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ABSTRACT Endoscopic endonasal approach has been widely used for removing various sellae tumors
including pituitary adenomas, meningiomas, etc. While, performing these surgeries in such a narrow space
with different instruments remains a challenge for surgeons, due to the limited field of view, varying
illumination, and occlusion of instruments during the operation. Thus, a proper surgical instrument detection
method that can provide classification and location information of the operated surgical instrument is critical
for surgeons to understand the surgical scenarios and enhance the safety of the clinical operation. To this end,
we propose an anchor-free feature aggregation network (AFA-Net) to improve the detection precision of
surgical instruments from the endoscopic operation view field. The proposed method utilizes the improved
feature pyramid network (FPN) with the depthwise separable convolution and a weighted feature aggregation
module to enhance the feature information of the operated surgical instruments. Based on the anchor-
free method, a weighted heatmap aggregation module is used to detect surgical instruments. Experimental
studies on a public dataset Cholec80 and an intraoperative dataset from a local hospital are conducted, and
the detection performance is assessed by the mean precision (AP) and average recall (AR). From both
datasets and comparisons, the proposed method achieves 74.1% AP, 67.0% AR and 73.6% AP, 66.7%
AR, respectively, which show significant advantages over five mainstream methods in terms of detection
performance.

INDEX TERMS Endoscopic surgery, surgical instrument detection, convolutional neural network, feature
pyramid network, anchor-free detection.

I. INTRODUCTION
Endoscopic endonasal approach (EEA) represents a mile-
stone route to the ventral skull base [1]. Recently,
with the significant advances of endoscopic techniques
and related instruments, EEA has become the preferred
approach for the majority of the sellae lesions, includ-
ing pituitary adenomas, craniopharyngiomas and clivus
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chordomas [2], [3]. In contrast to the transcranial and
transsphenoidal microscopic approaches, EEA has consid-
erable advantages, such as a superior close-up view of the
skull base, multiple angles working field, as well as an
increased panoramic vision inside the surgical area [3].
However, some limitations of the endoscopic approach can
also be noticed [4]. As the operative space is quite narrow,
visual occlusion frequently occurs [5], [6], which may lead
to unnecessary trauma to adjunct organs and tissues, such as
the artery and optic nerve, etc.
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In recent years, deep learning methods have been utilized
with promising results in image analysis tasks, such as
recognition [7], [8], detection [9], [10], [11], segmenta-
tion [12], [13], [14], [15], [16], and pose estimation [17].
Many research works on surgical instrument detection
have been observed to be applied for identifying and
locating surgical instruments intraoperatively, thus achieving
surgical instrument tracking [5], [6], [18], surgical skill
assessment [19] and surgical instrument monitoring [20]. The
detection task consisting of classification and localization
of instruments provides valuable information to surgeons in
complex surgical scenarios, such as discovering the locational
relationship between instruments and tissues, which benefits
the operation of various surgical instruments in surgery
[21], [22]. For example, instrument detection can remind
surgeons to stop the surgery and adjust the locations of
surgical instruments which are out of the visible surface
or blocked. However, many challenges still need to be
addressed to achieve high-precision instrument detection in
endoscopic surgery, such as the blood on the instrument
surface, as well as the collision of the operated surgical
instruments during the surgery, let along the poor feedback
on endoscopic images during the surgery which might be
covered by the blur, shadow, and even reflections, further
decreases the detection precision [13], [20]. Therefore,
designing the effective method of instrument detection in
endoscopic images to improve the precision and the safety of
endoscopic surgery has become a crucial research topic [9],
[20], [23], [24], [25].

To address the challenges of instrument detection in the
complex environment of endoscopic surgery, there are two
main strategies: anchor-based and anchor-free methods. The
anchor-based methods include two-stage detectors and one-
stage detectors, in which the two-stage detectors generate
region proposals and then predict the classification and
location of objects on the candidate regions [26], [27], [28].
The one-stage detectors directly produce classification and
location through regression, such as the YOLO series [29],
[30], [31], [32], which has faster detection speed than two-
stage detectors. However, the anchor-based methods always
require many parameters calculation to generate the anchor
boxes, whichmakes them not applicable for surgical activities
as the fast reflection of surgical state and the precise
adjustment of instruments should be given to avoid any
possible trauma [19]. Therefore, the anchor-free methods
have received increasing attention [23], [33], [34], which is
beneficial to improve both the precision and efficiency of
object detection and is more competitive and efficient than
the anchor-based methods in the development of endoscopic
surgical instrument detection from clinical scenarios.

In this paper, motivated to improve the detection precision
of surgical instruments in endoscopic surgery, we proposed
an anchor-free feature aggregation network (AFA-Net)
inspired by CenterNet. Specifically, our AFA-Net utilizes an
improved feature pyramid network with depthwise separable
convolution in the process of lateral connections to generate

multi-scale features, which provides more subtle feature
information and enhances the ability of object recognition.
Then a feature aggregation module with a top-down weighted
feature fusion pathway is utilized to further refine edge
features, which reduces the loss of feature information during
the feature fusion process. Moreover, our AFA-Net enhances
the ability to locate the center point of object in the heatmap
by an aggregation module with the top-down weighted
heatmap fusion pathway, thus achieving accurate instrument
detection in endoscopic surgical scenarios.

The main contributions of this paper are summarized as
follows:

1) We propose an improved feature pyramid network and
a weighted feature aggregationmodule to extract multi-
scale features and enhance the feature representation.

2) We design a weighted heatmap aggregation module to
enhance the ability to locate the center point of object
and achieve accurate instrument location.

3) Experiments are conducted on a public dataset
Cholec80 [7] and an endoscopic transsphenoidal
dataset provided by Sun Yat-sen University Cancer
Center. The proposed AFA-Net achieves superior
performance in comparison to the five mainstream
methods in terms of detection.

The rest of this paper is organized as follows: Section II
presents the related works. Section III describes the proposed
method including network architecture and loss function.
Section IV provides the experimental results and discusses
the effectiveness of our method. And the conclusion of the
paper is shown in Section V.

II. RELATED WORKS
In this section, a review of surgical instrument detection,
anchor-free detection, and multi-scale feature fusion is
presented.

A. SURGICAL INSTRUMENT DETECTION
Most traditional methods of instrument detection typically
have relied on low-level visual features, such as color
and shape, for a simple computer vision task of color
segmentation or thresholding [35], [36]. As deep learning
approaches using CNNs have been increasing in popularity,
many methods are proposed to achieve surgical instrument
detection with the extraction of high-level features [7], [19],
[20], [37], [38]. Andru et al. [7] proposed EndoNet which
first adopts CNN trained with labeled surgical images to
achieve instrument detection and recognition from the video
of endoscopic surgery. Following this work, more neural
network architectures are introduced in instrument detection
tasks from surgical scenarios, including an attention-guided
CNN for real-time instrument detection in minimally inva-
sive surgery [9], a multi-level feature aggregation network
for multi-instrument identification [20], an arrow object
bounding box network based on YOLO for identification
and localization of instrument tips [38], an anchor-free
CNN for instrument detection in robot-assisted surgery [23].

VOLUME 11, 2023 29465



G. Ding et al.: Anchor-Free Feature Aggregation Network for Instrument Detection in Endoscopic Surgery

FIGURE 1. The overall framework of the anchor-free feature aggregation network for endoscopic surgical instrument detection. The three modules deep
aggregation module (DAM), weighted path aggregation module (WPAM), and weighted heatmap aggregation module (WHAM) in the dotted line rectangle
correspond to each part of our network and finally output the prediction and loss.

Furthermore, weakly supervised methods for surgical instru-
ment detection are proposed to utilize the images without
annotations of bounding boxes, which extends the approach
of network training [39].

B. ANCHOR-FREE DETECTION
Different from the anchor-based method using anchor boxes
to detect objects, the anchor-free method interprets the
detection task as the prediction of the different types or
numbers of keypoint, such as edge-based detection [40],
[41] and center-based detection [42], [43], [44], [45].
In CornerNet [40], Law et al. detect the object bounding
box as the keypoints in the top-left corner and the bottom-
right corner and then combine them together. The reason for
choosing corner points on edges is that the corner ones are
more conducive for training when compared with the center
ones. However, only predicting the corner location of an
object somehowmight fail to make full use of the information
in the frame, which could easily lead to false object detection.
Therefore, CenterNet [43] is proposed to directly detect the
central area and size information of an object, which is
conducive to accelerating prediction. In addition, the method
of keypoint triplets is introduced to combine two corners and
the center points, which further improves both precision and
recall of detection [43].

C. MULTI-SCALE FEATURE FUSION
To solve the multi-scale issue of objects, Lin et al. [46]
utilize the feature maps of different scales to form a
feature pyramid network (FPN), and then adopt a top-down
architecture to achieve multi-scale feature fusion. After that,
most studies of feature fusion focus on improving FPN [27],
[47], [48], [49], [50], [51]. The traditional feature pyramid
network is prone to semantic dilution when directly fusing
multi-scale features. Therefore, Wang et al. [47] propose a
novel interconnected feature pyramid network (IFPN), which

FIGURE 2. Illustration of the building block of weighted path aggregation
module (WPAM). ω1 and ω2 are the weights obtained from the gaussian
kernel [50].

selects attention features through the attention mechanism.
Liang et al. propose a twin feature pyramid network (TFPN)
to create a double pyramid structure fusion feature, which
can effectively reduce the increase of noise [49]. Aiming
to alleviate potential feature dislocation and loss of details,
the weighted feature pyramid network (WFPN) proposed by
Li et al. [50] fuses the feature maps in a weighted way. In our
study, WFPN directly inspires our fusion method of features
and heatmaps to detect multi-scale objects in endoscopic
images.

III. METHODS
A. NETWORK OVERVIEW
The overall framework of the proposed network is illustrated
in Figure 1, which consists of three modules as follows:
deep aggregation module (DAM), weighted path aggregation
module (WPAM), andweighted heatmap aggregationmodule
(WHAM). The original images are the input of the proposed
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network. In the DAM, the improved FPNwith depthwise sep-
arable convolution is introduced to extract more subtle multi-
scale features of images. ThenWPAM is proposed to fuse and
further enhance the extracted features information through a
top-down weighted feature fusion pathway. Inspired by the
anchor-free method of CenterNet, WHAM uses features to
generate the heatmap, size and offset of objects. Then the
heatmaps are fused through a top-down weighted heatmap
fusion pathway to adjust the peaks in the heatmap. The fused
heatmap, size, and offset are combined to calculate the loss
and output the prediction.

B. DEEP AGGREGATION MODULE
Feature pyramid network [46] consists of a bottom-up
pathway for feature extraction and a top-down pathway for
upsampling feature maps. Between them, lateral connections
are used to merge feature maps with high-resolution informa-
tion and feature maps with high-level semantic information
from top to bottom. The traditional FPN [46] fuses low-level
and high-level feature information, while it is easy to lose the
feature information of objects. Therefore, the proposed deep
aggregation module to improve FPN, as shown in Figure 1,
introduces depthwise separable convolution (Dwise) [52] into
FPN to provide more subtle details of instruments for the
feature fusion process.

As shown in Figure 1, the bottom-up pathway of FPN
is composed of reference feature maps computed from
each layer of the pyramid network with a scaling step of
2. We use ResNet-101 as the backbone, and select the
outputs of the last residual block from the conv2, conv3,
conv4, and conv5 layers as referenced feature maps, denoted
as {C2,C3,C4,C5}. The depthwise separable convolution
consists of depthwise convolution and pointwise convolu-
tion [52]. Different from FPN, in the lateral connections,
we replace the 1× 1 convolution layers after {C2,C3,C4,C5}

with 1 × 1 depthwise separable convolution layers. The
advantage is that convolution operation is performed indepen-
dently on each channel of feature maps, which is conducive
to extracting subtle features and has less computational
complexity. Then we upsample the feature maps at the higher
pyramid level by a factor of 2 to obtain new feature maps
with the same spatial size as the corresponding feature maps
at the lower pyramid level. Then, along the top-down pathway
direction, feature maps are merged by element-wise addition.
Finally, Each merged feature map is processed by a 3 ×

3 convolutional layer to obtain the final feature maps, denoted
as {P2,P3,P4,P5}.

C. WEIGHTED PATH AGGREGATION MODULE
Different methods have been proposed to enhance feature
information. For example, the path aggregation network
enhances the entire feature hierarchy through bottom-up
pathway enhancement [27]. The weighted feature pyramid
network adopts a Gaussian kernel function to assign different
weights to different image feature information [50]. Inspired

FIGURE 3. Illustration of the building block of weighted heatmap
aggregation module (WHAM). To more intuitively display the changes in
the process of heatmap fusion, the heatmaps are demonstrated in the
figure instead of the heatmap features. ω3 and ω4 are the weights
obtained from the gaussian kernel [50].

by the above methods, we propose a weighted path aggrega-
tion module to adjust and enhance the edge features of the
object in the feature map after DAM, as shown in Figure 1.

Typically, the feature map at the higher level reflects the
overall structure of objects, while the feature map at the
lower level is more fine-grained with detailed information on
the edge. The direct fusion of the top-down feature of the
FPN might result in the loss of the edge feature of object
in feature map at the lower level. We use an additional top-
down pathway to perform the weighted fusion of feature
maps at different levels, which is conducive to adjusting the
previously obtained features and further refining the edge
information [50]. Specifically, feature map P5 passes through
a 1 × 1 convolutional layer for adjusting the feature channels
to obtain feature map N5. As shown in Figure 2, in each
building block, the feature map Pi passes through a 1 ×

1 convolutional layer to obtain P′
i, and the feature map Ni+1

is upsampled by a factor of 2 to obtain N ′

i+1. Following the
weight assignment method in [50], we use the difference
between P′

4 and N ′

5 to calculate the weight value based on
a two-dimensional gaussian kernel function as below,

gauss(σ, r, c) = e−
(
r−H−1

2

)2
+

(
c−W−1

2

)2
2σ2 (1)

where H andW represent the height and width of the feature
map respectively, while r and c are the coordinates of each
point, and σ is the width parameter of the function and
controls the radial range of the function. The reason for using
P′

4 and N
′

5 to calculate weights is that there is less difference
in the object feature of the feature map at the top level [50].
We assign the larger weights to the feature map containing
more information to calculate the weights ω1 and ω2. In each
lateral connection, each element of the feature maps P′

i and
N ′

i+1 is multiplied by the weights ω1 and ω2, respectively.
Then the weighted P′

i and N
′

i+1 are merged by element-wise
addition to obtain Di. As shown in Eq. 2, the feature maps{
P′

4,P
′

3,P
′

2

}
and

{
N ′

4,N
′

3,N
′

2

}
of different levels are merged

from top to bottom to obtain new feature maps {D4,D3,D2}.
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FIGURE 4. The seven surgical instruments used in the cholec80-sub-tool-locations dataset.

FIGURE 5. The ten surgical instruments used in the sun21-tool-locations dataset.

Then {D4,D3,D2} is processed by 3× 3 convolutional layers
to obtain the final feature maps, denoted as {N4,N3,N2}, and
finally we obtain {N5,N4,N3,N2}.

{D4,D3,D2} = ω1 ∗
{
P′

4,P
′

3,P
′

2
}

+ ω2 ∗
{
N ′

4,N
′

3,N
′

2
}
(2)

D. WEIGHTED HEATMAP AGGREGATION MODULE
The anchor-free method of CenterNet [43] adopts heatmap
regression to obtain the center point to represent the object,
and then uses the features around the center point to predict
the offset and size of the object for locating object. Therefore,
the accurate prediction of the center point location plays a
critical role in the detection of instruments. We propose the
weighted heatmap aggregation module to enhance the ability
to locate the center point of object through the weighted
fusion of heatmap.

Mi = ω3 ∗ Hi + ω4 ∗ H ′

i+1 (3)

In CenterNet, peaks in the heatmap are recognized as the
object centers [43]. The feature map N2 has the more subtle
feature of the instrument, which is conducive to generating
the accurate heatmap of object center. We add a top-down
weighted heatmap fusion pathway to adjust the peaks in the
heatmap to further improve the prediction precision of object
center. As shown in Figure 3, in each building block, feature
map Ni is processed through a 3 × 3 convolutional layer,
a batch normalization layer, a ReLU activation layer and a 1
× 1 convolutional layer to generate the heatmap Hi. The
heatmap at the higher level is upsampled by a factor of 2 to
obtain H ′

i+1. Similarly, inspired by the weight assignment
method in [50], we use the difference between heatmap
H4 and the heatmap H ′

5 to calculate weight value based on
Eq. 1. And then we assign the larger weights to the heatmap
containing higher peak information to calculate the weights
ω3 and ω4 from the H4 and the H ′

5. As shown in Eq. 3,
in each lateral connection, each element of the heatmap Hi

TABLE 1. The number of annotated instances for each instrument on STL
dataset and CSTL dataset.

andH ′

i+1 is multiplied by the weightsω3 andω4, respectively.
Then the weighted Hi and H ′

i+1 are merged by element-wise
addition to obtain Mi. After the top-down weighted heatmap
fusion process, the finalmerged heatmapM2 is used to predict
the center points of objects. N2 is processed through a 3 ×

3 convolutional layer, a batch normalization layer, a ReLU
activation layer, and a 1 × 1 convolutional layer to generate
the offset and size of objects. Finally, following the design
in CenterNet, the heatmap, size, and offset are combined to
predict the classifications and the location of the instruments.

E. LOSS FUNCTION
In this paper, we adopt the same loss function as Center-
Net [43], which can be divided into three parts:

1) Lk is the loss of center point prediction in the heatmap;
2) Lsize is the size prediction loss of object;
3) Loff is the offset prediction loss of center point.

As shown in Figure 1, the final heatmap is used to predict
center points of object. The positive and negative samples in
the heatmap are balanced with a penalty-reduced pixel-wise
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logistic regression with the focal loss [43]:

Lk =
−1
N

∑
xyc


(
1 − Ŷxyc

)α

log
(
Ŷxyc

)
if Yxyc = 1(

1 − Yxyc
)β

(
Ŷxyc

)α

log
(
1 − Ŷxyc

)
otherwise

(4)

where Ŷxyc is the prediction of the keypoints, and Yxyc is the
ground truth of the keypoints. We set the hyperparameters
α = 2 and β = 4, following the work in [43], and N is the
number of keypoints in the images.

In our experiments, both Loff and Lsize are defined by
L1 loss. Specifically, we define Loff as below,

Loff =
1
N

∑
p

∣∣∣∣ÔP̃ −

(
P
R

− P̃
)∣∣∣∣ (5)

where ÔP̃ is the prediction center point offset of object k , P is
the center point coordinates, R is the down-sampling factor, P̃
is the center point coordinates acquired after taking the scale
P
R , and the

(P
R − P̃

)
is the ground truth of center point offset.

On the other hand, Lsize is defined as below,

Lsize =
1
N

N∑
k=1

∣∣∣Ŝpk − sk
∣∣∣ (6)

where Ŝpk is the predicted size of the object, and sk is the
ground truth. Accordingly, the total loss function is

L = Lk + λsize Lsize + λoff Loff (7)

where we set coefficients λsize = 0.1 and λoff = 1, following
the work in [43].

IV. EXPERIMENTAL RESULTS
In this section, extensive experimental studies are conducted
to verify the performance of the proposed AFA-Net with
the comparison of five highly cited mainstream methods
(RetinaNet, Yolov4, Yolov5, Faster-RCNN and CenterNet) in
terms of detection, meanwhile to evaluate the effectiveness of
the proposed AFA-Net through ablation studies.

A. DATASETS
To evaluate the performance of the proposed method,
proper datasets are necessary with clinical scenarios. In our
experimental studies, two datasets are chosen to analyze
surgical instrument detection: (1) a dataset of endoscopic
transsphenoidal pituitary adenoma resection named Sun21
from the Sun Yat-sen University Cancer Center, in which
21 videos recorded at 30 fps of the surgery from 2020 to
2021 are provided; (2) a dataset of endoscopic cholecystec-
tomy procedures named Cholec80 [7], in which 80 videos
recorded at 25 fps of the surgery are provided.

In the Sun21 dataset, we frame the first 10 videos at
30 fps and select 4136 images, named sun21-tool-locations
(STL). We annotate 10 classifications of instruments, namely
bipolar, cottle elevator, dissector, drill, knife, needle monopo-
lar, ring, straight sucker, tumor pliers, and up scissors,

as shown in Figure 5. While, in the Cholec80 dataset,
we frame the first 15 videos at 25fps and select 5199 images,
named cholec80-sub-tool-locations (CSTL). We annotate
7 classifications of instruments, namely grasper, bipolar,
hook, scissors, clipper, irrigator, and specimen bag, as shown
in Figure 4.
Both datasets are annotated with bounding boxes contain-

ing spatial coordinates under the assistance of an experienced
surgeon, and the number of annotated instances of each
surgical instrument is shown in Table 1. Following the work
in [19], for instruments with handles, the tips are annotated,
while for the specimen bag without handles, the entire body is
annotated. Each dataset is randomly divided into the training
set, testing set, and validation set with a ratio of 6:2:2, which
are respectively used for training, tuning, and optimizing the
performance of the network.

B. IMPLEMENTATION
After the configuration of the datasets, the PyTorch frame-
work is used for the implementation of the proposedAFA-Net
and the five mainstream networks including RetinaNet [53],
Yolov4 [31], Yolov5 [32], Faster-RCNN [54] and Center-
Net [43]. As part of data preprocessing, the input image size
is fixed to 512 × 512 and the datasets are extended with data
augmentation methods, including random cropping, flipping,
and color dithering. During training, the backbone networks
of all methods are pre-trained on ImageNet [55]. The batch
size is set to 32, and AdamW [56] is used as the optimizer
with an initial learning rate of 1 × 10−4 with a weight decay
of 5 × 10−4. We use the warmup learning strategy to adjust
the learning rate, with a minimum learning rate of 1 × 10−8,
and the learning rate starts to decay with a multiplication
factor of 0.1 at the 60th and 70th epochs. All methods in
the experimental studies are trained on an NVIDIA Geforce
RTX 3090 GPU with 300 epochs and verified to obtain the
results, respectively. For evaluation metrics, we use the mean
average precision (AP) and average recall (AR), which are
used as performance evaluation criteria in object detection,
to quantify the detection results of all methods.

C. COMPARATIVE STUDY
The results of the experimental studies are provided in
Table 2, where the AP0.5 and AP0.75 are APs calculated
at IoU = 0.5 and 0.75, respectively. From IoU = 0.5 to
0.95, the AP and AR values are calculated every 0.05, and
then the mean value is calculated to obtain AP0.5:0.95 and
AR. Among the five mainstream methods, CenterNet has
good performance on extensive evaluation indicators, which
reflects the advantage of anchor-free method in the task
of surgical instrument detection. Our proposed AFA-Net
achieves the SOTA against the compared methods on APs
and AR. Specifically, for the AP0.5:0.95, we achieve 74.1%
and 73.6% on STL and CSTL datasets respectively, which
are 3.6% and 3.7% higher than those of CenterNet. For AR,
our AFA-Net achieves 4.2% and 3.6% gains on the two
datasets respectively, indicating the higher credibility of our
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FIGURE 6. The AP for each instrument on STL dataset and CSTL dataset when IoU = 0.5, respectively. Red dotted line represents the average value of all
APs, and the vertical error bar represents the positive standard.

TABLE 2. Results(%) of various methods on STL dataset and CSTL dataset.

FIGURE 7. The detection results of samples on STL dataset and CSTL dataset. Bounding boxes in different colors display the surgical instrument names
and scores on different datasets.

TABLE 3. Results(%) of the AFA-Net with different modules on STL dataset and CSTL dataset.

method. Furthermore, the FPS of our AFA-Net is close to
CenterNet, which reaches the desired effect and indicates the
high computational efficiency of our method. It is notable
that the images on CSTL dataset largely differ from those

on STL dataset, since they contain different classifications
of instruments in different surgical scenarios. AFA-Net
performs fairly well on both datasets, which indicates its
versatility for instrument detection in diverse surgeries.
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Under the parameter IoU = 0.5, the AP of each surgical
instrument obtained by our method on the STL and CSTL
datasets is shown in Figure 6, with positive standard
deviations of 2.3 and 2.1, respectively. The results show that
the detection performance with different surgical instruments
is close to each other, and high-precision results are obtained,
which verifies the stability of our method. Notably, although
the drill and hook do not have the maximum number of
annotations, they obtain the highest AP. The possible reason
is that during the procedure, the surgeon ensures that it is
clearly visible during use, while the tip feature of the drill and
hook is more pronounced relative to other instruments. The
illustration of instrument detection by our method is shown in
Figure 7, where we can observe that the prediction bounding
boxes of the instruments are highlighted by different colors.

To sum up, our proposed method has achieved desired
detection precision, when compared with all the other
baselines. Our method can effectively improve the precision
of instrument detection and has stable performance and
versatility in surgical instrument detection under the complex
clinical environment.

D. ABLATION STUDY
To better illustrate the advantage of each module in AFA-
Net, the CenterNet is selected as the based neural network,
with gradually added feature pyramid networks (FPN),
deep aggregation module (DAM), weighted path aggregation
module (WPAM), weighted heatmap aggregation module
(WHAM) to obtain different neural networks, as shown
in Table 3, Net-E represents the proposed AFA-Net. All
the neural networks with the same hyperparameter and
experimental setting-ups on STL and CSTL datasets are
evaluated, respectively.

The obtained results are shown in Table 3, it is noticed
that the detection performance of the network is effectively
improved with added different modules. By comparing Net-
A with Net-B, we observe no significant improvement in
terms of APs and AR when using FPN, which might be
the loss of feature information in the fusion procedures of
FPN. Compared with Net-B, the improvement effect of Net-
C is better, which indicates the effectiveness of depthwise
separable convolution in DAM. Compared with Net-A, Net-
D achieves 4.1% and 3.4% gains of AR on STL and CSTL
datasets respectively, which demonstrates the importance of
subtle feature information. Furthermore, Net-E achieves the
highest APs and AR among all neural networks and performs
well on both datasets, which shows the effectiveness of
the weighted heatmap aggregation in WHAM and reveals
the advantage of the proposed AFA-Net in the surgical
instrument detection task.

V. CONCLUSION
In this paper, the anchor-free feature aggregation network
(AFA-Net) is proposed for endoscopic surgical instrument
detection. The proposed method combines FPN with the
depthwise separable convolution to extract features and

then adds a weighted feature aggregation module to further
enhance the feature information of instruments. Based on
the anchor-free method, a weighted heatmap aggregation
module is used to detect the surgical instruments, thus
can provide the surgeons with accurate information of the
surgical instruments, then improving the safety of endoscopic
surgery in which inaccurate assessment of the operated
surgical instrumentmay cause unexpected damage. Extensive
experimental results with two different endoscopic surgery
datasets show that AFA-Net can significantly improve the
detection precision of surgical instruments. In future work,
more efficient neural networks to improve the detection
precision of surgical instruments and further evaluation of the
proposed AFA-Net with more datasets will be conducted.
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