
Received 11 February 2023, accepted 25 February 2023, date of publication 28 February 2023, date of current version 3 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3250407

Disaggregated Memory in the
Datacenter: A Survey
MOHAMMAD EWAIS , (Graduate Student Member, IEEE),
AND PAUL CHOW , (Life Fellow, IEEE)
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada

Corresponding author: Mohammad Ewais (mewais@ece.utoronto.ca)

This work was supported by an Alibaba Innovative Research Agreement.

ABSTRACT Datacenters of today have maintained the same architecture for decades. The building block
of the datacenter remains the server, which tightly couples the necessary compute resources, memory, and
storage to run its tasks. However, this traditional approach suffers from under-utilization of its resources,
often caused by the over-provisioning of these resources when deploying applications. Datacenter operators
allocate the worst-case amount of memory required for each deployed application, which lasts for the entirety
of the application’s lifetime, even when not actually used. This causes servers to quickly, and falsely, run
out of memory before their CPUs have been fully utilized. To address these problems, a new shift in the
way datacenters are being built has been gaining more traction. Namely, memory disaggregation. Memory
disaggregation can address these problems by decoupling the computational elements from the memory
resources, allowing each to be provisioned and utilized separately. While the idea of memory disaggregation
is not new, an increasing number of different proposals ofmemory disaggregation have seen the light in recent
years. In this paper, we reviewmany of these recent proposals, and study their architectures, implementations,
and requirements. We also categorize them based on their features, and attempt to identify their strengths
and shortcomings in an effort to highlight possible directions for future work and provide a reference for the
research community.

INDEX TERMS Remote memory, disaggregated memory, memory disaggregation, datacenter architecture.

I. INTRODUCTION
Since the beginning of the Internet, datacenters have wit-
nessed a tremendous increase in their importance and have
become an essential tool of our lives. Many of our day-
to-day services, such as search engines, social networks,
telecommunications, streaming services, and many other
personal and business applications, are only enabled by the
advancements of today’s datacenters. The recent boom of big
data and the rising importance and popularity of machine
learning and its applications is going to further increase the
demand for datacenters. For example, in 2010, datacenters
were responsible for 1.5% of the total worldwide energy
consumption [1]. This figure grew to 3% in 2017 and is
projected to reach 4.5% in 2025 [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Libo Huang .

However, despite years of depending on datacenters, their
architecture has remained largely the same. The datacenter
has the server as its building block, where each server
functions by integrating the necessary compute, network,
memory, and storage resources together on a single mother-
board. This resource aggregation philosophy has worked well
for years, for the datacenter as well as personal computers.
However, with Moore’s law approaching its end of life, it is
becoming exceedingly difficult to expand and scale within the
boundaries of a single machine [3]. Furthermore, the inherent
difference between CPUs and memories (i.e., the memory
capacity wall [4]) and the gap in their performance, power
consumption, growth and scaling trends also contributes to
this problem, forcing datacenter architects to look elsewhere
for solutions.

The problem is further compounded by the inefficient uti-
lization of the resources in today’s datacenter. Traditionally,

20688
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-8830-8944
https://orcid.org/0000-0002-0523-7117
https://orcid.org/0000-0002-8307-6742


M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

applications in the datacenter are deployed in units of virtual
machines (VMs) or containers [5]. The amount of CPU and
memory resources allocated for each VM or container is
decided statically at deployment time and remains constant
for its entire lifetime. In reality, the resource consumption
of these applications is rarely constant, and varies during
its lifetime, as well as depending on the datasets or inputs
fed to the application, or other operating conditions like the
number of user requests, etc. It is also worth noting that
datacenter operators make the allocation decisions based on
worst-case scenario requirements, meaning they deploy the
application with the largest amount of resources it is expected
to use. This is particularly true for memory resources, since
running out of memory causes applications to either use swap
space, which is notoriously slow compared to memory, or be
entirely killed due to lack of resources. Also, CPU resources
can be shared, for example, using multi-threading, while
memory resources cannot. This worst-case scenario resource
allocation, along with the natural variations in application
resource consumption, means that for the majority of its
lifetime, an application is using less memory resources than
what was originally allocated for it. This over-provisioning
of resources essentially causes the servers in a datacenter to
‘‘run out’’ of memory before their CPUs are fully utilized.

For example; Amazon AWS EC2 had only 7% to 17%
CPU utilization [6]. Prior studies have also reported low CPU
utilization using Google’s datacenter traces, showing a CPU
utilization between 28% and 56% [7]. In a more recent study,
Alibaba reported 20% to 50% CPU utilization for most of the
time, and only as high as 70% at its peak, while at the same
time reporting a memory utilization from 80% to 100% [8].
This under-utilization of CPU resources has a multi-fold
negative effect. To start with, at least a part of the purchase
cost of these compute resources is essentially going to waste,
with resources being idle and under-utilized for long periods
of its lifetime. Furthermore, this puts a strain on the operation
costs of the datacenter, with parts of its energy consumption
also being wasted on under-utilized resources. The effects
of the wasted energy consumption extend beyond the simple
economics of datacenter operation, as they have a negative
effect on the environment.

To counter these issues, many recent studies have proposed
or revisited the idea of resource disaggregation in the
datacenter. This means moving away from a server-centric
datacenter towards a datacenter where each type of resource
is logically pooled together, completely independent of the
other resources. This is already true today in the case of
storage, where multiple storage servers exist in a datacenter
and can be utilized and shared by many client nodes.
Recent proposals extend this idea to the realm of CPU (or
compute units in general) and memory, namely, memory
disaggregation.

Resource disaggregation allows each type of resource to
be provisioned and utilized in fine grained units without
affecting other resource types, which further helps to improve
resource utilization [76]. However, it also comes with its
own set of challenges and problems. For example, connecting

pools of different types of resources becomes a much more
challenging issue, requiring an upgrade from a chip level
(e.g., processor bus or DDR interconnect) or server level
(e.g., PCIe) interconnect to a network level interconnect that
can provide the necessary high bandwidth and low latency
required for efficiently connecting these pools of components
together across a rack or even multiples of racks.

In this paper, we survey many of the recent studies
targeting memory disaggregation in the datacenter. While
we are not the first to survey memory disaggregation
techniques [9], prior work was only limited to a handful
of somewhat older proposals, thus not representative of the
state of the art today. In our survey, we focus on relatively
recent proposals, starting with those published after the mid
2000s until the time of writing. We do not cover studies
before this time since they were either revisited in the
recent proposals or depended on obsolete technologies that
render them unusable today. This survey focuses ONLY on
studies that propose architectures or solutions for memory
disaggregation. Studies that focus primarily on improving
network bandwidth or latency to help implement memory
disaggregation, or studies that focus on file systems for
the use of disaggregated Non Volatile Memories (NVMs),
or those that focus on rewriting/rearchitecturing applications
to fit a memory disaggregation system are NOT within the
scope of this survey.

For the proposals covered by this survey, we try to classify
them based on their high-level architectures, the methods
used for connecting clients to servers, their ability to handle
data sharing and maintain memory protection, their hardware
requirements and software ecosystems, etc. We also attempt
to pinpoint the shortcomings of current proposals and use
them to provide insight into what we believe should be the
direction of future research. However, we do not offer a direct
comparison of results between these proposals because of
the wide spectrum of different architectures used by these
studies, as well as the lack of proper tools (e.g., simulators
and benchmarks) built for this purpose. We elaborate more
on this in Section V

The rest of the paper is organized as follows: Section II
provides a background into many of the current technolo-
gies and network protocols that are needed for building
disaggregated memory systems. Section III constructs a
criteria for comparing memory disaggregation proposals,
while Section IV applies this criteria by discussing the
proposals, classifying them, and comparing them together to
highlight their differences and similarities. Section V lists our
observations and recommendations for future work. We then
conclude in Section VI.

II. BACKGROUND
In this section we briefly visit relevant topics or concepts
that are either constraining factors formemory disaggregation
or require modifications or redesigns to support it such
as, for example, virtual memory, memory consistency and
coherence. We will also examine enablers of memory
disaggregation, such as state of the art network protocols with

VOLUME 11, 2023 20689



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

minimal latency and improved throughput. Finally, we give
some examples of applications that can benefit from having
a disaggregated memory system.

A. VIRTUAL MEMORY
1) VIRTUAL MEMORY SYSTEMS
Virtual memory is an essential pillar of modern computer
systems. It provides each application with the illusion of
one contiguous uncontested memory space, simplifying
application development and maintaining a uniform view
across different machines. The operating system, assisted
with the hardware, is then responsible for translating these
virtual addresses of the application into physical addresses
that can be used to access a machine’s local memory. Some
of the most important benefits of virtual memory are the
following:

• It allows applications to run on any machine, regardless
of their available memory resources, without requiring
any modifications.

• It allows multiple applications to run on the same
machine, without having to worry about conflicts when
sharing the underlying memory resources.

• It provides better security due to the isolation of
applications.

• It creates the illusion of a larger memory even if the
underlying machine does not provide the same amount
of physical memory. This also enables using disks as
a memory extension through paging, allowing memory
pages to be swapped in and out from memory whenever
necessary.

2) ADDRESS TRANSLATION
Every memory access in a modern-day processor goes
through caching first. From the point of view of virtual
memory, there are two ways to design caches. Caches can be
virtually tagged, meaning they can be accessed using virtual
addresses directly, although a cache miss would still require
virtual to physical address translation to propagate through
the memory hierarchy. The alternative is to use physically
tagged caches whichwould require virtual to physical address
translation prior to accessing the cache. In either of the
previous cases, whenever a translation occurs, it first goes
through Translation Lookaside Buffers (TLBs), essentially
a fully associative cache for the page table, enabling quick
virtual to physical translation whenever a TLB hit occurs.
In the case of a TLB miss, or misses when there are multiple
levels of TLBs, the hardware assists the operating system
(OS) by performing what is called a Page Table Walk (PTW),
searching through the page table for the virtual address to
find a translation. This is a costly operation requiringmultiple
memory accesses to do a translation.

Even though TLBs do a good job of mitigating much of
the latency of address translation, naive PTWs are still costly.
This is whymodern approaches typically usemulti-level page
tables. In this scheme, each level of tables contains mappings
for the tables of the next level, eventually building a tree

FIGURE 1. Page table walking in x86 and virtualized systems. Adapted
from [89].

structure of tables and their entries. A part of the virtual
address is used to index each table to generate the address
of the next, until the last level table eventually returns the
physical address. The first level table is accessed through one
of the CPU’s control registers. For example, on x86 platforms,
the CR3 register [10]. In this scenario, a four-level page
table would take four consecutive memory accesses to do one
translation as shown in Figure 1(a).

In virtualized environments, hypervisors maintain separate
page tables per guest. In this case, a nesting of two page
tables is used. One for translating from guest virtual addresses
to guest physical addresses, which are still virtual addresses
provided by the host. The second translates these addresses
to real host physical addresses. Accessing each level of the
guest page table has to walk the entirety of the hypervisor
maintained table once to generate a physical address of the
host page table, incurring 24 accesses in total, as shown in
Figure 1(b). To avoid such huge overheads, PTW caches
and similarly nested PTW caches were proposed to reduce
the number of memory accesses needed [11]. A PTW cache
stores entries from all page table levels except for the last,
which is cached in TLBs.

B. MEMORY CONSISTENCY AND COHERENCE
1) MEMORY CONSISTENCY MODELS
A memory consistency model is a specification of how
the underlying hardware (i.e., CPU) interprets the memory
operations in a user program. It is especially important in
the context of multi-threaded applications as well as shared
memory systems, as it defines the rules of how to maintain
a consistent view of memory across all processor cores and
howmemory operations in a processor core will be reordered,
if any, and perceived by other cores.

Many memory consistency models exist. We describe
some of the most notable ones:

20690 VOLUME 11, 2023



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

• Sequential Consistency: Sequential consistency [12]
is the strongest memory consistency model in practice.
It behaves as if the memory operations on all cores are
executed in some sequential order. It also guarantees
that the view of memory operations as seen by different
cores is the same as the specified program order. In other
words, it does not allow any reordering of memory
operations.

• Total Store Order (TSO): TSO [13] allows stores to
go through a FIFO-style write buffer, instead of directly
to the memory hierarchy. This effectively hides the
write latency when stores encounter cache misses, while
allowing the processor to continue execution instead
of stalling on such writes. This comes at the expense
of relaxing some of the sequential consistency, as it
allows for stores to be reordered after subsequent loads.
Fence operations must be inserted by the programmer
whenever needed to handle this inconsistency. TSO is
widely used by Intel and AMD processors.

• Partial Store Order (PSO): PSO [14] goes further than
TSO by using a non-FIFO write buffer. Essentially, this
means that writes inside the buffer can also be reordered
as necessary, as they can be committed to memory in
a different order than when they were inserted into the
buffer. Similarly, fence operations can be inserted by the
programmer or the compiler to enforce ordering. PSO
was used primarily in SPARC processors.

• Weak Consistency: Weak consistency [15] relaxes
many of the sequential consistency constraints. It splits
memory operations into two categories; data and syn-
chronization (e.g., fences and barriers). Synchronization
operations are guaranteed to be seen by all cores in
the same order as their program order. Data operations
can be reordered freely by the processor, irrelevant
from their original program order. However, before a
synchronization operation can be performed, all data
operations must be completed, and vice versa. There
are other variations of weak consistency that have
been proposed, like release consistency [16]. It is
worth noting that some extreme implementations are
completely legal under weak consistency. For example,
implementations with multiple concurrent writers are
possible. Different variants of weak consistency are in
use today by ARMv8 and RISC-V implementations.

TSO is known to be the memory consistency model in Intel
and AMD processors [13]. Considering that x86 processors
are still the most prevalent in datacenters today [17], that
naturally makes TSO the most used memory consistency
model. Moving down from TSO to weaker models often
allows for better processor optimizations, such as buffering
memory operations instead of propagating them directly to
the memory hierarchy, allowing processors to proceed while
hiding the latency of these memory operations instead of
stalling. A side benefit of this buffering is that it allows
memory accesses going to the same destination to be grouped
together, potentially saving some coherence traffic and allow-
ing for better coherence scalability. Previous studies show

that TSO, PSO, and release consistency saw performance
increased by 8.9%, 10.6%, and 34.3% respectively over
sequential consistency in an 8×8 network on a chip [18]. This
decreased load on coherence traffic is particularly important
when considering memory disaggregation, as discussed
further in Section III. The price paid for this increased
performance is that weak consistency models are unintuitive,
leaving the programmer to worry about maintaining the
consistency and making programming for them a much
tougher task.

2) CACHE COHERENCE PROTOCOLS
In today’s multi-core processors, each core has its own access
to separate local caches. For data to be shared across these
cores correctly, these caches must communicate and transfer
memory data in between them correctly and coherently. There
are two variants for cache coherence protocols, the first is
the write-invalidate variant, where a cache line can exist on
multiple cores or caches under read permissions, but upon
writing, all these copies must be invalidated and only one
copy can exist with write permissions. The second variant is
the write-propagate, where a cache line can exist in multiple
caches, and upon write the data has to be propagated from
the writer to all other copies, to maintain coherence. Write-
invalidate variants are the most used today, so we only focus
on them. Themost notable of these cache coherence protocols
are:

• MSI: MSI is the simplest cache coherence protocol.
Under MSI, each cache line can be in one of three
possible states. The first such state is INVALID, which
simply means the line is invalid or the value that exists
for it in the cache line is stale. The second state is
SHARED, which indicates that this cache line exists
in read permissions in at least one of the caches, but
potentially more. The third state is MODIFIED, which
means that the cache line exists with write permission in
ONLY one cache. A read miss on a cache line results in
a request to put the cache line in shared state, which is
serviced directly from memory. If the line in question
is held in modified state by another cache, it has to
be written back to memory and that cache will be
downgraded to shared state before the read requester
can be serviced. A write miss on a cache line similarly
results in the downgrading of all sharers to invalid,
including any necessarywritebacks tomemory if the line
is modified, before the requester can be serviced.

• MESI: MESI is an addition over MSI. It is based on
the realization that many read-modify-write operations
will request a cache line in read permissions, then
shortly after request write permissions on the same line.
To eliminate the need for two requests, an extra state
is added, which is EXCLUSIVE state. Exclusive state
means that a line exists in strictly one cache and only
with read permissions. However, when a write miss
occurs on a line that is in exclusive state, the cache
can upgrade it from exclusive to modified silently, that
is without going through the coherence protocol. If a

VOLUME 11, 2023 20691



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

read miss for the same line occurs in another cache, the
owner core will have to be downgraded from exclusive
to shared.

• MOESI: MOESI further adds on top of MESI to
improve performance. In previous protocols, responses
to any requests would have to be serviced by memory
(or next level cache, if any), which typically has higher
latency than a cache in the same level. Based on that
premise, a fifth state is added called the OWNED state.
A cache that has a line in the owned state is one of
multiple caches sharing that line, but it exclusively has
the right to modify that line. However, it is responsible
for broadcasting those changes to all sharers. When
a cache line is downgraded from owned statem the
modifications have to be written back to memory, and
ownership has to be transferred to another sharers, if any.
This allows a dirty cache line to be used and moved
between caches without hitting the memory, saving up
the latency.

• MOSIF: MOSIF is highly similar to MOESI and is
based on the same premise. It also aims to decrease
latency by responding to requests from same level
caches rather than memory. UnlikeMOESI however, the
fifth state inMESIF, calledFORWARD, can only be used
with clean unmodified cache lines. A cache that has a
line in forward state must respond to any requests for
that cache line.

As the number of states in these protocols grow, more savings
in latency as well as traffic on the coherence fabric are
achieved, which is extremely attractive for disaggregated
memory proposals. However, the cost of these savings are
extra complexity on the cache designer, as well as extra
memory wasted for the extra metadata bits used to represent
the state. Whether this cost is justified should be decided on a
case-by-case basis. For more information regarding the above
coherence protocols, please refer to [19].

While the discussion above focuses on cache coherence
primarily, the same concepts apply to memory coherence.
For example, when a distributed shared memory is used
by multiple processors, and copies of pages exist on more
than one of these memories, the same protocols may
be used for such cases. A popular example for memory
coherence is the Ivy protocol [20], which is essentially an
MSI memory coherence protocol. The mechanism used to
implement these coherence protocols is usually one of the two
following:

• Snooping Based Coherence: In snooping based coher-
ence [21], all the caches share a communications bus.
Each cache will monitor (i.e., snoop) all transactions on
the bus, filter the transactions to what is included in the
cache, then update itself based on these transactions if
necessary. Snooping based coherence is fast, as it does
necessitate going through a central structure. However,
it suffers from scalability issues. As the number of
caches on the bus grow, so does the requirements for bus
bandwidth and latency.

• Directory Based Coherence: Directory based coher-
ence [22] tries to fix the scalability issues of snooping
based coherence. In directory based coherence, a central
structure called the directory is used to manage the state
of the caches instead of a central bus. The directory
receives requests from all caches, and is responsible for
forwarding these requests to the necessary caches only.
Because it does not require broadcasting like snooping
based coherence, directory based coherence can better
scale up and is used in many recent designs.

C. NETWORKING
1) COMPUTE EXPRESS LINK (CXL)
Compute Express Link (CXL) [23] is a PCI Express
based open industry standard for high speed interconnects.
It allows connection between multiple CPUs, accelerators,
IO devices, and even remote memories in a cache coherent
manner. The CXL standard has encompassed other existing
standards such as OpenCAPI, Gen-Z, and CCIX. The CXL
standard also introduces the idea of a CXL switch that
can enable fanning out to multiple devices. CXL has not
reached commercialization yet, and thus almost no proposals
discussed in this survey depends on it. But, it is anticipated to
help improve memory utilization for disaggregated memory
systems.

2) REMOTE DIRECT MEMORY ACCESS (RDMA)
Remote Direct Memory Access (RDMA) is a user-level
network protocol that allows direct memory access over
network. It provides a zero-copy approach to data movement
as it allows data to be transferred directly through the network
adapter without copying it to OS data buffers first. RDMA
communicators use queue pairs (QPs) consisting of a send
queue and a receive queue. Processes access QPs using
RDMA verbs, which can be one sided or two sided. One sided
verbs like read, write, and atomic require no involvement
from the receiver CPU and can completely bypass it and
directly access its memory. Two sided verbs like send and
receive require the remote CPU to be involved. For instance,
a receive request asks the receiver for the address of a buffer
to be used by a subsequent send request.

RDMA can be realized in three modes:

• Reliable Connection: Reliable Connection (RC)
RDMA requires a connection to be established between
two points. Each connection uses a separate QP, which
suffers from scalability issues as more connections can
result in too many QPs for the Network Interface Card
(NICs) to handle, eventually causing cache thrashing
in the NIC. As the name suggests, RC RDMA ensures
data reliability and ordering in the network layer, and
can return errors in cases of failure. RC supports all one
sided and two sided verbs.

• Unreliable Connection: Unreliable Connection (UC)
RDMA also requires a connection to be established
between two points. Thus, it suffers from the same
scalability issues as RC. However, UC provides no

20692 VOLUME 11, 2023



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

reliability guarantees, but can provide better throughput
as it saves the bandwidth needed for acknowledgment
packets. UC supports two sided verbs, as well as the
write variants of one sided verbs only.

• Unreliable Datagram: Unreliable Datagram (UD)
RDMA is connectionless. It does not require a con-
nection to be established from point to point, which
allows it to use one QP to communicate with multiple
destinations, which, in turn, gives UD better scalability
characteristics. Like UC, UD also provides no reliability
guarantees. UD supports only two sided verbs.

There are currently several different implementations of
RDMA. The most common of which are Infiniband, RDMA
over Converged Ethernet (RoCE, RoCEv2), and internet
Wide Area RDMA Protocol (iWARP). They are the basis
of many of the proposals discussed in this survey. There
are several studies that aim at improving the performance
of RDMA or proposing new RDMA verbs for certain
applications, these are not the scope of our paper and are not
discussed.

D. APPLICATIONS OF DISAGGREGATED MEMORY
1) DATABASES
Historically, databases have utilized secondary storage, such
as disks, as the primary backing store for their tables. With
the rise in access latencies associated with external storage,
databases have increasingly migrated towards utilizing main
memory as their backing store [25], [26] or, at minimum,
as a cache for their tables. This shift towards in-memory
database systems is driven by the growing size of database
tables, making databases a naturally memory hungry appli-
cation. Memory disaggregation can directly address these
requirements by providing the necessary memory resources
to databases, improving their scalability and performance.
As a result, some of the proposals we cover in this survey
(e.g., [90], [93]) focus on building systems that directly
enhance the performance of databases.

2) GRAPH APPLICATIONS
Graph applications are another type of inherently memory
hungry applications. Graphs require large amounts of mem-
ory to store their edges and vertices. With larger graphs,
the memory requirements can quickly and easily deplete
the memory of a single node. Disaggregated memory can
thus be a potential solution for the memory problem of
graph applications by decoupling compute from memory and
thus allowing more memory resources to be used for graph
applications as needed. Though none of the articles described
in this survey are directly aimed at graph applications, graph
applications in the context of memory disaggregation has
been studied before [27].

3) MACHINE LEARNING
Like databases and graph applications, machine learning
has also seen an increase in its memory footprint, with
larger and larger models being trained everyday (e.g., the

infamous ChatGPT [28]). Machine learning can benefit from
memory disaggregation in the same way, i.e., by expanding
the memory resources for it allowing it to utilize the amount
of memory it needs rather than be restricted by a single node’s
worth of memory. This would directly result in better training
times since memory disaggregation would eliminate the
need for data transfers between memory and disks. At least
one proposal in this survey is focused on building memory
disaggregation systems specifically for deep learning [78].

4) VIRTUAL ENVIRONMENTS
Since virtualization was the root cause of the resource
over-provisioning discussed in Section I, it is only natural that
virtualization stands to benefit from memory disaggregation.
By decoupling compute resources from memory resources,
a virtual machine can request and utilize the exact amount
of memory it needs at any given point in time. Not only
that, but if the underlying disaggregated memory system
supports data sharing, a virtual machine can also extend
beyond using one physical machine. In fact, the latter solution
is discussed in some of the proposals covered by this survey
[48], [49], [50], [51].

III. TAXONOMY
To be able to classify state of the art proposals of memory
disaggregation, we have to establish a clear taxonomy to
facilitate this task. We classify proposals based on the
following traits and parameters; system architecture, client
and server architecture, support for memory sharing and
memory protection, along with memory consistency and
coherence, when available, and finally, fault tolerance.
In each of the following subsections, we focus on one specific
aspect of memory disaggregation and outline a classification
criteria for later use.

A. SYSTEM ARCHITECTURE
In the proposals discussed by this survey, there are two main
methods to build disaggregated memory systems, as shown
in Figure 2. These are the following:

• Split: In this scheme, the memory attached to each node
is logically partitioned. The first part of which is strictly
only used by its owning node, while the second part
may be advertised to, and utilized by other nodes in
the cluster. The partitioning may be fixed or variable.
That is, the size of the partitions can be defined at
design-time or vary at run-time depending on demand.
In this scheme, a node can be a client and a server at the
same time. In other words, it can be accessing remote
memory while at the same time serving some of its own
local memory to be used by other nodes. By definition
then, this scheme requires two components. The first
is a daemon that runs on each node, receiving and
handling requests for memory from other nodes. The
second is a client running on nodes that request memory.
These can be implemented in OS, hypervisor, or user-
space as discussed later, but cannot, at least trivially,

VOLUME 11, 2023 20693



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

FIGURE 2. High-level system architectures for memory disaggregation.

be implemented in hardware. This scheme does not
require any restrictions to other design aspects such
as data sharing, memory protection, consistency, and
coherence.

• Pool: In this scheme, each node would contain its own
local memory that is not to be shared with other nodes.
However, there also exists a separate pool of memories
to be used by these nodes. Unlike the previous scheme,
this scheme provides clear separation between compute
and memory domains, since it uses separate nodes for
both. Thus, it can potentially free compute nodes from
the burden of running a memory server side by side with
computations. However, it is also possible to blur this
separation again by introducing nearmemory processing
on the memory nodes, although very rarely realized in
the proposals we discuss. Unlike the first scheme, this
is completely orthogonal to all other design aspects,
including the implementation of client and server nodes,
as well as sharing, consistency, and coherence.

B. CLIENT IMPLEMENTATION
There are many ways to implement a client that can function
in and utilize a memory disaggregation system. In the
following we discuss the ways most commonly used in
previous studies to implement clients:

• User-space Application: In this case, the memory dis-
aggregation is explicit, and the programmer is required
to understand the underlying memory system and code
using a specific library/API to allocate, free, share,
transfer, and protect data as necessary. Proposals that opt
for this design argue that no changes to the hardware
or OS allow for easier and quicker adoption of their
designs. However, it also means any target applications
have to be rewritten to utilize these APIs andmake use of
the disaggregation. Often times, these proposals, if they
support data sharing, also involve some form of weak

memory consistency models, making it even harder
on the programmer to rewrite such applications. This
approach is one of the most common in the proposals
we survey.

• Hypervisor: Proposals that use this level of implemen-
tation attempt to hide the memory disaggregation from
the user through modifying hypervisors. This allows
applications to run on such systems unmodified, and
oblivious to the traits of the underlying memory system.
It also allows new applications to be developed with ease
and without requiring new knowledge. The drawback is
that it requires modifications or potentially a complete
redesign of the hypervisor, especially if data sharing
is supported in such implementations, since it also
requires extra code to handle consistency and coherence.
Since memory disaggregation is implemented at the
hypervisor level, an obvious limitation is that this
method cannot be used for native OSes or other types
of virtualization (e.g., Containers).

• OS: OS implementations of a memory disaggregation
client are quite diverse, and can take shape in a multitude
of forms:
– Disk: In this case, the remote memory appears

to the OS as a network backed disk. This only
requires a device driver to be written, but no
modifications to the OS kernel itself. Because the
OS sees the remote memory as a disk rather than
a memory, data sharing and subsequent coherence
and consistency are not possible. Furthermore, it is
the responsibility of the user to explicitly map the
remote memory disk to memory (e.g., mmap [24]
it, on Linux systems) to be able to utilize it in their
application.

– Swap Space: This builds upon the previous case
by using the remote memory disk as a swap space
for the OS. Since swapping is always hidden from
the programmer, it does not require any extra
work on the programmer’s part. A pre-compiled
application can simply run on such a node, and
once it starts running out of local memory, it will
be up to the OS to swap pages between local
and remote memory as necessary, much like how
ordinary swap spaces are used today, possibly with
a lower latency, depending on the latency of the
remote memory and its remote connection. This
also utilizes existing OS capabilities, like page
prefetching, with no modifications to the kernel.
However, like its predecessor, this still suffers from
the inability to share data between different clients.
This is one of the most common approaches found
in our studies.

– Page Fault Handling: This is an upgrade built
upon the swap space solution, which offers one
important advantage. By using page fault handlers,
it allows the freedom of disaggregating any part of
the memory at any time, as opposed to swap which
only allows doing so when local memory runs out.

20694 VOLUME 11, 2023



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

– NUMA: This approach is fundamentally different
from using Swap Space or Page Fault Handling
since it uses remote memory as a memory rather
than a disk. It exposes the remote memory as
part of a Non Uniform Memory Access (NUMA)
space, which can then be used by the kernel to
satisfy application requests. In this case, the OS
would try to satisfy allocation requests from local
memory first, before resorting to using remote
memory. It is also the OS’s responsibility to
handle page migration between the two sections of
memory. This approach requires that the underlying
hardware be already coherent, or that major modifi-
cations be introduced to the kernel itself to support
non-coherent remote memory. The latter option is
not actually realized in any of our studied proposals.
It is worth noting that allowing data sharing in
such implementations requires an even larger kernel
modification to be able to communicate with other
nodes, which is potentially why this is also never
proposed in our studies.

• Hardware: Hardware implementations of memory
disaggregation are by far the most complex to imple-
ment. However, they provide an implicit approach to
implementing memory disaggregation with support for
legacy applications with no modifications. Hardware
implementations discussed in this survey usually expand
upon existing memory hierarchies of modern CPUs.
This is achieved by simply introducing new network
enabled remote memory controllers, which enjoy shar-
ing the processor’s coherence infrastructure. Because
they are based on the same memory hierarchy design
concepts, it is also possible to utilize existing ideas and
implementations such as hardware-based prefetching,
as well as caching remote memory through existing
processor caches. For research purposes, such designs
can be realized using simulators substituting for ASIC
design, or through cache coherent FPGAs closely
attached to processors.

These are the most common approaches used for building
clients in a disaggregated memory environment. They
serve as umbrella categories under which we can classify
most proposals. Some proposals use combinations of these
approaches, while some others exist completely outside these
umbrellas, we discuss their approaches when we discuss the
classification itself.

C. SERVER IMPLEMENTATION
Server implementations canmore or less be categorized under
the same umbrellas as client implementations, with notable
additions, modifications, and exceptions as we discuss next.
Server implementations also need not be coupled with their
client counterparts. In other words, clients and servers can be
implemented in different ways using different methods. The
most common approaches for implementing memory servers
are the following:

• Software: This is usually implemented as a simple
daemon-like program that is responsible for mainly
two tasks. The first is to receive network requests for
memory and respond to them. The second task is to
allocate such memory from the OS of the node it
is running on. The order of these operations may be
reversed, i.e., the daemon may allocate a memory pool
first then start servicing requests by allocating from
it. Depending on whether or not the system supports
data sharing, it may also do a third task, namely
responding and handling memory coherence requests.
The level at which the application exists varies, with
some proposals putting it as a user-space daemon, while
others implementing it as a kernel-level module or
daemon.

• Key-Value Store: This is a specialized form of a
user-space application, where the application essentially
presents itself as a key-value store for its clients. Unlike
other options discussed here, this is very restrictive, as it
only works with user-space based clients that utilize a
library/API with predefined data structures that can use
the remote memory key-value store. Key-value stores
can provide data sharing and atomicity, as discussed
later.

• Hardware: Hardware implementations of memory
servers yield what is called memory blades. Essentially,
a component that includes the necessary memory,
whether DRAM or non-volatile memory based, along
with a network capable memory controller. These
servers can only be used to access memory, as they
do not host any compute components. Since these are
expensive to build as ASICs, researchers often substitute
them by using simulators or emulators. It is theoretically
possible to implement these through FPGAs, but none of
the current studies, to the best of our knowledge, provide
such implementations.

As with client categories, these are the server implementation
categories that can classify most proposals. During classifica-
tion, whenever any of our studied proposals fall outside these
categories, we discuss their approaches as we present them.

D. ADDRESS SPACE AND TRANSLATION
A natural aspect to consider with memory disaggregation
is the virtual and physical address spaces used by running
processes, and how to manage virtual to physical address
translations. The following options exist in our studied
proposals:

• No Change: This happens especially in virtual memory
swap based systems. Since swapping naturally operates
behind the scenes and is hidden from the application,
virtual memory addressing remains the same with no
changes. Translation is also the same, going through
TLBs then page tables with no modifications. Some
other non-swap based systems also follow this approach,
especially those that maintain support for legacy
applications.

VOLUME 11, 2023 20695



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

• Partitioned Global Address Space (PGAS): In this
scheme the address space is partitioned into two main
parts. The first part is local to each process, while
the second is global and shared between all of them.
Translation can still occur in the same normal procedure
through TLBs and page tables, but would require special
page fault handling to map local pages to the same node
and handle global pages accordingly.

• Unified Address Space: In this case, the entire memory
disaggregation system is available under one virtual
address space. The physical address is either flat,
or partitioned to address memory nodes followed by
addressing memory at each node. Translation can
be complicated in this case, since it is essentially
extended beyond local memory. It requires global page
tables, along with possible page table caching. The
disaggregation system, if hardware or OS based, would
also have to handle different core TLB shootdowns
(A form of coherence where TLB entries are discarded
when they go out of sync) to maintain TLB coherence
across compute nodes.

• Key-Value Store: This is not a typical addressing mode,
but it is used in systems that utilize a key-value store as
its backend. Key-value stores as the name suggests uses
keys to access data, essentially like a dictionary. There is
no translation required for such addressing. The address
is sent to the key-value store, which responds back with
the data structure stored at this key.

E. MEMORY TRANSFERS
Memory transfers in memory disaggregation systems can be
categorized in two different ways. The first is based on the
network protocol used to transfer the data. Theoretically, any
type of interconnect, network or otherwise, could serve as
the infrastructure for data transfer in memory disaggregation
systems. Protocols like TCP/IP and UDP/IP are used in
older proposals, but they are far from offering the bandwidth
and latency requirements for memory disaggregation today.
Furthermore, they also introduce the extra latency of going
through the OS stack before actually reaching the network.

PCIe-based protocols like CXL [23] (or any of its
predecessors) are good candidates for use with memory
disaggregation. By design, these protocols support cache
coherence, which makes them suitable for hardware-based
implementations of memory disaggregation. However, they
are limited to short distances only and cannot expand beyond
a single rack slot or at most an entire rack. RDMA-based
communication is, at least currently, the most used protocol
for memory disaggregation. RDMA is also suitable for
memory disaggregation since it avoids the OS stack as well as
the CPU on the destination. Some proposals opt for designing
custom network protocols, as we will discuss in SectionIV.

The second way to categorize memory transfers is based
on the granularity of data being transferred itself, which
in turn is highly dependent on the choice of client and
server implementations. Memory disaggregation proposals
that use a key-value store as its memory server have memory

transfers that vary in size depending on the data structure
being transferred itself. On the other hand, proposals that
depend on virtual memory, like OS-based swapping or page
faulting, naturally use memory transfers that are page sized.
If data sharing is enabled, these proposals would usually
suffer from an issue called dirty data amplification, which
happens when an entire page is marked dirty even when only
a small part of it truly is. This impacts the network traffic
used for coherence, amplifying it unnecessarily. To alleviate
this problem, other studies propose cache line granularity
for data transfers, which would decrease, if not eliminate,
dirty data amplification. However, because the amount of data
sent on each request is much lower, this could potentially
come at the cost of extra requests and potentially performance
degradation.

F. MEMORY CONSISTENCY AND COHERENCE
Many of the proposals discussed in this survey do not support
data sharing at all. In other words, in these implementations,
each remote memory page can only be used by at most
one client. This means that for these proposals, there is no
requirement for memory consistency or coherence, other than
the guarantee of correct order of requests.

For the remainder of our studied proposals, they span
the entire spectrum of consistency and coherence solutions.
For example, many software-based proposals opt for a
weak consistency model. Since software proposals do not
honor legacy code and require programmers to rewrite their
programs, it is also possible to resort to a weak consistency
model at no additional cost. It is not uncommon to see
some of these proposals use a multiple-reader multiple-
writer implementation for such weak consistencies. On the
other hand, proposals that maintain backward compatibility
typically choose the same memory consistency model as the
compute units it uses, which is typically x86-TSO. Some
proposals opt for complete sequential consistency, which
has no dependency over the existing hardware since the
semantics of sequential consistency are legal under all weaker
consistency models.

On the coherence front, many proposals also prefer to avoid
coherence altogether, or at least make it the programmer’s
responsibility to communicate coherence whenever neces-
sary. This approach relieves a lot of the network requirements
needed for coherence. Other proposals either extend the same
coherence protocols used in their processors, or use known
implementations like the Ivy protocol and build upon them to
suit the scale of disaggregated memories.

G. CACHING AND PREFETCHING
Caching and prefetching are not essential when it comes
to disaggregated memory architectures, but they can be
utilized to improve the design significantly by improving
access latencies. Prefetching in our studied proposals is
restricted to virtual memory based implementations, and
is exclusively realized through OS page prefetching or
speculative page faults. Prefetching pages eliminates the extra
latency of page faults and hides the latency of fetching

20696 VOLUME 11, 2023



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

these pages off the critical path. Caching is also limited to
two general methods of implementation. Naturally, software
implementations provide caching in their corresponding
software/library components. Some implementations use the
local DRAM of their client nodes as a cache, either in
part or in full, with some proposals even using hardware to
manage the DRAM cache. To our knowledge, no studies have
proposed extra levels of caching, i.e., caching between client
main memory and remote memory servers.

H. FAULT TOLERANCE
Fault tolerance is essential in datacenters. Failures of nodes
are a fairly common event, and must be handled properly.
Furthermore, mass failures due to power outages or other
reasons are also not uncommon. If fault tolerance is not
supported or enabled, the results of such outages would
be devastating. When discussing fault tolerance, we mainly
focus on fault tolerance for the memory itself. For example,
network fault tolerance, including retries, latency guarantees,
and other techniques, are not covered by this survey. There
are multiple ways fault tolerance is enforced in the memory
disaggregation proposals:

• Replication: Replication may be the easiest as well
as the most straightforward option to support fault
tolerance. In essence, every memory unit has multiple
concurrently existing copies in physically different
locations or memory devices. Any writes have to be
propagated to all copies, while only one is needed
to serve read requests. The drawbacks of replication
are obvious, the price paid in redundancy to achieve
replication is expensive in terms of used resources. This
becomes even more severe when a higher number of
replicas is required to achieve better fault tolerance.

• Logging: Logging is somewhat similar to replication,
although it can be thought of as more fine grained.
Every operation that results in themodification of data or
bringing in new data is logged in a secondary (or more)
location. In the case of failure, such logs may need to be
traversed so that a recovery of data may be constructed.

• Persistence: Persistence is achieved in two ways. The
first is simply replicating memory contents to a storage
device (i.e., disk). Because of the performance gap
between memory and storage, this type of persistence
can cause tremendous slowdowns, so most proposals opt
to do it off the critical path. The second way utilizes non-
volatile memories, and thus requires no replication to
achieve persistence.

• ErasureCoding: Erasure coding aims to achieve similar
fault tolerance to replication, as well as mitigate its
excessively high cost. Erasure coding is essentially an
error correction coding. It encodes data of some length
into a redundant format with a higher length. This longer
encoding is then split across multiple memory devices or
locations. The original format of data can be recovered
from a subset of this longer encoding, essentially that
means a system can tolerate to lose some of these splits
without an issue. Increasing the length of the encoding

ensures better fault tolerance, at the expense of more
memory resources. The drawbacks of erasure coding are
higher memory access latencies, as they include the time
needed for encoding and decoding the data. Another
drawback is higher strain on the network, since a single
data access requires multiple separate memory access
from multiple locations.

IV. CLASSIFICATION
In this section, we apply our taxonomy to existing memory
disaggregation studies. We briefly visit each of these
proposals, discuss their implementations, compare them,
and show their similarities and differences. The section is
organized in four subsections. The first covers high-level
system architecture. The second subsection focuses on
memory hierarchy. While the third subsection covers fault
tolerance. We also add an extra subsection for discussion
studies that do not provide implementations and do not fit
the aforementioned classification.

A. ARCHITECTURE COMPARISON
In this subsection we discuss the general system architec-
ture, client and server implementations, as well as data
transfers. These are the entry point to comparing memory
disaggregation proposals. We leave other details for the next
subsections. Tables 1A and 1B summarize the comparisons
of this subsection.

1) OS BASED SYSTEMS
In this subsection, we cover proposals that mainly depend
on OS features or even require OS kernel modifications
to support memory disaggregation. We categorize these
proposals based on their required or used OS features:

a: SWAP
MemX [29] is the earliest proposal we include in our survey.
The paper presents a pool system architecture, although
its components can be, in theory, implemented in a split
architecture too. MemX clients see the remote memory as a
block device (i.e., disk) that is directly used as a swap space.
This is implemented either through Kernel modules that can
be used in guest OSes or the host OS directly, or using a
hypervisor driver that is shared by all guest OSes. MemX
servers use a separate network capable kernel module running
on a native OS. Since MemX is swapping based, it maintains
a memory transfer unit size of 4KB. MemX uses a custom
protocol, called the remote memory access protocol, which
bypasses the TCP/IP stack and communicates directly with
the network device. The MemX system also does not support
data sharing. A highly similar approach is that introduced
by collaborative memories [30] as it also uses the remote
memory as a network connected block device. UnlikeMemX,
it makes use of the existing TCP/IP stack to transfer data, in an
effort to avoid OS as well as application modifications.

Infiniswap [31] introduces a detailed swapping system
to be utilized for memory disaggregation. It essentially
uses remote memory as a cache for disk swapping. Like

VOLUME 11, 2023 20697



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

TABLE 1. Architectures and implementations of memory disaggregation proposals.

20698 VOLUME 11, 2023



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

TABLE 1. (Continued.) Architectures and implementations of memory disaggregation proposals.

MemX [29], it is configured as a block device used as a
swap space. However, swaps to remote memory are also
forwarded to storage devices off the critical path. Infiniswap
uses units of 1GB slabs each, and sends data using RDMA.
The paper covers more details about placement, eviction,
batching, as well as remote memory reclamation. Another
similar proposal is FastSwap [32] which tries to mitigate the
drawbacks of Infiniswap. Infiniswap does not allow multiple
clients to use the same block device, even when there is
unused memory. FastSwap fixes this issue by dynamically
sharing memory between multiple hosts, although it is
limited to VM clients on a single host. It also introduces
compression on swap outs and decompression on swap ins
to save the amount of memory utilized. In a subsequent
paper [33], FastSwap is incorporated into a larger memory
disaggregation system where it is extended to use remote
memory over RDMA. XMemPod [34] was also introduced

with similar compression features. It provides two levels
of remote memory to client VMs, the first being the host
memory, and the second being outside-host remote memory.
It also supports data sharing between different VMs on the
same node, but not beyond.

Another swap engine is Google’s zswap [35], which also
supports data compression and movement across a network,
although no specific network protocol is specified. The
novelty of zswap is that it identifies cold pages (infrequently
used pages) and proactively compresses and swaps them
out, as opposed to doing so on page faults. This saves
memory space as well as decreases the page fault latency by
not evicting on the critical path. CFM [36] also introduces
another swapping system with active memory swapping out
similar to zswap, although it does not compress its data. CFM
also separates the swapping in of requested and prefetched
pages, and assigns them different priorities to improve page

VOLUME 11, 2023 20699



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

fault response time, and uses RDMA for data transfers.
It is worth noting that CFM’s swapping system is also
called FastSwap, which is not the same as our previously
reported FastSwap [32]. Valet [37] is another remote memory
swapping engine. It provides multiple improvements on the
normal Linux page swapper. First, it uses a local page cache
for remote pages. It pre-allocates pages in this cache and
uses these pages when needed, cutting down the access time
considerably. It leaves writes to happen off the critical path
for the same reason. Towards the same end, user freed pages
are put pack into the local cache for later re-use instead of
actually freeing them. Like many similar proposals, Valet
uses RDMA for its 4KB sized data transfers.

The two final swap engines we visit have somewhat
different focuses. SemSwap [38] is focused on reducing
the effects of dirty data amplification. Unlike normal swap
engines, SemSwap does not view its applications as black
boxes, it instead collects information from its JVM runtime
about the hotness of data lines within virtual memory pages,
then consolidates some of these hot parts together in a
single physical page, thus reducing the amount of swapping
needed. SemSwap guarantees correctness and can revert
to the original physical pages whenever a cold data part
is needed. The second final swap engine is Canvas [39]
which is instead focused on reducing the interference
caused by multiple memory client applications competing
for swap space, locks, as well as RDMA resources. Canvas
introduces application private swap spaces as well as private
per-application RDMA bandwidth. It also maintains a global
swap space for shared pages. Canvas also introduces some
extra optimizations enabled by the isolated swap spaces such
as adaptive scheduling and prefetching techniques.

b: PAGE FAULT HANDLING
FluidMem [40], [41] uses a different approach, although
still based on swapping. Instead of introducing the remote
memory as a block device, it uses a custom page fault handler
to deal with remote memory swapping on its own. FluidMem
also differs in its server architecture, where it uses a normal
server hosting RAMCloud [42], an in memory database,
as a backend key-value store, and communicates with it over
Infiniband RDMA.

c: FILE-LIKE
Another different approach is that proposed by Hotpot [43].
Hotpot makes use of non-volatile memories, and tries to blur
the line between memory and storage. Hotpot uses file-like
structures to name data in its memories, and provides a kernel
module with an mmap-like functionality to allow allocating
and naming such data. The pointers resulting from these
mmap-like calls are used similarly to normal pointers without
any extra function calls. These pointers are guaranteed to
be consistent across machines as well as persistent across
application reruns. Hotpot also supports data sharing on
a 4KB page granularity and over an RDMA interface.
Similar to Hotpot, Remote regions [44] also follows the same
approach of using regions (i.e., files) as an abstraction of

remote memory, although it is restricted to volatile DRAM
memories. It also provides a file system kernel module to
enable this abstraction, as well as a software user library to
allow data allocation, freeing and sharing. Remote regions
uses 128KB chunks over RDMA.

d: THREAD MIGRATION
DeX [45] proposes to completely reverse the solutions, and
instead of moving data closer to execution, it instead uses
thread migration to where the data is. DeX introduces new
Linux system calls for execution migration. It captures the
thread context including its registers, state, stack, etc., and
moves them from one node to another as intended by the
system call. The threads can be brought back when they are
done executing. To handle state dependent system calls it
allows the migrated thread to offload the system call to the
original node, requiring no changes to the implementation of
other system calls. Along with execution migration, DeX also
supports data sharing between nodes.

e: MISC
Leap [46] is a somewhat special proposal. It does not
build a memory disaggregation system from scratch, but
rather proposes a new page prefetching system of higher
accuracy, to be integrated in existing memory disaggregation
proposals. To showcase the prefetcher, Leap builds two
separate systems, one based on Infiniswap [31], and the
other based on Remote Regions [44]. More details about its
prefetching techniques are discussed in Section IV-B.

Hydra [47] is equally special as it also does not target
innovation in memory disaggregation itself. Instead, it builds
upon Remote Regions [44] and Infiniswap [31] to showcase
its fault tolerance and compare against existing techniques.
More details are discussed in Section IV-C.

2) HYPERVISOR-BASED SYSTEMS
In this subsection we cover proposals that are based on
hypervisor implementations or modifications. Since there are
only a handful such proposals, we do not further categorize
them.

Unlike many other proposals, vNUMA [48] does not make
modifications onto existing components. Instead, it is built
from scratch with the purpose of running a single virtual
machine atop multiple physical nodes. vNUMA is a split
architecture Type 1 hypervisor, meaning it is a bare metal
hypervisor that does NOT run on top of an operating system.
Because of its end goal, vNUMA naturally supports data
sharing between different nodes. To this end, it uses a custom
network protocol built over Ethernet to move data, using a
4KB page granularity.

Another hypervisor-based implementation is vDSM [49],
which is highly similar to vNUMA [48]. vDSM utilizes
hypervisor-based page swapping to handle memory disaggre-
gation. Like vNUMA, it also supports data sharing between
different nodes in a split mode, but it uses RDMA for its
data transfers. A third very similar proposal is GiantVM
[50], [51]. GiantVM is a Type 2 hypervisor, running on

20700 VOLUME 11, 2023



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

top of an operating system. It has an architecture similar to
that of vNUMA, with the addition of remote inter-processor
interrupt handling, as well as virtual IOs. GiantVM uses
RDMA for its data transfers, and was tested with transfers
of 4KB and 4MB sizes.

Semeru [52] builds on the same premise of vNUMA [48],
although specialized for Java applications. Semeru introduces
a pool based system. A compute node runs a Java Virtual
Machine (JVM) with limited memory, but allows Java
applications running on it to use a distributed universal
heap backed by multiple remote memory servers. Semeru
also introduces a distributed garbage collector that offloads
object tracing to light JVMs running on the memory
servers. To handle data swapping between the client and
server nodes, Semeru utilizes an existing swapping system
called NVMe-oF [53]. Semeru uses 4KB data transfers
over RDMA. Further improvements over Semeru were later
introduced in MemLiner [54]. MemLiner tries to address
the increasing misses and ineffective prefetching resulting
from the competition between the application and garbage
collector threads. It builds on the key observations that
accesses of the applications and the garbage collector are still
related (though not temporally), and that the order of which
the garbage collector does its tracing is not important. Based
on these observations, MemLiner tries to align the working
set of the application and garbage collector to significantly
reduce remote memory traffic. A third JVM-based garbage
collector is Mako [55] which has different design goals from
MemLiner and Semeru. While Semeru and MemLiner are
both throughput focused, Mako is latency oriented, to better
suit the latency sensitive applications of today’s datacenters.
Similar to Semeru, it also offloads tracing to the memory
servers where it executes concurrently with the client parts.

3) SOFTWARE-BASED SYSTEMS
In this subsection, we cover proposals that are mainly
software based.We further categorize them based on the style
of their software implementations:

a: EXPLICIT SOFTWARE LIBRARY
DLM [56] is a pool-basedmemory disaggregation system that
is fully software based. It uses a user space API for clients and
servers. A host file is used to select the memory clients and
servers for each deployment. The API is used to allocate and
free remote memory, and a signal handler is used to handle
segmentation faults (i.e., page faults) and implement a swap
system similar to Linux’s, albeit completely in user space.
Because it is fully in user space, the memory transfer unit,
which is the ‘‘page size’’ is also user defined. DLM simply
uses TCP for its memory transfers. It also does not support
data sharing.

Similar to DLM [56], FaRM [57], GAM [58], and
DASC [59] also use the same software library approach,
albeit on a split system.Onemain difference is that they are all
based on RDMA.GAMuses one-sided RDMAoperations for
data, but resorts to two-sided ones for its control flow. Unlike
DLM, FaRM and GAM also support data sharing between

different compute nodes. FaRM uses data transfers of varying
allocation sizes, from 64 bytes to 1MB, while GAM uses
512 bytes, and DASC uses pages of 4KB. Grappa [60], [61],
Argo [62], MAGI [63], and rMap [64] also follow somewhat
similar approaches. Only the first three support data sharing.
Grappa, MAGI, and rMap are RDMA-based, where only
MAGI uses two-sided RDMAverbs, while Argo and a second
implementation of rMap are MPI based, and thus use TCP as
their backend. Grappa keeps user data structures (in reality,
user provided malloc sizes) as the unit of data transfers, while
MAGI and Argo keep data transfer granularity of 4KB pages,
and rMap uses data transfers of multiples of 4KB.

Another approach is that of CODS [65]. CODS is a split
system reliant on a PCIe switch to connect multiple nodes.
Initially, the nodes negotiate what parts of memory are remote
and set up a translation table between their address spaces.
CODS uses a Linux driver rather than a real explicit software
library. LikeDLM [56] the driver offers anAPI to allocate and
free remote memory as needed. Apart from these API calls,
memory accesses proceed like normal with no extra user
or OS involvement, though they miss in the entire memory
hierarchy until they reach the PCIe port.

b: IMPLICIT SOFTWARE LIBRARY
AIFM [66] is somewhat similar toGrappa [60], [61], although
on a higher abstraction level. AIFM provides developers with
predesigned, C++standard container-like data structures that
are remotable. These data structures are designed to operate
the same way on local memory or remote memory, hidden
from the programmer. The AIFM runtime decides when
these data structures are kept locally or transferred to a
remote server depending on the status of the system. It also
encodes information about these data structures and their
availability into their pointers. A programmer can force a
data structure to exist locally by dereferencing its remotable
pointer. AIFM also provides a lower abstraction layer where
new data structures can be designed, and also provides
the flexibility to run active parts of the data structures
on the remote memory, similar to in-memory processing
ideas. AIFM uses DPDK [67] with TCP as its memory
transfer backend, and the authors leave data sharing for future
research.

c: KEY-VALUE STORE
Clover [68] utilizes a persistent memory-based key value
store as its memory servers. It proposes passive (i.e., memory
only without any processing) nodes as the memory server,
and splits all control paths from the data paths by also
introducing metadata servers for such tasks. Clover supports
data sharing between compute nodes, and uses one-sided
RDMA for data transfers and two-sided RDMA for control
transfers. Naturally, data transfer sizes in Clover are not
uniform sized and depend on the size of accessed data
structures. In a subsequent study [69], the authors try to
alleviate the conflicts of RDMA writes by using top-of-rack
(TOR) programmable switches to serialize such conflicts,
as discussed in Section IV-B.

VOLUME 11, 2023 20701



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

d: PROGRAMMABLE SWITCHES
Two very different software-based approaches are Concor-
dia [70] and MIND [71], which do not execute their software
on processors, but on TOR programmable switches. Concor-
dia and MIND assume an existing memory disaggregation
system with client and server nodes, with the client nodes
including caches for the remote memory. Both proposals
utilize the unique location of the network as a mediary
between clients and servers to handle cache coherence
requests with shorter latencies. The details of these cache
coherence systems are discussed in Section IV-B. MIND
extends beyond Concordia in that it also uses the TOR
switches to handle thread placement, and modifies the Linux
kernel on the CPU blades to forward these requests to the
TOR switches over TCP, as well as generate RDMA data
transfers on page faults.

4) HARDWARE BASED SYSTEMS
In this subsection, we focus on proposals that mainly intro-
duce new hardware designs or modifications. We categorize
them as follows:

a: BLADE-BASED
Blade [72], [73] introduces the use of hardware modifications
to achieve memory disaggregation. They introduce a pool
system where separate compute and memory blades exist.
The authors propose two different ways of implementing such
a system. The first way is to use unmodified CPU servers
of today, connected to memory blades (i.e., memory servers)
through a PCIe backplane. This essentially introduces new
hardware in terms of the memory blades and their required
management hardware such as memory controllers, optional
compression or encryption hardware, as well as protection
between different sharers/accessors. However, it keeps the
CPU blades unmodified. In this implementation, they use
hypervisor swapping to transfer pages with a granularity of
4KB, much like MemX [29] and similar designs. The second
way assumes a cache coherent interconnect between the CPU
and memory blades, and so requires hardware modification
on the CPU side to add a coherence filter and interface
with the memory. In this case, the data transfer granularity
is cache line sized. This does not require modifications to
the hypervisor or the OS, beyond the ability to support
NUMA memory. In both implementations, there is no data
sharing between different CPU nodes, and the authors also
discuss no form of fault tolerance for their system. dReDBox
[74], [75], [76] follows suit by envisioning an optically
connected blade based system similar to Blade’s second
implementation. However, the studies are more focused on
the optical connections and the networking architectures.

Another proposed blade based system is that discussed
in MC-DLA [78]. This proposal is somewhat different from
other proposals discussed in this paper as it also incorporates
GPUs in the disaggregated system, primarily for machine
learning applications. MC-DLA uses NVLINKs arranged in
a triple ring topology as the communication backend. The
introduced blade based system is evaluated using an in house

simulator, and so there is no information provided about its
associated runtime, if any, the granularity of data transfers,
etc.

DirectCXL [77] is the first (and only) proposal we cover
that utilizes the newly introduced CXL protocol. DirectCXL
realizes normal CPU servers of today as memory hosts, with
passive remote memory blades comprising only of DRAM
memories along with a CXL enabled memory controller. The
connections between these are PCIe based CXL interfaces.
Optionally, CXL switches can be introduced into the mix
allowing multiple hosts and memories to be connected,
although no sharing of resources is allowed between hosts.
DirectCXL enumerates the memories at startup time through
PCIe, and uses a kernel module/driver to announce them as
memory mapped files for user utilization.

Clio [80] is another blade based pooled system. It uses
unmodified CPU servers as the compute nodes, but utilizes
active memory blades as memory servers. The memory
blades comprise DRAM memories, along with an ASIC
that handles all the data accesses, as well as a CPU that
handles all control operations. The last part is an optional
FPGA fabric that can be used to implement any form of near
memory computing. The compute node library provides the
ability of allocating, freeing, as well as explicitly reading
and writing data over Ethernet. Clio supports data sharing
between compute nodes.

b: OS
Another study, LegoOS [81] proposes a new split kernel
operating system. While not directly proposing a hardware
based system, the OS assumes a blades-based system, and
deploys a monitor on each blade to keep track it of its
utilization and manage it. It utilizes the main memory on the
CPU blades as an extra level of caching, and manages this
cache in software through the CPU monitors. For address
translations, it assumes TLBs and page tables have been
entirely moved to the memory blades, and that all CPU
caches are virtually indexed and tagged, thus providing a clear
compute and memory separation. LegoOS can use multiple
blades of each type for any deployed application, and vice
versa. However, it does not support sharing data between
different CPU blades, and leaves it to the programmer to
use messaging if needed. LegoOS provides three different
network stacks, based on two-sided and one-sided RDMA,
as well as Ethernet, and maintains a data transfer granularity
of 4KB. LegoOS uses the existing Linux system call interface
for backward compatibility, and also supports fault tolerance
through the use of logging to secondary memories as well as
to SSDs.

c: FPGA-BASED
PBerry [82] goes a fundamentally different road. It utilizes
system on chip FPGAs that include a CPU and an FPGA side
by side with a cache coherence interconnect. It then leverages
the coherence of the FPGA to provide the illusion of a huge
cache representing a remote memory. It does this by only
saving the tags on the local FPGAmemory, while keeping the

20702 VOLUME 11, 2023



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

data on the remotememory. It also introduces a kernelmodule
to control this hardware. PBerry is completely focused on
the client architecture. It assumes a pool-like system but
does not discuss any requirements about the servers or the
data transfers between client and server. However, since it is
cache coherent, it uses cache lines as the unit of data transfer,
in an attempt to reduce dirty data amplification. The same
basic principle of PBerry is utilized again in Kona [83]. The
FPGA serves as a directory for the far memory, and the local
FPGA memory is used as a cache for it. The local cache
is the only major component differentiating between Kona
and PBerry. Because the FPGA is connected to the cache
coherence infrastructure, it can keep track of dirty data and
handle misses to remote memory before they cause page
faults. Kona uses user-space software, rather than a kernel
module, to handle hardware management, as well as remote
memory allocation, etc.

ThymesisFlow [84] follows a similar approach to
PBerry [82], but it also provides a server implementation.
It builds a remote memory client that is connected to
the processor through the IBM OpenCAPI [85] cache
coherent interconnect. ThymesisFlow also utilizes FPGAs
for the implementation, and uses the Xilinx Aurora [86]
protocol for its data transfers. On the server end, a similar
hardware interface is also connected to the processor
through OpenCAPI. ThymesisFlow utilizes a user space
application to also manage allocations, distributions, as well
as configurations. ThymesisFlow relies on Linux HotPlug
capability [87] to support adding and removing memories to
users as needed.

d: OTHER HARDWARE MODIFICATIONS
In soNUMA [88], the authors aim to utilize the qualities of
RDMA while avoiding its drawbacks, so they build a cache
coherent (as opposed to PCIe connected) network interface
similar to RDMA and optimized for smaller transfers. They
also provide a device driver for the interface, as well as a user
API to use it. While, in theory, a system using soNUMAmay
be designed to share data, no such capability is reported in the
study.

DeACT [89] also utilizes hardware changes, although this
time for the purpose of providing a shared remote memory
(as a resource, not data sharing) without manipulating or
modifying virtual memory systems. The insight behind
DeACT is that the tasks of remote address translation
(translation from a fake physical address inside compute
nodes to a real address in the remote memory node) and
remote data access control are separate and need not be
implemented together. Towards this purpose, it builds a
modified memory controller on CPU nodes, where the
controller cache translation data can emit a final remote
address in its request, without any form of access control
checking. The translation data can be saved in the local
DRAM where it is reachable by the controller. Once a
final translated address has been requested, a central unit
responsible for access checking gets involved, and either
allows the access or denies it if it does not have the required

permissions. This approach is completely invisible from the
OS and the user, and allows the OS to manage a fake
continuous NUMA style memory space, with no awareness
of the underlying remote memory.

Another approach highly similar to DeACT is that taken
by MEMSCALE [90], [91]. Like DeACT, MEMSCALE
introduces a modified memory controller that can access the
memory of other nodes over the HyperTransport protocol.
This allows the memory to appear (to the processor and
operating system) as a normal physical memory, though
with a higher latency. The memories of all nodes in
the system are shared, serving as a split architecture.
However, MEMSCALE does not support data sharing and
was restricted to testing single applications using memory
beyond that of a single node.

DVM [92] is another way of implementing disaggregated
memory through hardware. DVM introduces a new Instruc-
tion Set Architecture (ISA) called DISA. DISA provides
a minimal set of Turing complete instructions, as well as
registers, and a complete memory model that we will discuss
in Section IV-B. DISA is not implemented in hardware,
instead it is emulated on top of x86 processors.

Farview [93] is a proposal specific to database engines.
It mixes memory disaggregation with the idea of near
memory processing. It does so by utilizing FPGAs as
the memory controllers, using the memory itself to store
the database object, and dividing the FPGA into multiple
dynamic regions. Each application accessing the database
is assigned a dynamic region that implements the database
operator(s) required. Farview augments the hardware imple-
mentation by a software library for applications to establish
connections and communicate with the FPGA. Farview uses
RDMA for data transfers.

5) NETWORK REQUIREMENTS
Unlike most other studies which aim to build memory disag-
gregation systems and evaluate them, network support [94]
and network requirements [95] try to establish the network
requirements necessary to support memory disaggregation in
the datacenter. Both studies follow the exact same approach
by using part of their local memory as an emulated remote
memory through a swap space with injected artificial delay.
Both studies do not consider data sharing and thus do not
include any coherence traffic in the network requirements.
The knobs varied in both studies are the amount of injected
delay, as well as the percentage of local memory. The
difference between both studies is simply their choice of
benchmarks. A third study [96] focuses on the feasibility of
memory disaggregation by following a different approach.
Essentially, it looks at the issue from the application’s side,
by establishing the requirements needed for application’s
operation, then comparing those to the specifications of
existing networks.

B. MEMORY HIERARCHY
In this subsection we discuss the memory hierarchy of
our studied proposals. We only cover proposals that make

VOLUME 11, 2023 20703



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

TABLE 2. Address space changes and memory hierarchy of
disaggregation proposals.

changes to the address space, or those that introduce data
sharing, thus also introducing coherence and consistency
to the mix. Table 2 summarizes the comparisons of this
subsection.

1) ADDRESS SPACE
a: NO CHANGE
Swapping based systems do not introduce any changes to
the addressing or to virtual memory in general. However, for
many other proposals, it is natural to either use one unified
address space acrossmultiple nodes, or to supply two separate
address spaces, one for local and another for remote memory.

b: PGAS
DASC [59], soNUMA [88], and AIFM [66] are all
software-based solutions (at least in part, such as for the case
of DASC) and thus provide a split address space. The first part
of the address space is local and accessible through normal
pointers and memory accesses, while the second is remote
and usable through API calls. Since all three proposals do
not support data sharing, this is a special case of the PGAS
addressing discussed in Section II, where the remote part of
the address space is not global. The address separation is not
as clear in the case of AIFM, as it cannot be defined in a

specific range, but is still adequately split to be considered
a partitioned address space.

Software based proposals that support data sharing like
FaRM [57], Grappa [60], and GAM [58], as well as Clio [80]
which uses a hybrid software/hardware implementation,
follow the same approach by using a partitioned address
space where the remote part is accessible similarly through
API calls. However, unlike soNUMA [88], DASC [59], and
AIFM [66], they fully conform to the PGAS addressing
model, and the remote part of these address spaces are shared
between different nodes. DVM [92] is another proposal
that uses PGAS addressing, but in a completely different
methodology. The instruction set architecture of DVM
defines its memory space as a PGAS address space where
the remote part is shared across multiple processing units.

c: PGAS-LIKE
Hotpot [43] andRemote Regions [44] are somewhat different.
Since their architecture is based on file like-regions, users can
access remote memory by mapping these regions or files to
memory and using the resulting pointers. In this case, there is
no difference between local and remote pointers, and no extra
API calls are needed for accessing remote memory. We take
the liberty of categorizing these as PGAS-like addressing
modes, since there is clear separation in the address space
between local and remote spaces. However, unlike usual
PGAS-style addressing, this is mostly hidden from the user
and does not require any special programming beyond simply
opening a remote region or file.

d: UNIFIED
GiantVM [50], vNUMA [48], vDSM [49], MAGI [63],
Argo [62], Semeru [52], Mako [55], and MemLiner [54]
are also software based implementations, whether in user
space or hypervisor. These proposals all allow a single virtual
machine or application to span multiple nodes, and thus they
all provide a unified address space. The address translation
in this case is purely done in software. This is not an issue in
the case of hypervisor-based implementations like vNUMA,
vDSM, and GiantVM, but can be more work in the case of
user space applications. MAGI adds a kernel module for the
purpose of handling TLB shootdowns and batches multiple
TLB shootdown requests to maintain coherence between
different compute node TLBs.

Concordia [70] and MIND [71] also use a single unified
address space. However, the translation process happens
entirely in programmable switches in which memory is a
scarce resource. This forces both proposals to look for a
technique that minimizes memory usage. Both proposals split
the virtual address space uniformly over physical memory
servers, allowing the switch to use one entry per remote
memory node for translation.

e: KV
A different case from all of the above is Clover [68] which
offers a key-value addressing mode rather than traditional
memory addressing, owing to its use of a key-value store as
its memory server.

20704 VOLUME 11, 2023



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

2) CACHING AND PREFETCHING
Caching and prefetching are improvements to existing
memory hierarchies, and are not yet popular in memory
disaggregation proposals. Only a handful of the proposals
presented here support one or the other.

a: CACHING
FluidMem [40] and Argo [62] both provide a software
managed cache with page-sized entries. The cache in Argo
is restricted to a direct mapped architecture. GAM [58]
uses a similar approach by splitting the local memory of its
compute nodes to three different parts. The first is left as a
local memory for the OS and the application, the second is
advertised as a shared global memory, while the third serves
as a softwaremanaged cache as well as a distributed directory.
LegoOS [81] also uses a software monitor on each compute
blade to organize and utilize its local memory as a cache.
The implementation of the cache’s replacement policy and
eviction is all built into the node monitor. Hotpot [43] and
Remote Regions [44] also provide a software managed cache,
although not many details about them are provided.

Clover [68] uses an interesting type of caching. Unlike
other proposals, it does not cache the data it may need to
access, but rather caches metadata and headers about its hot
key-value entries. The cache is not kept coherent, instead,
the entries are invalidated using timeouts and epoch-based
garbage collection. This cache plays an important role in the
consistency model of Clover, as discussed in Section IV-B3.

b: PREFETCHING
FluidMem [40] uses a simple prefetcher that detects consecu-
tive page accesses and conservatively prefetches one page at
a time. Argo [62] uses another simple form of prefetching
where a sequence of pages are brought in on a single
miss. GAM [58] also provides a limited form of prefetching
where cache lines are only prefetched on a synchronization
operation. Remote Regions [44] leaves it to the programmer
to use special API calls to do prefetching when needed,
to avoid the latency of page faults.

Leap [46] is a proposal that is fully focused on page
prefetching in the context of remote memory systems.
It introduces a prefetcher that looks at access history with an
adaptive window size, and uses a majority vote to detect past
trends. The window size decreases when trends are prevalent,
reducing the work needed for next prefetching iterations, and
increases on failure to detect a trend, thus using more history
data to help detect access trends. It uses a majority vote
algorithm called Boyer-Moore to detect the access trends.
Once a prefetching decision has been made, it prefetches
pages into local buffers, separate from the usual kernel page
cache, and eagerly removes pages from this prefetch queue
once they have been used, to make room for more prefetches.

3) CONSISTENCY AND COHERENCE
The memory disaggregation proposals we discuss use many
different consistency models and coherence protocols. In the

following, we categorize these models and protocols and
describe them in detail if necessary.

a: STRONG CONSISTENCY
FaRM [57]maintains sequential consistency by assigning IDs
to all RDMA transactions, and serializes these transactions
to maintain consistency. vDSM [49], MAGI [63], and
GiantVM [50] also provide a strong consistency model
by using the Ivy memory coherence protocol, discussed
previously in Section II. DeX [45] follows a similar approach
by providing sequential consistency based on an unspecified
Ivy-like MRSW coherence protocol.

While not a memory consistency model in the traditional
sense, Clover [68] provides a sequential consistency model
for its key-value store. It keeps a linked list of updates for
each data structure, forming an update chain. Compute nodes
then cache the head of this chain and on every read performs
pointer chasing to find the last entry of the linked list.
Clover uses skip lists as a shortcut to decrease the amount of
pointer chasing needed, but does not eliminate it completely.
On writes, the writer appends to the linked list by adding a
new entry. It can retire older versions to reclaim space. Clover
can suffer from compare and swap like conflicts, where
multiples of these requests would be initialized to the same
address, and only one would succeed invalidating the others.
The authors proposed using programmable switches to cache
such requests and maintain their link head address. When a
conflict is detected it is resolved by delaying the offending
requests, waiting on the first to resolve, then modifying
the offending requests with the updated chain head address.
This essentially converts a failed request to a successful one
without the delay of retrying.

b: TSO/PSO CONSISTENCY
In vNUMA [48], the Ivy protocol is used at its core to
keep its memories coherent, but vNUMA improves on it by
allowing write propagation for sparse data accesses. Write
propagate directly sends writes to the owner node, rather
than invalidating their copy and asking for an exclusive copy,
as explained in Section II. This results in the downgrade from
Ivy’s typical sequential consistency to a TSO-like consistency
model. GAM [58] also supports caching and uses a PSO
memory consistency model by implementing a worker thread
based buffering for write requests and allowing reordering,
GAM uses an MSI directory based coherence protocol for its
caches.

c: WEAK/RELEASE CONSISTENCY
DVM [92] uses a snapshot based consistency model.
In essence, all workers would have a consistent view of
memory at a specific time (i.e., snapshot). This model
allows each sharer to read and write to its own copy of the
snapshot without conflicts or disruptions from others. DVM
detects these write conflicts, and serializes these conflicts by
blocking or retrying writers.

Grappa [60] maintains coherence by keeping ownership of
memory pages to nodes. To access any page, requests must

VOLUME 11, 2023 20705



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

be delegated to its owner node. Because this can potentially
put strain on the network as well as unnecessary overhead,
Grappa also resorts to batching multiples of these requests
together. This batching and delegation results in a weak
memory consistency model, but guarantees sequential con-
sistency on synchronization operations. Argo [62] uses a very
different approach for memory coherence. It uses a normal
directory based cache coherence protocol. However, to ease
the coherence traffic pressure off the network, it introduces
the idea of self invalidations and self downgrades. Simply
put, a cache can decide to self downgrade an exclusive line
if it no longer needs it for writing, allowing any subsequent
sharing requests from other caches to go through without the
downgrade delay as well as its traffic. A similar idea is used
to self invalidate cache lines that are no longer being used,
so write requests for them can proceed with less network
traffic and delay. Argo also uses a weak memory consistency
model, and provides synchronization operations to override it
if necessary.

Clio [80] uses two different memory consistency models,
depending on the API semantics used by the user. The first
model is sequential, where all data accesses are blocking
and strongly ordered. The second is release consistency
based, and uses asynchronous accesses as well as locking
and releasing API calls. Clio does not provide coherence by
default to avoid its effect on network, and instead leaves it
up to the user to handle, the mechanism of which is not
discussed. Hotpot [43] provides two different consistency
and coherence models as well. To keep its caches coherent,
Hotpot introduces two different coherence protocols. The
first is a MRMW protocol that uses a weak consistency
model and resolves commit conflicts by forcing writers to
retry, similar to DVM’s [92] snapshot conflict resolution.
The second method is an unspecifiedMRSW protocol, which
appears to be similar to the Ivy protocol, but using a release
consistency model. Remote Regions [44] chooses to not
keep its caches coherent, and instead delegates that task to
the programmer. The user can utilize special API calls to
either completely clear the cache or completely write back its
contents to enforce coherence. These API calls apply to the
cache as a whole, not cache lines, and so can be expensive.
This approach also results in a release consistency like model.

d: SWITCH BASED
Concordia [70] and MIND [71] both use a simple MSI cache
coherence protocol. Concordia also assumes a sequential
consistency model, although it can be applied with weaker
models to relieve pressure on the switches, while MIND is
restricted to a TSO memory consistency model because of
the way page faults are handled. Concordia and MIND use
programmable switches to act as a directory, using its unique
location between clients and servers. Whenever the switch
receives a request, it can check the owner node, forward the
request to it, or send a multicast signal to multiple sharers,
if any. Because of the memory limitations of programmable
switches, Concordia only does so for hot cache lines, and
leaves the rest to servers. It also provides a migration

TABLE 3. Fault tolerance models in memory disaggregation proposals.

mechanism by which cache line management/ownership can
move between the switch and the servers. In this regard,
Concordia can be though of as a cache for the directory itself.
MIND handles the switch memory limitations differently,
it decouples the data access granularity (fine grained) from
the cache coherence granularity (coarse grained), essentially
allowing less data to be saved in the directory.

C. FAULT TOLERANCE
In this subsection we discuss the fault tolerance methods used
by memory disaggregation proposals. A small subset of our
studied proposals actually provide fault tolerance. Most of
these opt for the option of replication, although other types of
fault tolerance are also used. A summary of these are shown
in Table 3.

FaRM [57] uses replicated logging to achieve fault
tolerance. It can append these logs to two locations, which
can either be in memory or storage form. However, FaRM
reports extra overheads when the logging is SSD based.
Infiniswap [31] uses remote memory to act as a cache to swap
storage devices, which means Infiniswap naturally supports
fault tolerance through persistence, while also avoiding its
high cost by hiding the delay through caching in remote
memory. FluidMem [40] utilizes RAMCloud [42] as its
backend, and thus utilizes RAMCloud’s existing replication
functionality. Hotpot [43] also uses replication for fault
tolerance, the degree of which is user defined. Hotpot also
innovates in this regard by utilizing existing cached copies
of data as replicas for fault tolerance. Hotpot is also based
on non-volatile memories, and thus provides persistence
naturally. Because its pointers are themselves persistent and
guaranteed to be the same across reruns, this also facilitates
recovering from faults. GAM [58] also uses logging for fault
tolerance. It logs both write accesses as well as coherence
accesses as necessary. GAM uses NVRAM and SSD to make
its logs persistent. LegoOS [81] does fault tolerance using
a mixture of logging as well as replication. It essentially
logs accesses to data as well as replicates metadata on a
secondary node. Off the critical path, the logs are flushed
frommemory to storage where it is appended. FastSwap [32],
Clover [68], XMemPod [34], and Kona [83] take the easy
approach and simply provide replication for fault tolerance.

20706 VOLUME 11, 2023



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

Valet [37] allows the user to either enable replication to
memory, or asynchronous writing to persistent storage to
avoid the latency, or both.

Hydra [47] is the only proposal in our list that uses erasure
coding. Hydra introduces a resilience manager that is respon-
sible for encoding (or decoding) data, as well as splitting it
into the necessary partitions. It then sends these partitions
out to different memory devices. Hydra compares its erasure
coding implementation to replication-based proposals and
shows considerable speedups.

D. DISCUSSION STUDIES
Another class of studies does not introduce implementations,
but focuses on discussing the challenges and the future of
disaggregated memory. We present these studies here but do
not include them in any of our comparison tables.

One such study is [97]. It argues for a software-based
implementation and discusses its challenges from that point
of view, covering issues like fault tolerance of memory
disaggregation systems, memory allocation and placement,
memory sharing and memory ordering models, network
congestion, and virtual memory delays. Another study is
fate sharing [98], which discusses fault tolerance under
disaggregated datacenters, and establishes different fate
sharing models and how to handle tolerance in each fate
sharing model. In [99], the authors also explore the diversity
of the design space of memory disaggregation. They talk
about multiple design aspects including its opacity from the
applications, its dependence on hardware versus software,
fault tolerance, as well as data sharing and transfers.

In [100], the authors discuss the transition towards a
memory-centric operating systems. They discuss issues and
challenges like the use of non-volatile memories, memory
sharing, addressing and protection, coherence, and reliability,
but do not provide a design or implementation.

E. SUMMARY
We summarize our classification of memory disaggregation
studies by quantifying these studies and their umbrella
categories. This quantification is shown in Figure 3. Around
half of these studies (Precisely 24 out of 50 proposals) are
completely implemented in OS or hypervisor, the majority
of which fall under the two related categories of swap
engines and page fault handlers. The remaining half of the
covered studies are a mixture of hardware solutions, software
libraries, or both, with a clear bias towards software. We also
show that the majority of these solutions do not support
data sharing between different client nodes. This is either
a constraint forced by the nature of the implementation
method used (e.g., swapping cannot be used to share
data), or a willful design choice intended to simplify the
proposed solution. Lastly, we show that fault tolerance is,
for the most part, ignored in our studies. Even when fault
tolerance is considered, the simple, and sometimes wasteful,
data replication technique is the most popular solution,
occasionally mixed with other solutions as well. Precisely

one study, Hydra [47], focuses solely on fault tolerance in
memory disaggregation systems and introduces an improved
technique.

V. OBSERVATIONS AND RECOMMENDATIONS FOR
FUTURE WORK
In this section, we present our observations from the
covered memory disaggregation studies. We discuss these
observations and try to pinpoint areas for improvement and
possible future research directions.

It is obvious from the studies we covered that there is a
higher preference towards software based implementation,
either as user-space libraries or as modules or modifications
to operating systems and hypervisors. This is understandable
given the relative ease of software development and the
possible hardships associated with designing hardware-based
solutions. It is also quite common for many of these
proposals, hardware and software alike, to NOT support
data sharing. This is probably due to two reasons. First,
in many of these proposals, especially older ones, remote
memory is considered as a faster replacement to storage.
Second, allowing data sharing means a higher barrier as it
requires significantly more work to develop a functioning
memory disaggregation system. A third observation is that
for those proposals that support data sharing, there is a higher
likelihood of using a relaxed or weak memory consistency
models. The reasoning for this is simple, since in many cases
memory disaggregation is throttled by the network, trying
to alleviate some of that pressure by using weaker memory
consistency is only natural.

Diving deeper, in most of the studies we covered, there
are two surprising traits that are prevalent. First, there is a
tendency in many of these studies to build systems based
primarily on intuition and predisposed personal opinion.
Intuition is required in some cases, for example, deciding
whether a software or hardware approach is best is not
an easily quantifiable task, and may require a great deal
of intuition. But in many other instances, especially where
quantifiable results are possible, intuition should not be
the tool of choice. For example, none of the studies we
covered show any reasoning for implementing disaggregation
in pool or split format. The second observed trait is that
many of these studies try to create complete solutions
for memory disaggregation. Memory disaggregation is a
complex problem with many aspects to consider, and thus we
believe it is only natural to break down the task into smaller
steps, and approach them individually and incrementally,
allowing more care for studying these parts as well as
implementing the best solutions for them.

We further recommend the following as directions for
future research, based on the two observed traits discussed
above as well as other observations discussed within:

• General System Architecture: As discussed above,
almost none of the reported studies provide any reason-
ing for choosing a split architecture over a pool-based
one, or vice versa. In fact, most studies outright pick
one, and completely ignore the existence of the other.

VOLUME 11, 2023 20707



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

FIGURE 3. Quantifying the papers reviewed in this study and their spanned categories. From left to write, high level architecture, method of
implementation, whether data sharing is supported, and the type of fault tolerance supported.

Only one study, [97], acknowledges the existence of
both, but quickly dismisses one and focuses on the other.
Even disaggregation proposals that compare against
other disaggregation proposals mostly compare against
previous systems of the same type (e.g., swapping
vs swapping based) and thus never provide insight

into the high level architecture tradeoffs of different
approaches. There is no methodology of research in
the field that enables quantifiable comparison between
different architectural approaches. We believe this is an
important observation that points to the need for building
tools (e.g., simulators and common benchmarks) to

20708 VOLUME 11, 2023



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

enable a dedicated study, and a practical comparison that
shows the pros and cons of different approaches.

• Scope of Disaggregation: Similar to the high-level
architecture of disaggregation systems, this is also a
somewhat forgotten aspect in many of the studies. What
should be the level on which to do disaggregation in
the datacenter? Should it be constrained within the
boundaries of a rack? Or should it extend beyond a rack
or even groups of racks to cover an entire warehouse
scale datacenter? No studies present answers for these
questions. While many of the studies we discussed
include scale of implementation in their evaluation, it is
primarily intended for measuring the scalability of their
designs, rather than focus on providing a generalized
answer for these questions. Naturally, some studies
might come with somewhat restrictive answers based
on the technologies they use. We argue that the scope
of disaggregation should be studied independently and
orthogonally from specific technologies to provide a
clear understanding of the benefits gained at every level
or scope of disaggregation.

• Data Sharing: Today’s datacenters run applications
inside virtual machines or containers. In many cases,
multiple instances of each application are deployed at
once, often with some of form of network communica-
tion or message passing between them. However, when
data sharing is enabled in our proposals, except for
those that do not provide coherence, it essentially allows
applications to take the form of multi-threading instead.
In essence, we argue that supporting data sharing should
be studied in that multi-threading context, and should
be compared against the usual deployments of today’s
systems instead of simply comparing to single large
memory node deployments. The overheads of data
sharing, movement, and coherence should be compared
to the overheads of deployment through virtualization,
as well as message passing.

• Memory Hierarchy: When memory accesses take a
long time, the conventional wisdom is to place one or
more levels of caching in between the memory and
its accessor, obviously aiming at hiding some of this
latency. However, the traits of these caching systems
realized in our studies seem to be chosen arbitrarily.
Studies that implement caching never go beyond one
level of caches, which is usually implemented in the
whole or part of the local DRAM in a CPU server. The
reasoning for only applying one level is never discussed,
and it is never established how much caching actually
improves the performance and whether its cost is
justifiable in terms of latency overheads and complexity.
Furthermore, some aspects of the caching hierarchy,
such as the choice of consistency models, have clear
foundations. Another example is cache line sizes, where
it is sometimes justified by using virtual memory or
being connected to existing coherence infrastructure.
However, some other traits like the cache replacement,
the coherence protocols, associativity, etc., are all

chosen arbitrarily. We recommend studying the effect
of caching along with the effect of all these different
factors, to establish the requirements for caching in
memory disaggregation systems.

• Network Requirements for Disaggregation: The three
studies that focus specifically on finding the network
requirements for disaggregation all assume a similar
split architecture, and base their studies upon the
assumption of no data sharing as well as coherence. This
may be caused, at least in part, by the relatively early
time at which they were done, but it is time to expand
upon these studies and find the effect of other types
of systems and hierarchies and the strain they put on
network.

• Hardware vs Software: Many of the proposed solutions
we covered are implemented in software, where the
argument behind this is that software is easier to
adopt, while hardware is expensive to substitute or
change. However, very often these solutions require
major modifications, if not complete rewrites of appli-
cations, which in reality hinders the ease of adopting
these software solutions. OS- or Hypervisor-based
implementations can avoid changing both hardware
and software, although usually at the expense of
increased latency caused by page faults and page fault
handling. Hardware-based implementations skip all of
the unnecessary latencies and can become the most
performant of implementations, at the obvious expense
of the cost of installing new hardware in the datacenter.
That said, datacenter operators already upgrade their
hardware every 3 to 5 years [101], making that cost a
price paid regardless of disaggregation anyway.
While not yet widely used, CXL is making its way
into more and more datacenter components. Because
it is PCIe-based, it is mostly expected to be limited in
scale to within a single rack, at most. However, with
its components (almost) readily available, we believe
that makes it the perfect candidate for future work
targeting OS-based or hypervisor-based implementa-
tions, allowing a short term commercial realization of
memory disaggregation in datacenters. In addition, the
birth of promising datacenter suited network stacks
like RIFL [102] also create the perfect opportunity to
build more performant memory disaggregation systems.
Since RIFL has no viable commercial implementations
yet, there is enough time for new hardware systems to
be researched and studied utilizing RIFL or the like,
towards a long term solution that can later be applied
in real datacenters.

VI. CONCLUSION
Memory disaggregation is becoming increasingly important
as a promising solution to underutilization of datacenter
resources. However, by studying the current proposals of
memory disaggregation, we discover that a general analysis
and quantization of the feasibility and performance of
different approaches is severely lacking, with many of the

VOLUME 11, 2023 20709



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

solutions proposed for memory disaggregation being mostly
based on intuition with no real reasoning or explanation
offered to their design choices. Furthermore, many such
studies are often limited to comparing against prior proposals
of the same general approach, offering no insight as to the
suitability of any approach over another.

Based on our survey, we believe that future research
in memory disaggregation should first start with building
the tools necessary (e.g., simulators) to properly study and
compare memory disaggregation systems quantitatively and
analytically. Memory disaggregation is a complex problem
with many interacting components. This in turn makes
fully decoupling and studying its components not viable.
However, we still recommend a divide and conquer approach
to studying memory disaggregation whenever possible. Since
many of the current proposals try to come up with a complete
solution or an entire implementation, these solutions end up
either being incomplete and not adequately addressing some
aspects of the problem, as well as being inefficient.

REFERENCES
[1] P. Corcoran and A. Andrae, ‘‘Emerging trends in electricity consumption

for consumer ICT,’’ Nat. Univ. Ireland, Galway, Ireland, Tech. Rep.,
2013. [Online]. Available: https://www.researchgate.net/profile/Anders-
Andrae/publication/255923829_Emerging_Trends_in_Electricity_
Consumption_for_Consumer_ICT/links/00b7d520df6b552e5f000000/
Emerging-Trends-in-Electricity-Consumption-for-Consumer-ICT.pdf

[2] N. Su. The Proportion of Central Energy Consumption in the Global
Total Energy Consumption is Increasing Year by Year. Accessed: Nov. 17,
2022. [Online]. Available: http://tech.idcquan.com/133093.shtml

[3] C. A. Mack, ‘‘Fifty years of Moore’s law,’’ IEEE Trans. Semicond.
Manuf., vol. 24, no. 2, pp. 202–207, May 2011.

[4] W. A. Wulf and S. A. McKee, ‘‘Hitting the memory wall: Implications
of the obvious,’’ ACM SIGARCH Comput. Archit. News, vol. 23, no. 1,
pp. 20–24, Mar. 1995.

[5] A. M. Potdar, S. Kengond, and M. M. Mulla, ‘‘Performance evaluation
of Docker container and virtual machine,’’ Proc. Comput. Sci., vol. 171,
pp. 1419–1428, Jan. 2020.

[6] H. Liu, ‘‘A measurement study of server utilization in public clouds,’’ in
Proc. IEEE 9th Int. Conf. Dependable, Auto. Secure Comput. (DASC),
Dec. 2011, pp. 435–442.

[7] J. Patel, V. Jindal, I.-L. Yen, F. Bastani, J. Xu, and P. Garraghan,
‘‘Workload estimation for improving resource management decisions in
the cloud,’’ in Proc. IEEE 12th Int. Symp. Auto. Decentralized Syst.,
Mar. 2015, pp. 25–32.

[8] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, and Y. Bao, ‘‘Who
limits the resource efficiency of my datacenter: An analysis of Alibaba
datacenter traces,’’ in Proc. IEEE/ACM 27th Int. Symp. Quality Service
(IWQoS), Phoenix, AZ, USA, Jun. 2019, pp. 1–10.

[9] M. Bielski, C. Pinto, D. Raho, and R. Pacalet, ‘‘Survey on memory
and devices disaggregation solutions for HPC systems,’’ in Proc.
IEEE Int. Conf. Comput. Sci. Eng. (CSE) IEEE Int. Conf. Embedded
Ubiquitous Comput. (EUC) 15th Int. Symp. Distrib. Comput. Appl. Bus.
Eng. (DCABES), Aug. 2016, pp. 197–204.

[10] System Programming Guide. (2016). Intel® 64 and IA-32 Architectures
Software Developer’s Manual Volume 3A: System Programming Guide,
Part 1. Accessed: Nov. 17, 2022. [Online]. Available: https://www.intel.
com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-vol-3a-part-1-manual.pdf

[11] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, ‘‘Accelerating two-
dimensional page walks for virtualized systems,’’ in Proc. 13th Int. Conf.
Architectural Support Program. Lang. Operating Syst., Seattle, WA,
USA, Mar. 2008, pp. 26–35.

[12] L. Lamport, ‘‘How to make a multiprocessor computer that correctly
executes multiprocess programs,’’ IEEE Trans. Comput., vol. C-28, no. 9,
pp. 690–691, Sep. 1979.

[13] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen,
‘‘x86-TSO: A rigorous and usable programmer’s model for x86
multiprocessors,’’ Commun. ACM, vol. 53, no. 7, pp. 89–97, Jul. 2010.

[14] D. L. Weaver, The SPARC Architecture Manual. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1994.

[15] M. Dubois, C. Scheurich, and F. Briggs, ‘‘Memory access buffering in
multiprocessors,’’ ACM SIGARCH Comput. Archit. News, vol. 14, no. 2,
pp. 434–442, May 1986.

[16] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy, ‘‘Memory consistency and event ordering in scalable shared-
memory multiprocessors,’’ ACM SIGARCH Comput. Archit. News,
vol. 18, no. 2SI, pp. 15–26, May 1990.

[17] A. Potoroaca. (May 12, 2022). AMD Hits Highest x86 Market Share
Ever Amid Desktop CPU Decline. TechSpot. Accessed: Aug. 17, 2022.
[Online]. Available: https://www.techspot.com/news/94565-amd-hits-
highest-x86-market-share-ever-amid.html

[18] A. Naeem, A. Jantsch, and Z. Lu, ‘‘Architecture support and comparison
of three memory consistency models in NoC based systems,’’ in Proc.
15th Euromicro Conf. Digit. Syst. Design, Sep. 2012, pp. 304–311.

[19] D. J. Sorin, M. D. Hill, and D. A. Wood, ‘‘A primer on memory
consistency and cache coherence,’’ Synth. Lectures Comput. Archit.,
vol. 6, no. 3, pp. 1–212, Nov. 2011.

[20] K. Li and P. Hudak, ‘‘Memory coherence in shared virtual memory
systems,’’ ACM Trans. Comput. Syst., vol. 7, no. 4, pp. 321–359,
Nov. 1989.

[21] C. Ravishanicar and J. R. Goodman, ‘‘Cache implementations for
multiple microprocessors,’’ in Proc. 26th IEEE Comput. Soc. Int. Conf.,
Jan. 1983, pp. 1–5.

[22] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy,
‘‘The directory-based cache coherence protocol for the DASH multi-
processor,’’ ACM SIGARCH Comput. Archit. News, vol. 18, no. 2SI,
pp. 148–159, May 1990.

[23] D. Sharma and S. Tavallaei, ‘‘Compute express link 2.0 white paper,’’
CXL Consortium, 2020.

[24] M. Kerrisk, The Linux Programming Interface: A Linux and UNIX System
Programming Handbook. San Francisco, CA, USA: No Starch Press,
2010.

[25] T. Lahiri, M.-A. Neimat, and S. Folkman, ‘‘Oracle TimesTen: An in-
memory database for enterprise applications,’’ IEEE Data Eng. Bull.,
vol. 36, no. 2, pp. 6–13, Jun. 2013.

[26] J. Chen, S. Jindel, R.Walzer, R. Sen, N. Jimsheleishvilli, andM.Andrews,
‘‘The MemSQL query optimizer: A modern optimizer for real-time
analytics in a distributed database,’’ Proc. VLDB Endowment, vol. 9,
no. 13, pp. 1401–1412, Sep. 2016.

[27] D. Zahka and A. Gavrilovska, ‘‘FAM-graph: Graph analytics on
disaggregated memory,’’ in Proc. IEEE Int. Parallel Distrib. Process.
Symp. (IPDPS), Jun. 2022, pp. 81–92.

[28] OpenAI. (Nov. 30, 2022). ChatGPT: Optimizing Language Models for
Dialogue. Accessed: Feb. 10, 2023. [Online]. Available: https://openai.
com/blog/chatgpt/

[29] M. R. Hines and K. Gopalan, ‘‘MemX: Supporting large memory
workloads in Xen virtual machines,’’ in Proc. 2nd Int. Workshop
Virtualization Technol. Distrib. Comput. (VTDC), Reno, NV, USA,
Nov. 2007, pp. 1–8.

[30] A. Samih, R. Wang, C. Maciocco, M. Kharbutli, and Y. Solihin,
‘‘Collaborative memories in clusters: Opportunities and challenges,’’ in
Transactions on Computational Science XXII, vol. 8360, M. L. Gavrilova
and C. J. K. Tan, Eds. Berlin, Germany: Springer, 2014, pp. 17–41.

[31] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, ‘‘Efficient
memory disaggregation with INFINISWAP,’’ in Proc. 14th USENIX
Symp. Networked Syst. Design Implement., 2017, pp. 649–667.

[32] W. Cao and L. Liu, ‘‘Dynamic and transparent memory sharing for
accelerating big data analytics workloads in virtualized cloud,’’ in Proc.
IEEE Int. Conf. Big Data (Big Data), Dec. 2018, pp. 191–200.

[33] L. Liu, W. Cao, S. Sahin, Q. Zhang, J. Bae, and Y. Wu, ‘‘Memory
disaggregation: Research problems and opportunities,’’ in Proc. IEEE
39th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019, pp. 1664–1673.

[34] W. Cao and L. Liu, ‘‘Hierarchical orchestration of disaggregated
memory,’’ IEEE Trans. Comput., vol. 69, no. 6, pp. 844–855, Jun. 2020.

[35] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt,
J. Chang, A. Chaugule, N. Deng, J. Shahid, G. Thelen, K. A. Yurtsever,
Y. Zhao, and P. Ranganathan, ‘‘Software-defined far memory in
warehouse-scale computers,’’ in Proc. 24th Int. Conf. Architectural Sup-
port Program. Lang. Operating Syst., Providence, RI, USA, Apr. 2019,
pp. 317–330.

20710 VOLUME 11, 2023



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

[36] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker, ‘‘Can far memory improve job
throughput?’’ in Proc. 15th Eur. Conf. Comput. Syst., Heraklion, Greece,
Apr. 2020, pp. 1–16.

[37] J. Bae, G. Su, A. Iyengar, Y. Wu, and L. Liu, ‘‘Efficient orchestration
of host and remote shared memory for memory intensive workloads,’’
in Proc. Int. Symp. Memory Syst., Washington, DC, USA, Sep. 2020,
pp. 194–208.

[38] S. Cui, L. Jin, K. Nguyen, and C. Wang, ‘‘SemSwap: Semantics-aware
swapping in memory disaggregated datacenters,’’ in Proc. 13th ACM
SIGOPS Asia–Pacific Workshop Syst., Singapore, Aug. 2022, pp. 9–17.

[39] C. Wang, Y. Qiao, H. Ma, S. Liu, Y. Zhang, W. Chen, R. Netravali,
M. Kim, and G. H. Xu, ‘‘Canvas: Isolated and adaptive swapping for
multi-applications on remote memory,’’ 2022, arXiv:2203.09615.

[40] B. Caldwell, Y. Im, S. Ha, R. Han, and E. Keller, ‘‘FluidMem: Memory
as a service for the datacenter,’’ 2017, arXiv:1707.07780.

[41] B. Caldwell, S. Goodarzy, S. Ha, R. Han, E. Keller, E. Rozner, and
Y. Im, ‘‘FluidMem: Full, flexible, and fast memory disaggregation for the
cloud,’’ in Proc. IEEE 40th Int. Conf. Distrib. Comput. Syst. (ICDCS),
Dec. 2020, pp. 665–677.

[42] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,
and D. Ongaro, ‘‘The RAMCloud storage system,’’ ACM Trans. Comput.
Syst., vol. 33, no. 3, pp. 1–55, Aug. 2015.

[43] Y. Shan, S.-Y. Tsai, and Y. Zhang, ‘‘Distributed shared persistent
memory,’’ in Proc. Symp. Cloud Comput., Santa Clara. CA, USA,
Sep. 2017, pp. 323–337.

[44] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi,
S. Novakovic, and A. Ramanathan, ‘‘Remote regions: A simple abstrac-
tion for remote memory,’’ in Proc. USENIX Annu. Tech. Conf., 2018,
pp. 775–787.

[45] S.-H. Kim, H.-R. Chuang, R. Lyerly, P. Olivier, C.Min, and B. Ravindran,
‘‘DeX: Scaling applications beyond machine boundaries,’’ in Proc. IEEE
40th Int. Conf. Distrib. Comput. Syst. (ICDCS), Dec. 2020, pp. 864–876.

[46] H. Al Maruf and M. Chowdhury, ‘‘Effectively prefetching remote
memory with leap,’’ in Proc. USENIX Annu. Tech. Conf., 2020,
pp. 843–857.

[47] Y. Lee, H. A. Maruf, M. Chowdhury, A. Cidon, and K. G. Shin, ‘‘Hydra:
Resilient and highly available remote memory,’’ in Proc. 20th USENIX
Conf. File Storage Technol., 2022, pp. 181–198.

[48] M. Chapman and G. Heiser, ‘‘vNUMA: A virtual shared-memory
multiprocessor,’’ in Proc. USENIX Annu. Tech. Conf., 2009, pp. 349–362.

[49] Z. Ding, ‘‘VDSM: Distributed shared memory in virtualized environ-
ments,’’ in Proc. IEEE 9th Int. Conf. Softw. Eng. Service Sci. (ICSESS),
Nov. 2018, pp. 1112–1115.

[50] J. Zhang, Z. Ding, Y. Chen, X. Jia, B. Yu, Z. Qi, and H. Guan, ‘‘GiantVM:
A type-II hypervisor implementing many-to-one virtualization,’’ in Proc.
16th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environ.,
Lausanne, Switzerland, Mar. 2020, pp. 30–44.

[51] X. Jia, J. Zhang, B. Yu, X. Qian, Z. Qi, and H. Guan, ‘‘GiantVM:
A novel distributed hypervisor for resource aggregation with DSM-aware
optimizations,’’ ACMTrans. Archit. Code Optim., vol. 19, no. 2, pp. 1–27,
Mar. 2022.

[52] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen, M. D. Bond,
R. Netravali, M. Kim, and G. H. Xu, ‘‘Semeru: A memory-disaggregated
managed runtime,’’ in Proc. 14th USENIX Symp. Operating Syst. Design
Implement., 2020, pp. 261–280.

[53] D. Minturn, ‘‘NVM express over fabrics,’’ in Proc. 11th Annu.
OpenFabrics Int. OFS Developers’ Workshop, 2015. [Online]. Available:
https://downloads.openfabrics.org/downloads/Media/Monterey_2015/
Monday/monday_10.pdf

[54] C. Wang, H. Ma, S. Liu, Y. Qiao, J. Eyolfson, C. Navasca, S. Lu,
and G. H. Xu, ‘‘MemLiner: Lining up tracing and application for a far-
memory-friendly runtime,’’ in Proc. 16th USENIX Symp. Operating Syst.
Design Implement., 2022, pp. 35–53.

[55] H. Ma, S. Liu, C. Wang, Y. Qiao, M. D. Bond, S. M. Blackburn,
M. Kim, andG. H. Xu, ‘‘Mako: A low-pause, high-throughput evacuating
collector for memory-disaggregated datacenters,’’ in Proc. 43rd ACM
SIGPLAN Int. Conf. Program. Lang. Design Implement., San Diego, CA,
USA, Jun. 2022, pp. 92–107.

[56] H. Midorikawa, M. Kurokawa, R. Himeno, and M. Sato, ‘‘DLM:
A distributed large memory system using remote memory swapping over
cluster nodes,’’ in Proc. IEEE Int. Conf. Cluster Comput., Oct. 2008,
pp. 268–273.

[57] A. Dragojevi, D. Narayanan, M. Castro, and O. Hodson, ‘‘FaRM: Fast
remote memory,’’ in Proc. 11th USENIX Symp. Networked Syst. Design
Implement., 2014, pp. 401–414.

[58] Q. Cai, W. Guo, H. Zhang, D. Agrawal, G. Chen, B. C. Ooi, K.-L. Tan,
Y. M. Teo, and S. Wang, ‘‘Efficient distributed memory management
with RDMA and caching,’’ Proc. VLDB Endowment, vol. 11, no. 11,
pp. 1604–1617, Jul. 2018.

[59] C.-S. Li, H. Franke, C. Parris, and V. Chang, ‘‘Disaggregated architecture
for at scale computing,’’ in Proc. 2nd Int. Workshop Emerg. Softw. Service
Anal., Lisbon, Portugal, 2015, pp. 45–52.

[60] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and
M. Oskin, ‘‘Grappa: A latency-tolerant runtime for large-scale irregular
applications,’’ in Proc. Int. Workshop Rack-Scale Comput., 2014.

[61] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and
M. Oskin, ‘‘Latency-tolerant software distributed shared memory,’’ in
Proc. USENIX Annu. Tech. Conf., 2015, pp. 291–305.

[62] S. Kaxiras, D. Klaftenegger, M. Norgren, A. Ros, and K. Sagonas,
‘‘Turning centralized coherence and distributed critical-section execution
on their head: A new approach for scalable distributed sharedmemory,’’ in
Proc. 24th Int. Symp. High-Perform. Parallel Distrib. Comput., Portland,
OR, USA, Jun. 2015, pp. 3–14.

[63] Y. Hong, Y. Zheng, F. Yang, B.-Y. Zang, H.-B. Guan, and H.-B. Chen,
‘‘Scaling out NUMA-aware applications with RDMA-based distributed
shared memory,’’ J. Comput. Sci. Technol., vol. 34, no. 1, pp. 94–112,
Jan. 2019.

[64] I. Peng, R. Pearce, and M. Gokhale, ‘‘On the memory underutilization:
Exploring disaggregated memory on HPC systems,’’ in Proc. IEEE
32nd Int. Symp. Comput. Archit. High Perform. Comput. (SBAC-PAD),
Sep. 2020, pp. 183–190.

[65] R. Hou, T. Jiang, L. Zhang, P. Qi, J. Dong, H.Wang, X. Gu, and S. Zhang,
‘‘Cost effective data center servers,’’ in Proc. IEEE 19th Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2013, pp. 179–187.

[66] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay, ‘‘AIFM: High-
performance, application-integrated far memory,’’ in Proc. 14th USENIX
Symp. Operating Syst. Design Implement., 2020, pp. 315–332.

[67] H. Zhu, Data Plane Development Kit (DPDK): A Software Optimization
Guide to the User Space-Based Network Applications. Boca Raton, FL,
USA: CRC Press, 2020.

[68] S.-Y. Tsai, Y. Shan, and Y. Zhang, ‘‘Disaggregating persistent memory
and controlling them remotely: An exploration of passive disaggre-
gated key-value stores,’’ in Proc. USENIX Annu. Tech. Conf., 2020,
pp. 33–48.

[69] S. Grant and A. C. Snoeren, ‘‘In-network contention resolution for
disaggregated memory,’’ in Proc. Workshop Resour. Disaggregation
Serverless (WORDS), 2020.

[70] Q.Wang, Y. Lu, E. Xu, J. Li, Y. Chen, and J. Shu, ‘‘Concordia: Distributed
sharedmemory with in-network cache coherence,’’ inProc. 19th USENIX
Conf. File Storage Technol., 2021, pp. 277–292.

[71] S. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and A. Bhattacharjee,
‘‘MIND: In-network memory management for disaggregated data
centers,’’ in Proc. ACM SIGOPS 28th Symp. Operating Syst. Princ.,
Oct. 2021, pp. 488–504.

[72] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and
T. F. Wenisch, ‘‘Disaggregated memory for expansion and sharing in
blade servers,’’ ACM SIGARCH Comput. Archit. News, vol. 37, no. 3,
pp. 267–278, 2009.

[73] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan,
and T. F. Wenisch, ‘‘System-level implications of disaggregated mem-
ory,’’ in Proc. IEEE Int. Symp. High-Perform. Comp Archit., Feb. 2012,
pp. 1–12.

[74] K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas,
D. Theodoropoulos, I. Koutsopoulos, K. Hasharoni, D. Raho, C. Pinto,
F. Espina, S. Lopez-Buedo, Q. Chen, M. Nemirovsky, D. Roca,
H. Klos, and T. Berends, ‘‘Rack-scale disaggregated cloud data centers:
The dReDBox project vision,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2016, pp. 690–695.

[75] K. Katrinis, G. Zervas, D. Pnevmatikatos, D. Syrivelis, T. Alexoudi,
D. Theodoropoulos, D. Raho, C. Pinto, F. Espina, S. Lopez-Buedo,
Q. Chen, M. Nemirovsky, D. Roca, H. Klos, and T. Berends, ‘‘On
interconnecting and orchestrating components in disaggregated data
centers: The dReDBox project vision,’’ in Proc. Eur. Conf. Netw.
Commun. (EuCNC), Jun. 2016, pp. 235–239.

VOLUME 11, 2023 20711



M. Ewais, P. Chow: Disaggregated Memory in the Datacenter: A Survey

[76] G. Zervas, H. Yuan, A. Saljoghei, Q. Chen, and V. Mishra, ‘‘Optically
disaggregated data centers with minimal remote memory latency:
Technologies, architectures, and resource allocation,’’ J. Opt. Commun.
Netw., vol. 10, no. 2, p. A270, Feb. 2018.

[77] D. Gouk, S. Lee, M. Kwon, and M. Jung, ‘‘Direct access, high-
performance memory disaggregation with DirectCXL,’’ in Proc. USENIX
Annu. Tech. Conf., 2022, pp. 287–294.

[78] Y. Kwon and M. Rhu, ‘‘A disaggregated memory system for deep
learning,’’ IEEE Micro, vol. 39, no. 5, pp. 82–90, Sep. 2019.

[79] NVIDIA. NVLink & NVSwitch for Advanced Multi-GPU Communica-
tion. Accessed: Feb. 11, 2023. [Online]. Available: https://www.nvidia.
com/en-us/data-center/nvlink/

[80] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, ‘‘Clio: A hardware-
software co-designed disaggregated memory system,’’ in Proc. 27th
ACM Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Lausanne, Switzerland, Feb. 2022, pp. 417–433.

[81] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, ‘‘LegoOS: A disseminated,
distributed OS for hardware resource disaggregation,’’ in Proc. 13th
USENIX Symp. Operating Syst. Design Implement., 2018, pp. 69–87.

[82] I. Calciu, I. Puddu, A. Kolli, A. Nowatzyk, J. Gandhi, O. Mutlu,
and P. Subrahmanyam, ‘‘Project PBerry: FPGA acceleration for remote
memory,’’ in Proc. Workshop Hot Topics Operating Syst., Bertinoro, Italy,
May 2019, pp. 127–135.

[83] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu,
and A. Kolli, ‘‘Rethinking software runtimes for disaggregated memory,’’
in Proc. 26th ACM Int. Conf. Architectural Support Program. Lang.
Operating Syst., Apr. 2021, pp. 79–92.

[84] C. Pinto, D. Syrivelis, M. Gazzetti, P. Koutsovasilis, A. Reale, K. Katrinis,
and H. P. Hofstee, ‘‘ThymesisFlow: A software-defined, HW/SW co-
designed interconnect stack for rack-scale memory disaggregation,’’ in
Proc. 53rd Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Oct. 2020, pp. 868–880.

[85] J. Stuecheli, W. J. Starke, J. D. Irish, L. B. Arimilli, D. Dreps, B. Blaner,
C. Wollbrink, and B. Allison, ‘‘IBM POWER9 opens up a new era of
acceleration enablement: OpenCAPI,’’ IBM J. Res. Develop., vol. 62,
no. 4/5, pp. 8:1–8:8, Sep. 2018.

[86] Xilinx. (2010). Aurora 8B/10B Protocol Specification. [Online]. Avail-
able: https://docs.xilinx.com/v/u/en-U.S./aurora_8b10b_protocol_spe
c_sp002

[87] Z. Mwaikambo, A. Raj, R. Russell, J. Schopp, and S. Vaddagiri, ‘‘Linux
kernel hotplug CPU support,’’ in Proc. Linux Symp., vol. 2, 2004.

[88] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, ‘‘Scale-out
NUMA,’’ ACM SIGPLAN Notices, vol. 49, no. 4, pp. 3–18, Feb. 2014.

[89] V. R. Kommareddy, C. Hughes, S. D. Hammond, and A. Awad, ‘‘DeACT:
Architecture-aware virtual memory support for fabric attached memory
systems,’’ in Proc. IEEE Int. Symp. High-Perform. Comput. Archit.
(HPCA), Mar. 2021, pp. 453–466.

[90] H. Montaner, F. Silla, H. Froning, and J. Duato, ‘‘MEMSCALETM:
A scalable environment for databases,’’ in Proc. IEEE Int. Conf. High
Perform. Comput. Commun., Sep. 2011, pp. 339–346.

[91] H. Montaner, F. Silla, and J. Duato, ‘‘A practical way to extend shared
memory support beyond a motherboard at low cost,’’ in Proc. 19th ACM
Int. Symp. High Perform. Distrib. Comput., Chicago, IL, USA, Jun. 2010,
pp. 155–166.

[92] Z. Ma, Z. Sheng, and L. Gu, ‘‘DVM: A big virtual machine for
cloud computing,’’ IEEE Trans. Comput., vol. 63, no. 9, pp. 2245–2258,
Sep. 2014.

[93] D. Korolija, D. Koutsoukos, K. Keeton, K. Taranov, D. Milojičić, and
G. Alonso, ‘‘Farview: Disaggregated memory with operator off-loading
for database engines,’’ 2021, arXiv:2106.07102.

[94] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker, ‘‘Network
support for resource disaggregation in next-generation datacenters,’’ in
Proc. 12th ACM Workshop Hot Topics Netw., College Park, MD, USA,
Nov. 2013, pp. 1–7.

[95] P. X. Gao, A. Narayan, R. Agarwal, S. Ratnasamy, and S. Shenker, ‘‘Net-
work requirements for resource disaggregation,’’ in Proc. 12th USENIX
Symp. Operating Syst. Design Implement., Nov. 2016, pp. 249–264.

[96] P. S. Rao andG. Porter, ‘‘Is memory disaggregation feasible? A case study
with spark SQL,’’ in Proc. Symp. Architectures Netw. Commun. Syst.,
Santa Clara, CA, USA, Mar. 2016, pp. 75–80.

[97] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi,
P. Subrahmanyam, L. Suresh, K. Tati, R. Venkatasubramanian, and
M. Wei, ‘‘Remote memory in the age of fast networks,’’ in Proc. Symp.
Cloud Comput., Santa Clara, CA, USA, Sep. 2017, pp. 121–127.

[98] A. Carbonari and I. Beschasnikh, ‘‘Tolerating faults in disaggregated
datacenters,’’ in Proc. 16th ACM Workshop Hot Topics Netw., Palo Alto,
CA, USA, Nov. 2017, pp. 164–170.

[99] N. Pemberton and U. C. Berkeley. (2019). Exploring the Disaggregated
Memory Interface Design Space. Accessed: May 18, 2022. [Online].
Available: http://word19.ece.cornell.edu/word19-paper8-camera.pdf

[100] P. Faraboschi, K. Keeton, T. Marsland, and D. Milojicic, ‘‘Beyond
processor-centric operating systems,’’ in Proc. 15th Workshop Hot Topics
Oper. Syst. (HotOS XV), Kartause Ittingen, Switzerland, 2015, pp. 1–7.

[101] H.-A. Ounifi, X. Liu, A. Gherbi, Y. Lemieux, and W. Li, ‘‘Model-
based approach to data center design and power usage effectiveness
assessment,’’ Proc. Comput. Sci., vol. 141, pp. 143–150, Jan. 2018.

[102] Q. Shen, J. Zheng, and P. Chow, ‘‘RIFL: A reliable link layer network
protocol for data center communication,’’ J. Opt. Commun. Netw., vol. 14,
no. 3, pp. 111–126, Mar. 2022.

MOHAMMAD EWAIS (Graduate Student Mem-
ber, IEEE) received the bachelor’s degree in elec-
trical and computer engineering from Alexandria
University, Egypt, and the master’s degree in com-
puter engineering from The University of British
Columbia, Vancouver, BC, Canada. He is currently
pursuing the Ph.D. degree in computer engi-
neering with the University of Toronto, Toronto,
ON, Canada. His research interests include com-
puter architecture, reconfigurable computing and
FPGAs, and datacenter architecture.

PAUL CHOW (Life Fellow, IEEE) is currently
a Professor with The Edward S. Rogers Sr.
Department of Electrical and Computer Engineer-
ing, University of Toronto. His research inter-
ests include reconfigurable computing with an
emphasis on programming models, middleware to
support programming and portability, and scaling
to large-scale, and distributed FPGA deployments.
He has been the Technical Program Chair and the
General Chair of FPGA, the premier conference

on FPGAs, and FCCM, the main conference for reconfigurable computing.
He co-founded AcceLight Networks to build a high-capacity, carrier-
grade, and optical switching system. He is also the Co-Founder of
ArchES Computing Systems, which is developing reconfigurable computing
technology for the data center.

20712 VOLUME 11, 2023


