dimensional space
as the reference set R′. For the DTLZ1S1 and DTLZ1S2
problems, we generated 10,011 points uniformly distributed
on the m = 3-dimensional hyperplane by using the simplex
lattice [43], transformed them according to objective func-
tions, and employed the transformed points as the reference
set R′. Note that the reference vector set R′ contains the
dominated points.

For the conventional IGD, we employed non-dominated
points R extracted from R′ generated by the above method
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FIGURE 7. IGD to assess the approximation quality of the Pareto front F∗.

FIGURE 8. IGD′ to assess the approximation quality of the directional Pareto front F+.

for each problem, i.e. R ⊂ R′. The sizes of the reference
set |R| were 3,249, 5,050, 4,991, and 213 for DTLZ7, UF9,
DTLZ1S1, and DTLZ1S2 problems, respectively.

VIII. EXPERIMENTAL RESULTS AND DISCUSSION
A. APPROXIMATION PERFORMANCE
Figs. 7 and 8 respectively show IGD and IGD′ values of
31 runs. In each figure, the four left box plots are the results of
the four algorithms to acquire the non-dominated solutions.
The four right box plots are the results of the four algorithms
to acquire the directionally non-dominated solutions.

From the IGD viewpoint, to assess the Pareto front approxi-
mation quality inFig. 7, we see that RVEA* is the best among
all the problems. NSGA-II/SDR was the worst of the prob-
lems, except for DTLZ7. In UF9, all four algorithms acquir-
ing non-dominated solutions showed a shorter IGD than all
four algorithms acquiring directionally non-dominated solu-
tions. However, this result was not necessarily related to
other problems. In other words, there are several cases where
algorithms acquiring directionally non-dominated solutions
are comparable with algorithms acquiring non-dominated
solutions from the IGD viewpoint. Because the Pareto front
is a subset of the directional Pareto front, the search for
the directional Pareto front contributes to acquiring non-
dominated solutions approximating the Pareto front as well.

From the IGD′ viewpoint, to assess the directional Pareto
front approximation quality in Fig. 8, we see that the remain-
ing four algorithms acquiring the non-dominated solutions
are worse than the right four algorithms acquiring the direc-
tionally non-dominated solutions in all problems.

Thus, MOEA/D-PBI, NSGA-II/SDR, θ -DEA−, and
RVEA acquiring directionally non-dominated solutions also
work to approximate the Pareto front because the Pareto front
is a subset of the targeting directional Pareto front. However,
MOEA/D-rTCH, NSGA-III, θ -DEA, and RVEA* acquiring
non-dominated solutions do not approximate the directional
Pareto front because the directional Pareto front is a superset
of the targeting Pareto front. For the Pareto front approxima-
tion, the algorithms acquiring directionally non-dominated
solutions are not better than the algorithms acquiring non-
dominated solutions. However, directionally non-dominated
solutions are a value-added output that provides solutions
representing not only the Pareto front but also the objective
value change in the area where the Pareto front does not exist.

B. OBTAINED NON-DOMINATED AND DIRECTIONALLY
NON-DOMINATED SOLUTIONS
Figs. 9–16 show solution sets obtained by the eight different
algorithms on four different problems.Fig. 6will be the refer-
ence to discuss the obtained solution distributions. In Fig. 6,
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FIGURE 9. Solutions obtained by MOEA/D-rTCH.

FIGURE 10. Solutions obtained by NSGA-III.

FIGURE 11. Solutions obtained by θ-DEA.

FIGURE 12. Solutions obtained by RVEA*.

the Pareto front is red, supplemental Pareto front is gray,
and directional Pareto front is red and gray. In Figs. 9–16,
obtained solutions are gray.

Figs. 9–12 are results obtained by MOEA/D-rTCH,
NSGA-III, θ -DEA, and RVEA*, which acquire the non-
dominated solutions to approximate the Pareto front. These
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FIGURE 13. Solutions obtained by MOEA/D-PBI.

FIGURE 14. Solutions obtained by NSGA-II/SDR.

FIGURE 15. Solutions obtained by θ-DEA−.

FIGURE 16. Solutions obtained by RVEA.

results indicate that the obtained solutions were gapped in the
objective space. Nothing explains the gap in each objective
space, because the obtained solutions only approximate and

represent the Pareto front. In particular, in DTLZ1S2, these
four algorithms obtained solutions only in limited areas of
the objective space. The decision maker might have doubts
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FIGURE 17. Response surface using solutions obtained by MOEA/D-rTCH.

FIGURE 18. Response surface using solutions obtained by NSGA-III.

FIGURE 19. Response surface using solutions obtained by θ-DEA.

FIGURE 20. Response surface using solutions obtained by RVEA*.

about the optimization result, such as whether there are other
optimal trade-offs among the objectives.

Figs. 13–16 are results obtained by MOEA/D-PBI,
NSGA-II/SDR, θ-DEA−, and RVEA, which acquire the

directionally non-dominated solutions to approximate the
directional Pareto front. We can see that these algorithms
obtain solutions that approximate the directional Pareto front
involving the Pareto front and the supplemental Pareto front.
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FIGURE 21. Response surface using solutions obtained by MOEA/D-PBI.

FIGURE 22. Response surface using solutions obtained by NSGA-II/SDR.

FIGURE 23. Response surface using solutions obtained by θ-DEA−.

FIGURE 24. Response surface using solutions obtained by RVEA.

These algorithms explain the objective value change, even
in the non-existence area of the Pareto front in the objective
space. However, because these algorithms require solutions
to represent the supplemental Pareto front, they cannot avoid

deteriorating the resolution required to approximate the
Pareto front. In the case of DTLZ7, there are areas where
no solution exists, as shown in Fig. 6 (a) with yellow. From
Figs. 9–16 (a), we see that even algorithms acquiring

VOLUME 11, 2023 20631



T. Takagi et al.: Directional Pareto Front and Its Estimation to Encourage Multi-Objective Decision-Making

directionally non-dominated solutions do not obtain any
solutions in the yellow areas of Fig. 6 (a).

C. ESTIMATED PARETO FRONT AND ESTIMATED
DIRECTIONAL PARETO FRONT
Figs. 17–24 show unit hyperplane-based response surfaces
constructed by the obtained solutions. Red points indicate the
obtained solutions. A huge set of points with a color gradation
from blue to yellow indicates the estimated value. The color
indicates the confidence level of the estimated value. Fig. 6
will be the reference to discuss the results of the obtained
response surfaces.

We discuss Figs. 17–20 obtained by MOEA/D-rTCH,
NSGA-III, θ -DEA, and RVEA*, which acquire the non-
dominated solutions. First, we focused on (a) DTLZ7.We can
see that the solution distribution is biased on the Pareto front
area, which deteriorates the accuracy of the Pareto front esti-
mation. It can be seen especially in the results with MOEA/
D-rTCH. In addition, we see that NSGA-III and θ -DEA have
few solutions around the f3 axis, which causes low estimation
accuracy of the Pareto front part. Next, we examined the
supplemental Pareto front areas. Estimating the supplemental
Pareto front using only non-dominated solutions is a difficult
task. RVEA* obtained solutions with a low distribution bias
and showed a relatively high estimation accuracy for the
supplemental Pareto front. In (b) UF9, all four algorithms
face difficulty in estimating the supplemental Pareto front
between the two groups of obtained non-dominated solutions.
In addition, in (c) DTLZ1S1, we observed a low estimation
accuracy of the supplemental Pareto front. In the extreme case
(d) DTLZ1S2, we saw a high distribution bias of the obtained
solution and difficulty in estimating the supplemental Pareto
front using only non-dominated solutions.

We discuss Figs. 21–24 obtained by MOEA/D-PBI,
NSGA-II/SDR, θ -DEA−, and RVEA, which acquire the
directionally non-dominated solutions. We see a high esti-
mation accuracy of the directional Pareto front involving the
Pareto front and the supplemental Pareto front. The popu-
lation sizes shown in Figs. 17–20 and Figs. 21–24 are the
same. The solutions in Figs. 17–20 only represent the Pareto
front which exists in the limited area of the objective space.
By contrast, the solutions in Figs. 21–24 need to represent not
only the Pareto front but also the supplemental Pareto front.
Consequently, inFigs. 21–24, algorithms have to decrease the
solution distribution density. This influence can be seen in
the results of NSGA-II/SDR on all problems and θ-DEA−

on DTLZ7. The difficulty of local convergence in the objec-
tive space also affects the local estimation accuracy of the
directional Pareto front. To improve the estimation accuracy
of the directional Pareto front, an increase in the population
size and number of generations is a promising option. In the
case of DTLZ7, there are areas where no solution exists,
as shown in Fig. 6 (a) with yellow. Each of Figs. 17–24 (a)
represents a response surface, even in the yellow areas of
Fig. 6 (a). For this case, it is useful to observe the direc-
tionally non-dominated solution set and its response surface

FIGURE 25. Execution times to obtain the unit hyperplane-based
response surfaces when the numbers of input objective vectors and
objectives m changes on DTLZ7.

simultaneously. The parts of the response surface without
directionally non-dominated solutions could suggest the non-
existent area of the Pareto front and any solutions, which is
the case (iii) described in Section V-B.

Solutions that contribute to the estimation of the supple-
mental Pareto front are dominated solutions that are generally
discarded in multi-objective optimization. However, these
solutions can be utilized to represent the objective value
trade-off of non-existent areas of non-dominated solutions.
The directional Pareto front and the estimated front enhance
the explanation of the objective space and encourage multi-
objective decision making, especially in the case where the
Pareto front exists in limited regions in the objective space.

D. COMPUTATIONAL TIME
We measured the execution time in obtaining the unit
hyperplane-based response surface. We used a computer with
AMDRyzen Threadripper 3970XCPU, 32GBmemory,Win-
dows 10 operating system, and MATLAB as the implemen-
tation environment. We here picked DTLZ7 and prepared
multiple input objective vector sets with different sizes.1

Fig. 25 shows the results. The size of the input objective
vectors is varied by the horizontal axis. Fig. 25 involves four
lines with different numbers of objectives m. For each of the
response surfaces respectively in m = {2, 3, 4, 5} objectives,
we estimate objective vectors on 10011, 10011, 9880, and
8855 uniformly distributed L1 unit vectors generated by the
simplex lattice method. The vertical axis is the execution
time, and note that it is a logarithmic scale. The results show

1We generated input objective vector sets on the directional Pareto front
by utilizing the problem definition of DTLZ7 in the same manner to gen-
erate the reference set R′ for IGD′ described in Section VII-C. For m
objective DTLZ7, we first considered m − 1 dimensional objective space
[0, 1]m−1 of f1, . . . , fm−1. We set a grid in which each of m − 1 objective
dimensions is h equally spaced. We then obtained hm−1 evenly distributed
grid points in the m − 1 dimensional objective space. For each grid point
including f1, . . . , fm−1 objective values, we could calculate fm based on
the definition of DTLZ7. The above process obtained hm−1 input objective
vectors. For multiple input objective vector sets with different sizes, we here
used h = {121, 196, 289, 441, 729, 1089, 1681, 2601, 4096, 6400, 10000}
for m = 2, h = {11, 14, 17, 21, 27, 33, 41, 51, 64, 80, 100} for m = 3, h =

{5, 6, 7, 8, 9, 10, 12, 14, 16, 19, 21} for m = 4, and h = {4, 5, 6, 7, 8, 9, 10}
for m = 5.
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that the execution time is affected by the size of the input
objective vectors rather than the number of objectives m.
For the Pareto front that may involve an infinite number

of objective vectors, there is an essential difference between
discretely representing the Pareto front with a set of points
of objective vectors and near-continuously representing the
Pareto front with the unit hyperplane-based response surface.
In the optimization of computationally cheap objective func-
tions, the time to evaluate each solution is short, and it is
relatively easy to plot many points of objective vectors for
the approximation quality improvement of the Pareto front.
In the optimization of computationally expensive objective
functions, the time to evaluate each solution is long, and it is
relatively difficult to plot many points of objective vectors for
the approximation quality improvement of the Pareto front.
Since the unit hyperplane-based response surface represents
objective value change among a limited number of objective
vectors, there would be demand, especially for optimization
problems with computationally expensive objective func-
tions. The results in Fig. 25 could be a guide to consider
whether or not to employ the unit hyperplane-based response
surface method by comparing its execution time and the time
of repeatedly executing objective functions in each optimiza-
tion problem.

IX. CONCLUSION
To encourage multi-objective decision making, especially in
the case where the Pareto front exists in limited regions,
we introduced the concepts of the directional Pareto front
involving the supplemental Pareto front, which shows the
objective value trade-off even in areas where the Pareto front
does not exist. In addition, we employed the unit hyperplane-
based response surface method to smoothly estimate the
directional Pareto front using a limited number of objective
vectors and the examined solutions. The experimental results
showed that the non-dominated solutions obtained by general
evolutionary multi-objective optimization are not sufficient
to represent the objective value trade-off in areas where the
Pareto front does not exist, even when the unit hyperplane-
based response surface method is used. We showed that
the directionally non-dominated solutions obtained by evo-
lutionary algorithms employing solution comparison criteria
relaxing the directional dominance provide not only non-
dominated solutions approximating the Pareto front but also
solutions representing the objective value trade-off in areas
where the Pareto front does not exist. These algorithms
sacrifice the approximation resolution of the Pareto front
because they require solutions to approximate the objective
value trade-off in the non-existence area of the Pareto front.
In particular, when the Pareto front exists in limited regions,
it provides an explanation of the objective space, which
cannot be provided by non-dominated solutions. In addition,
we showed that the unit hyperplane-based response surface
method complements the directional Pareto front approxima-
tion, even though directionally non-dominated solutions are
sparsely distributed.

In future work, we will deepen the design of evolutionary
algorithms to acquire directionally non-dominated solutions
approximating the directional Pareto front. A decomposition-
based approach will be a promising baseline for this
task. External archive of non-dominated solutions is often
employed for the improvement of the Pareto front approxi-
mation. This idea could be extended to the directional Pareto
front approximation by introducing a criterion to maintain
directionally non-dominated solutions to the new external
archive. Then, even if an algorithm searches for the Pareto
front, directionally non-dominated solutions generated dur-
ing the search can be stored in the new external archive.
However, if the algorithm searches for the Pareto front,
we need to recognize that a high approximation quality of
the supplemental Pareto front would not be expected with
this idea. As the approximation performance metrics, this
work used the IGD′ known reference points on the directional
Pareto front. We designed a performance metric for unknown
problems, which does not require any problem knowledge.
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