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ABSTRACT As a new technology in the field of remote sensing, hyperspectral remote sensing has been
widely used in land classification, mineral exploration, environmental monitoring, and other areas. In recent
years, deep learning has achieved outstanding results in hyperspectral image classification tasks. However,
problems such as low classification accuracy for small sample classes in unbalanced datasets and lack
of robustness of the models usually lead to unstable classification performance of hyperspectral images.
Therefore, from the perspective of feature optimization, we propose an improved hybrid convolutional neural
network for hyperspectral image feature extraction and classification. Different from the current simple
multi-scale feature extraction, we first optimize the features of each scale, and then perform multi-scale
feature fusion. To this end, we use 3D dilated convolution to design a multi-level feature extraction block
(MFB), which can be used to extract features with different correlation strengths at a fixed scale. Then,
we construct a spatial multi-scale interactive attention (SMIA) module in the spatial feature enhancement
phase, which can refine the multi-scale features through the attention weights of multi-scale feature
interaction, and further improve the quality of spatial features. Finally, experiments were performed on
different datasets, including balanced and unbalanced samples. The results show that the proposed model is
more accurate and the extracted features are more robust.

INDEX TERMS Hybrid convolutional neural network; feature extraction; attention mechanism; spectral-
spatial classification; unbalanced dataset.

I. INTRODUCTION

As a new branch of remote sensing, hyperspectral remote
sensing has developed rapidly in recent years. At present,
hyperspectral images (HSI) have been widely used in many
fields, such as mineral exploration and environmental moni-
toring [1], [2], [3], [4]. Using hyperspectral images to classify
land use has also become an important research direction of
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hyperspectral applications [5]. However, there is a high corre-
lation between the spectral bands of hyperspectral data, which
brings some redundant data to the classification process [6].
In addition, due to the high dimensionality of the data, the
demand for samples in the process of using deep learning for
classification also increases. However, it is difficult to obtain
samples of hyperspectral images, which requires a lot of
manpower and material resources [7]. Therefore, the current
research mainly focuses on how to extract more discriminant
features from fewer samples [8], [9], [10].
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In recent years, with the revival of artificial intelligence,
hyperspectral image classification methods based on deep
learning have developed rapidly [11], [12], [13], [14], [15].
Chen et al. studied the classification of hyperspectral data
using three typical deep learning network architectures,
and the results show that the convolutional neural network
(CNN) has great advantages in the feature extraction pro-
cess of hyperspectral image classification. Based on this,
the researchers proposed some classical network models.
For example, Lee and Kwon [16] learned multi-scale fea-
tures through multi-scale convolutional filter banks similar
to GoogleNet [17]. Roy et al. [18] constructed a hybrid
convolutional neural network by combining two-dimensional
and three-dimensional convolution. Li et al. [19] used two
branches to extract spectral and spatial features respectively,
and classified the fusion features. However, when construct-
ing a deep learning framework for hyperspectral image classi-
fication, gradient vanishing is inevitable, which will degrade
the performance of the model. In this regard, Zhong et al. [20]
constructed a spectral-spatial residual network (SSRN) by
using the residual connection. The network establishes a deep
CNN classification model by connecting two spectral feature
extraction blocks and two spatial feature extraction blocks
in series, and achieves excellent performance. Inspired by
SSRN, Wang et al. [21] designed a fast dense spectral spatial
convolution framework (FDSSC) using dense connections,
which can further improve the accuracy. These two works
show that the use of shortcut connection [22], [23], [24] in
hyperspectral image classification can effectively alleviate
the gradient dispersion phenomenon.

Multi-scale feature extraction is an important idea in target
detection. In recent years, it has achieved good results in
image classification. In the process of hyperspectral image
classification, the large convolution kernel ensures the scale
invariance of feature extraction to a certain extent, but it will
damage the feature extraction of smaller targets. Therefore,
it is of great significance to apply the multi-scale fusion
strategy to hyperspectral image classification. He et al. [25]
constructed a five-layer multi-scale network and proposed an
end-to-end way to learn spatial-spectral features. The results
show that multi-scale feature extraction can significantly
reduce misclassifications. In addition, Li et al. [26] designed
a multi-scale deep middle-level feature fusion network with
multi-scale input. The model inputs cubes of different scales
into multiple models for individual training and fine-tuning,
and then extracts the middle-level features of each model
for fusion and classification. The results achieved high clas-
sification accuracy. However, large convolution kernels in
multi-scale feature extraction usually lead to a sharp increase
in the number of parameters, which is very unfriendly to
hyperspectral image classification. In this regard, dilated
convolution [27] can increase the size of the convolution
kernel while ensuring that the parameters remain unchanged.
Gao et al. [28] introduced dilated convolution into multi-scale
feature extraction module to classify hyperspectral images.
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They found that dilated convolutions can further improve
classification performance. However, due to the excellent
performance of multi-scale features, most networks ignore
the feature optimization problem on a single scale.

The phenomenon of small samples is an inherent charac-
teristic of the mapping of the real world to the digital world,
and hyperspectral data processing also faces such a challenge
all the time. For the lack of samples, there are currently
two main solutions: 1) data augmentation (sample expan-
sion) [29], [30], [31], [32]; 2) adaptation to small sample
learning [33], [34], [35]. Generally speaking, the larger the
number of training samples in deep learning, the more repre-
sentative the extracted data features, the smaller the sample
size, and the less general the feature expression. However,
the last two years have seen numerous proposed processing
solutions for small sample data, with encouraging results.
He et al. [36] designed a semi-supervised classification model
by using generative adversarial networks. Mei et al. [37] pro-
pose an unsupervised three-dimensional (3D) convolutional
autoencoder network, that extract features and reconstruct
them by convolution and deconvolution. This approach pro-
duces better results than traditional unsupervised algorithms.
Xie et al. [38] introduced transfer learning to solve the prob-
lem of limited samples, and the results show that transfer
learning can greatly improve the operational efficiency of the
network model.

In addition, solving the feature learning problem of small
sample categories by optimizing the model structure is also
an important research direction of deep learning. In the study
of hyperspectral image classification, hybrid convolutional
neural networks show outstanding advantages. Hyperspectral
image is a three-dimensional cube data containing spectral
and spatial information. Using 3D convolution to extract
features is more in line with the structural pattern of the
data. However, 3D convolution has a more complex operation
process, and some ground object categories in the spectral
dimension have noise. Therefore, scholars have proposed
to use 2D convolution to further extract spatial features to
improve feature quality [18]. In this regard, Feng et al. [10]
used 3D convolution and 2D separable convolution to con-
struct dense blocks, and extracted spatial spectrum and spatial
features in turn. Zhang et al. [8] optimized the 3D-2D hybrid
convolutional neural network model, which uses spectral and
spatial attention mechanisms to refine the extracted features,
and achieved excellent results in a small number of samples.
Attention mechanism is an important deep learning tech-
nology to solve pixel interference and simulate human eye
focusing. Ma et al. [39] and Li et al. [40] introduced the atten-
tion mechanism with different structures into FDSSC [21]
for small sample experiments. The results show that the
attention mechanism has a significant effect on improving
the classification performance of small samples. However,
the structure of the hybrid model is single, and the extracted
features lack discrimination. By observing the experimental
results of the above network model, it can be found that the
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FIGURE 1. Multi-level feature extraction block (MFB).

features extracted on the unbalanced datasets still produce
low classification accuracy in the small sample category.

Hyperspectral data contain significant information, and
how to effectively extract more discriminative features has
always been an important research direction in hyperspectral
image classification. Inspired by the above research, we pro-
pose an improved 3D-2D hybrid convolutional neural net-
work to improve the feature quality of small sample classes
of hyperspectral images and improve the robustness of the
model for feature extraction of different classes. The network
uses multi-level feature extraction blocks (MFB) to optimize
single-scale features before multi-scale feature extraction
to improve the robustness of spatial-spectral joint features.
Then, when further extracting spatial information, a spatial
multi-scale feature interactive attention (SMIA) module is
introduced to refine features and enhance important feature
responses in multi-scale space. Finally, the global average
pooling is used instead of the fully connected layer to input
the refined features into softmax for classification.

The main contributions of this study are summarized as
follows:

1) From the perspective of feature optimization, we pro-
pose an improved 3D-2D hybrid convolutional neural
network model, which optimizes 3D features and 2D
spatial features respectively to improve information
utilization efficiency.

2) We design a multi-level feature extraction block (MFB)
to capture features with different correlation strengths
between each pixel and the center pixel at the same
scale, and fuse MFBs of different scales at different
depths to obtain multi-correlation multi-scale spatial-
spectral joint features.

3) We construct a spatial multi-scale interactive atten-
tion (SMIA) module to further optimize spatial fea-
tures. To control the number of parameters, depthwise
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separable convolution is used instead of regular convo-
lution to extract multi-scale features.

4) The proposed method is compared with other methods,
and the results show that the proposed method can
more effectively improve the robustness of the model
to different classes of feature extraction.

The rest of this paper is organized as follows. Section II
describes MFB, SMIA, and the proposed overall network
architecture. Section III conducts experiments and discus-
sions on different datasets, including parameter analysis,
method comparison, sample size analysis, and ablation exper-
iments. Finally, the corresponding conclusions are given in
section IV.

Il. METHODOLOGY

A. MULTI-LEVEL FEATURE EXTRACTION BLOCK

Traditional multi-scale feature extraction usually uses convo-
lutional kernels of different sizes to perform parallel opera-
tions on the input features, followed by feature aggregation.
However, it assumes that using only one set of convolutional
kernels at each scale branch is sufficient to extract the impor-
tant features at that scale. In fact, the correlation of features
extracted at a single scale using different convolutional struc-
tures varies greatly. In order to more fully extract the discrim-
inative features of hyperspectral images, we provide a new
idea, namely intra-block single-scale fusion and inter-block
multi-scale fusion. Hence, we combined dilated convolution
to design a multi-level feature extraction block at a single
scale. Dilated convolution [27] expands the receptive field
by inserting a certain proportion of nulls into the convolution
kernel, which is called the dilation rate. When the dilation
rate is 1, it is equivalent to regular convolution. The main
advantage of dilated convolution is that it can directly capture
highly correlated features over long distances without down-
sampling or adding additional parameters. The MFB mainly

28265



IEEE Access

Y. Ma et al.: Improved 3D-2D Convolutional Neural Network Based on Feature Optimization

extracts features with different correlation strengths between
each pixel and the central pixel by introducing dilated convo-
lution in each branch.

As shown in Figure 1, the scale of the MFB block is defined
as s, the size of the convolution kernel in the block is k, and
the number of branches is n. Then there is a correspondence
s =(m—1) x (k— 1)+ k, and the dilation rate of the dilated
convolution of each branch in the block is d = {1, 2,..., n}.
Specifically, the first branch consists of n layers of regular
convolutions (containing a dilated convolution with a dilation
rate of 1) to extract high-level semantic features within the
MEB receptive field. The second branch combines the kernel
size of the last two convolutional layers in the first branch
to obtain (n — 2) layers of regular convolution and a d = 2
dilated convolutional layer. The third branch converts the
last three convolution layers in the first branch into a dilated
convolution layer with a kernel size of d = 3. By analogy, the
dilated convolutions with increasing dilation rates are added
to each branch one by one. The last branch consists of a
layer of dilated convolutions of d = n. The structure aims
to consider the correlation feature extraction between pixels
with different distances and central pixels, which can improve
the classification performance of the same class pixels with
far distances to a certain extent. The lower the branch, the
more compact the feature extraction between neighboring
pixels, and the weaker the correlation between central and
distant pixels. In contrast, for higher branches, the neighbor-
hood feature extraction is more sparse, and the long-distance
feature dependence is stronger. In addition, with the decrease
of branches, the abstraction level of features is gradually in-
creasing. After the feature extraction of each branch, ‘concat’
is used to connect the different features extracted, and the
features of different branches are fused througha 1 x 1 x 1
convolutional layer while adjusting the channel dimension.
Finally, identical residual connections are added to the block
to mitigate gradient disappearance. In addition, to accelerate
the convergence of the network and improve the nonlinear
expression, there is a batch normalization layer behind each
convolutional layer in the block, and a nonlinear activation
function layer is added after the residual connection.

MEB, 5=9

TXTX7 JESESE
Conv Conv

concatenate

MEFB, s=5
(@) (b)

FIGURE 2. Multi-scale feature fusion structure. (a) Traditional multi-scale
feature fusion structure; (b) Improved multi-scale feature fusion structure
optimized by MFB.

B. IMPROVED MULTI-SCALE FEATURE FUSION
A large number of studies have shown that multi-scale feature
extraction is necessary for hyperspectral image classification,
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FIGURE 3. The spatial multi-scale interactive attention (SMIA) module.

but few people consider whether the feature extraction at each
scale is sufficient. Figure 2(a) is the traditional multi-scale
feature extraction module in the neural network. It can be
found that the module directly inputs features into different
sizes of kernels for multi-scale feature extraction and fusion.
As shown in Figure 2(b), to optimize the multi-scale feature
extraction structure, we introduce the MFB into the multi-
scale feature extraction module and improve it. Specifically,
we use MFB to extract optimized features of different scales
on the backbone network step by step, and then cascade the
features of different scales to obtain optimized multi-scale
features.

C. SPATIAL MULTI-SCALE INTERACTIVE

ATTENTION MODULE

To simulate the autofocus function of the human visual sys-
tem, computer vision proposes to use attention mechanism
to improve the response of the region of interest. It has been
successfully applied in scene segmentation, image classifi-
cation and text translation [41], [42], [43]. In the process of
hyperspectral image feature extraction, there will inevitably
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FIGURE 4. lllustration of complete architecture of network model.

be interference terms, and weighting through the attention
mechanism can effectively suppress noise and enhance the
representation of important information. To further extract 2D
spatial information and improve feature quality, we propose a
spatial multi-scale interactive attention module in this paper.
As shown in Figure 3, the module is divided into two main
parts, namely multi-scale spatial feature extraction and fea-
ture interaction refinement.

In the multi-scale feature extraction stage, the input feature
is defined as X € R®>*"™ wwhere w x h is the space size and
n is the number of channels. Firstly, the input data is divided
into four groups of features with the same size by channel
grouping, which is expressed as X; € ROWW/4 4 — |,
2, 3, 4. This process can reduce the number of subsequent
convolution parameters to 1/4 of the conventional multi-scale
feature extraction blocks. Then, the same number of 2D
convolution kernels with different sizes are used for feature
extraction, and cascaded to obtain a multi-scale feature Yy,
which has the same size as X. In addition, to further control
the increase in the number of parameters, we replace the
regular 2D convolution with depthwise separable convolu-
tion (DSC), which has been applied in some studies [44], [45].
DSC divides the regular 2D convolution into two processes:
depthwise convolution and pointwise convolution. The spe-
cific multi-scale feature calculation process is as follows:

Fixk X)=8 (Wg x X; 4 by) (1
Yy =[F3x3(X1), F5x5 (X2), F7x7 (X3), Fox9 (X4)]

@)
where Wy and by are the weight and bias parameters cor-
responding to a convolution of scale k, k = {3, 5, 7, 9},
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respectively. § denotes the ReL.U activation function and [-]
denotes the concatenate operation.

In the process of feature refinement, ‘reshape’ is performed
on the size of Yy to obtain Yy € R where 7 is
equal to w x h. Then the spatial attention map Z; and the
channel attention map Z, are obtained by multiplying Y,
with its transpose. The channel dimension contains the spatial
features of different scales, so the channel attention map is
the correlation weight of the interaction of different scale
features. The specific calculation process is as follows:

Zy=o(Y Y1)
Z.=0o(Y},Y,)

(€)
“

where Z; € R@*? represents the correlation between spatial
pixels within each scale, Z. € R"*™ represents the correla-
tion between multi-scale features, and o is the sigmoid activa-
tion function. Afterward, the module combines the interaction
between different scale channels with the interaction between
spatial pixels in each channel to obtain a spatially multi-scale
interactive thinning feature map Y. Finally, skip connections
are added to facilitate algorithm convergence. Y is calculated
as follows:

Y=ZXZ . +X 5)
D. HSI CLASSIFICATION BASED ON THE

PROPOSED METHOD

The overall structure of the proposed model is shown in
Figure 4. Noting that hyperspectral images have a very high
spectral dimension, we first perform PCA dimensionality

28267



IEEE Access

Y. Ma et al.: Improved 3D-2D Convolutional Neural Network Based on Feature Optimization

(b) (©

FIGURE 5. Band composite images. (a) IP dataset; (b) SV dataset; (c) PU
dataset.

reduction on the entire hyperspectral data. Principal com-
ponent analysis (PCA) is one of the important methods for
dimensionality reduction of hyperspectral images. It mainly
removes the correlation between spectra by K-L transform,
and then determines the important spectral features accord-
ing to the contribution of terrain attribute information. After
data dimensionality reduction, standardiz-ation is performed
channel by channel, which can avoid errors caused by data
differences between channels. In addition, the whole image
input network will increase the burden of network training.
Therefore, we use the patch as the input of the network. After
determining the patch size, we cut the patch around each
pixel in the original image. The background elements are then
removed to reduce the network running burden.

The feature extraction process of the model can be divided
into two stages: the spatial-spectral feature extraction stage
and the spatial enhancement stage. First, a3 x 3 x 7 convolu-
tion kernel is used to extract the shallow features of the input
features. Then, in the spatial-spectral feature extraction stage,
the multi-scale feature extraction structure optimized by MFB
is used to extract multi-scale features. This stage can improve
the robustness of the model to different classes of features.
In the spatial enhancement stage, the 3D features are first
converted to 2D features by ‘reshape’ and the channel dimen-
sion is extended using a 2D convolution with a kernel size of
1 x 1. Then the extended features are input into the spatial
multi-scale interactive attention module to obtain multi-scale
spatial refinement features. Finally, the fully connected layer
is replaced by global pooling, and the features are input into
softmax for classification. In addition, to reduce the impact of
overfitting, dropout is added before the classification layer.

Ill. EXPERIMENT AND ANALYSIS

A. EXPERIMENTAL DATA

The proposed network model was evaluated and analyzed by
using three commonly used publicly available datasets: the
Indian Pines (IP) dataset, the Salinas Valley (SV) dataset, and
the Pavia University (PU) dataset. The three datasets have
the following differences: 1) IP and SV datasets have strong
spatial homogeneity and are mostly vegetation classes, while
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TABLE 1. Sample size per class and training set partitioning on IP
datasets.

No. Class Training Testing Total
1 Alfalfa 2 44 46
2 Corn-notill 71 1357 1428
3 Corn-mintill 41 789 830
4 Corn 11 226 237
5 Grass-pasture 24 459 483
6 Grass-trees 36 694 730
7 Grass-pasture-mowed 1 27 28
8 Hay-windrowed 23 455 478
9 Oats 1 19 20
10 Soybean-notill 48 924 972
11 Soybean-mintill 122 2333 2455
12 Soybean-clean 29 564 593
13 Wheat 10 195 205
14 Woods 63 1202 1265
15 Buildings-Grass-Trees-Drives 19 367 386
16 Stone-Steel-Towers 4 89 93

Total 505 9744 10249

TABLE 2. Sample size per class and training set partitioning on SV
datasets.

No. Class Training Testing Total
1 Brocoli_green_weeds_1 20 1989 2009
2 Brocoli_green_weeds_2 37 3689 3726
3 Fallow 19 1957 1976
4 Fallow_rough_plow 13 1381 1394
5 Fallow_smooth 26 2652 2678
6 Stubble 39 3920 3959
7 Celery 35 3544 3579
8 Grapes_untrained 112 11159 11271
9 Soil_vinyard_develop 62 6141 6203
10 Corn_senesced_green_weeds 32 3246 3278
11 Lettuce_romaine 4wk 10 1058 1068
12 Lettuce_romaine_Swk 19 1908 1927
13 Lettuce_romaine_6wk 9 907 916
14 Lettuce_romaine_7wk 10 1060 1070
15 Vinyard_untrained 72 7196 7268
16 Vinyard_vertical_trellis 18 1789 1807

Total 533 53596 54129

TABLE 3. Sample size per class and training set partitioning on PU
datasets.

No. Class Training Testing Total
1 Asphalt 66 6565 6631
2 Meadows 186 18463 18649
3 Gravel 20 2079 2099
4 Trees 30 3034 3064
5 Painted metal sheets 13 1332 1345
6 Bare Soil 50 4979 5029
7 Bitumen 13 1317 1330
8 Self-Blocking Bricks 36 3646 3682
9 Shadows 9 938 947

Total 423 42353 42776

PU datasets have more building classes and more discrete
spatial distribution; 2) The IP dataset has significantly dif-
ferent sample sizes for different classes, which can verify
the robustness of the model, and the PU and SV datasets
have relatively balanced sample sizes with no class of very
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FIGURE 6. Parameter heat maps on three datasets. (a) IP dataset; (b) PU dataset; (c) SV dataset.

few samples, thus emphasizing the accuracy of the model.
Figure 5 shows the band composite images for the three
datasets. Tables 1-3 show the total number of samples in each
class and the number of training and testing samples on the
three datasets.

The IP dataset was collected in 1992 by the Airborne
Visible Infrared Imaging Spectrometer (AVIRIS) airborne
sensor at the Indiana Pine Forest Experimental Area in
northwest Indiana, USA. The data have a wavelength range
from 0.4 to 2.5 um and consist of 224 spectral bands and
145 x 145 pixels with a spatial resolution of 20 meters.
The quality of spectral images strongly affects feature extrac-
tion, so the bands with low signal-to-noise ratio and that are
affected by water vapor are removed, leaving only 200 spec-
tral bands for experimental analysis.

The SV dataset is also obtained by the AVIRIS sensor
over the Salinas Valley, California. The data wavelength
range is the same as the IP dataset (0.4-2.5um), and there
are 224 spectral bands. Unlike the IP dataset, SV data
retains 204 bands for experiments. In addition, the data con-
sists of 512 x 217 pixels with a high spatial resolution of
3.7 m/ pixel.

The PU dataset was acquired by the Reflective Optics
System Imaging Spectrometer sensor at the University of
Pavia in northern Italy. The data contains 115 spectral bands
with a wavelength range of 0.43-0.86um, and 103 spectral
bands are retained after removing noise interference bands.
The dimension of the data is 610 x 340 pixels with a spatial
resolution of 1.3 m.

B. EXPERIMENTAL SETUP AND EVALUATION INDEX

In the whole experiment, the training samples are randomly
selected. In the study of hyperspectral image classification,
there is no clear definition of small sample learning. There-
fore, this paper refers to the recent research work for train-
ing sample division and experimental analysis [46], [47],
[48], [49]. In addition, to ensure the effective flow of infor-
mation in the propagation process, the robust neural network
parameter initialization method proposed by He et al. [50]
is used. The optimizer is Adam [51], which calculates its
update step size by considering the mean and non-central
variance of the gradient in the backpropagation of the neural
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network. The batch size of training is 16, and the maximum
epoch is set to 150. All experiments were conducted on a
Windows 10 laptop equipped with i7-11800 CPU, NVIDIA
GeForce RTX 3060 GPU and 16 GB RAM using the Python
3.6 Tensorflow deep learning framework. In this paper, the
network model is quantitatively analyzed and evaluated by
five metrics: precision, recall, Fl-score, average classifica-
tion accuracy (AA), and the kappa coefficient (Kappa). Pre-
cision describes how many of the samples predicted as a
specific category are correct prediction results. Recall reflects
the quantitative relationship between the actual samples of
each category and the correctly classified samples. F1-score
weighs the precision and recall for comprehensive evaluation.
AA evaluates the average classification accuracy for each
class. The Kappa coefficient is a consistency metric used
to evaluate the consistency between the model classification
results and the actual classes. In the above metrics, precision,
recall, and F1-score are weighted, so the recall is equivalent
to the overall classification accuracy (OA).

C. PARAMETER ANALYSIS

Hyperparameters strongly affect model performance, so it is
important to select the appropriate hyperparameters. Learn-
ing rate is an important hyperparameter in deep learning.
Too large learning rate will lead to model divergence, too
small learning rate will reduce the efficiency of the model.
To ensure better network performance, search for the best
learning rate from {0.03, 0.01, 0.005, 0.003, 0.001, 0.0005,
0.0003, 0.0001} based on prior knowledge. In addition, inap-
propriate patch size may lead to insufficient feature extraction
or increase the computational burden of the model. Therefore,
to give full play to the performance of the proposed model and
ensure the efficiency of the network, this paper sets the PCA
of the three data to 10, and then optimizes the initial learning
rate and patch size.

The experimental results of IP, PU and SV datasets under
different initial learning rates and patch sizes are shown in
Figure 6. Different columns represent different learning rates,
and the lateral right learning rate gradually decreases. Differ-
ent rows represent different patch sizes, and the size increases
vertically down. The color depth of each grid in the matrix
represents the quality of the classification results (as shown
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in the right color bar). Intuitively, the matrices in Figure 6 (a)
and Figure 6 (c¢) show darker color representations in the
lower half, indicating that the two datasets can produce higher
accuracy when the patch size is larger. In contrast, the results
shown in Figure 6 (b) show that the PU dataset can produce
more high precision at the appropriate patch size, and the per-
formance on the larger patch size is reduced. This is mainly
due to the PU dataset in the larger patch size will introduce
different classes of interference pixels. In addition, it can be
found that with the decrease of the initial learning rate, the
three datasets have no obvious trend. However, the optimal
results under different initial learning rates are not generated
on the same patch size, which proves the importance of
parameter optimization to some extent. Finally, according to
Figure 6, we determine the learning rates of the IP, PU and
SV datasets are 0.001,0.003 and 0.0003, respectively, and the
patch sizes are 19 x 19,11 x 11 and 19 x 19.

D. COMPARATIVE ANALYSIS WITH OTHER METHODS

In order to evaluate the performance of the proposed model
in the case of small samples, this section will compare and
analyze the proposed method with several deep learning
methods developed in recent years, which are DFFN [52],
SSRN [20], MSDN [53], BAM-CM [54], HybridSN [18],
MSRN-A [55], MSR-3DCNN [56], and MDAN [49]. The
following is a brief introduction to each method in order of
publication time.

(1) DFEN: This model was proposed by Song et al. in 2018.
DFEFEN uses the residual block constructed by 2D convo-
lution as the basic unit of feature extraction to design a
deep feature extraction network, and fuses low, medium
and high-level features for classification.

(2) SSRN: SSRN was proposed by Zhong et al. in 2018.
The model uses 3D convolution and residual connec-
tion to extract spectral and spatial features, and the
extracted features are pooled and classified.

(3) MSDN: Zhang et al. proposed a multi-scale dense net-
work in 2019 and described it in detail. MSDN com-
bines 3D stride convolution to extract spatial-spectral
joint features at different sampling levels, and uses
dense connections to aggregate features at different
levels.

(4) BAM-CM: Dong et al. proposed a band selection atten-
tion module in 2019, which implements adaptive band
weighting processing operations.

(5) HybridSN: HybridSN proposed by Roy et al. in
2020 contains three 3D convolutions and one 2D con-
volution. It extracts spatial-spectral and spatial features
successively and classifies them after passing through
two fully connected layers.

(6) MSRN-A: Zhang et al. proposed MSRN-A in 2020.
The model takes 3D-2D hybrid convolutional neural
network as the basic framework, and refines 3D and 2D
features respectively by using spatial-spectral attention
and spatial attention.
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(7) MSR-3DCNN: This architecture was proposed by Xu
et al. in 2021. MSR-3DCNN introduces dilation rate in
the spectral dimension of 3D convolution, and extracts
the spatial-spectral joint features of multi-spectral res-
olution.

(8) MDAN: MDAN is a multi-dimensional feature extrac-
tion architecture proposed by Liu et al. in 2022. Based
on the 3D-2D model, the architecture further inte-
grates the 1D feature extraction structure and uses the
improved CBAM for feature refinement.

(9) Proposed: We combine the feature extraction advan-
tages of hybrid convolutional neural networks, and use
MFB and SMIA to optimize the spatial-spectral and
spatial features to improve the robustness of the model
features and reduce the difference in the accuracy of
each class in the unbalanced dataset.

To ensure fair testing, the network settings of different
methods (such as patch size and PCA number, etc.) are the
same as those in the original study, which ensures the best
results for each method. In addition, all experimental methods
are carried out on the Tensorflow deep learning framework.

1) INDIAN PINES DATASET

As shown in Table 4, the quantitative classification results
of different algorithms on IP datasets are shown. Obvi-
ously, the proposed model produced the highest classification
accuracy, with OA (Recall), Fl-score, AA and Kappa of
97.84%, 97.86%, 96.92% and 97.54, respectively. MSRN-A
and DFEN are slightly inferior to the proposed model, with
OA of 96.76% and 95.79%, respectively. The results for
SSRN, HybridSN, and MSR-3DCNN are similar, while the
Fl-score of BAM-CM, MDAN and MSDN were all lower
than 90%. Specifically, compared with MSRN-A and DFFN,
the results of the proposed model are significantly improved
in classes with fewer samples (such as Class 1, Class 7 and
Class 9). Especially in the 7th and 9th classes (only one
sample was used for training), several models produced very
low accuracy. These show that the proposed model can signif-
icantly improve the classification accuracy of small sample
classes. In addition, the proposed models yield accuracies
above 90% for all classes (the lowest being 92.47% for
class 7), which indicates that the proposed model can guar-
antee the accuracy balance of various classes on imbalanced
datasets to a certain extent. Furthermore, it can be found that
the overall accuracy of SSRN, BAM-CM, MDAN and MSDN
is significantly higher than the average accuracy, which is
also an important manifestation of the low accuracy of small
sample classes.

Figure 7 shows the classification maps of different methods
on the IP dataset. It can be found that the visual effect of these
classification maps is consistent with the results in Table 4.
MSDN and MDAN show a lot of salt and pepper noise in
some classes. In contrast, the classification results of other
methods are more uniform, but boundary and internal mis-
classification still exist. In this regard, although the proposed
model still has misclassification at the boundary, it eliminates
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TABLE 4. Classification results of algorithms applied to IP dataset.

No. DFFN SSRN MSDN BAM-CM HybridSN MSRN-A MSR-3DCNN MDAN Proposed
1 79.73 13.18 24.55 34.44 57.62 88.57 74.42 37.62 94.88
2 96.57 96.76 61.90 89.17 94.12 96.84 92.33 83.34 97.74
3 92.99 95.59 55.67 88.42 92.61 95.42 89.57 79.17 97.21
4 94.30 77.70 23.63 71.92 67.48 97.10 82.93 62.15 96.86
5 96.71 96.34 69.80 89.95 88.32 91.40 92.27 87.63 93.66
6 98.17 97.12 93.14 95.94 99.27 97.90 99.11 94.70 97.61
7 68.15 0 11.11 11.99 46.92 63.85 87.69 0 92.47
8 100 100 99.47 97.71 99.95 100 99.52 99.67 100
9 64.21 1.05 17.89 34.03 57.78 64.44 44.21 0 96.67
10 93.56 94.03 64.72 86.90 91.91 94.81 87.19 90.79 97.62
11 96.02 94.22 86.85 93.61 97.12 97.61 96.86 91.86 98.43
12 90.95 93.16 50.92 76.60 78.24 94.68 85.29 70.07 95.66
13 98.55 99.79 89.44 93.47 96.54 98.59 97.01 95.57 100
14 98.89 99.25 96.92 97.62 98.70 99.74 98.91 97.81 99.76
15 97.47 97.06 54.93 90.69 89.60 97.76 88.14 69.71 97.52
16 84.14 94.61 30.11 76.66 65.24 93.09 77.73 39.29 94.71
Precision(%)  96.07+0.52 94.54+0.75 75.04+1.74 90.39+0.77 93.24+1.06 96.84+0.26 93.47+0.29 86.40+1.70 97.93+0.31
Recall/lOA(%) 95.79+0.59 94.83+0.89 74.39+1.96 90.21+0.74 93.15+1.00 96.76+0.26 93.33+0.31 86.77+1.36 97.84+0.35
Fl-score(%) 95.80+0.58 94.44+0.91 73.19+£2.20 89.97+0.84 92.95+1.00 96.75+0.26 93.2440.31 86.34+1.53 97.86+0.33
AA(%) 90.65+3.02 78.12+1.56 58.19+1.81 76.81+£2.51 82.59+1.79 91.99+1.03 87.07+2.21 68.71+£2.32 96.92+1.14
Kappax100  95.21+0.66 94.11+1.01 70.36+2.34 88.81+0.87 92.17£1.13 96.31+0.29 92.37+0.36 84.91+1.54 97.54+0.40
TABLE 5. Classification results of algorithms applied to PU dataset.
No. DFFN SSRN MSDN BAM-CM HybridSN MSRN-A MSR-3DCNN MDAN Proposed
1 95.90 99.03 92.28 93.71 97.89 95.86 85.64 90.37 98.47
2 99.44 99.80 98.59 99.38 99.98 99.87 98.81 99.66 99.98
3 95.11 84.33 52.92 72.70 76.13 84.13 78.17 75.76 91.46
4 83.31 96.68 92.60 93.61 90.74 96.49 81.32 89.22 96.89
5 98.25 99.94 97.76 98.48 98.45 99.71 100 98.85 99.88
6 98.93 96.46 58.58 93.39 97.35 99.50 85.39 98.41 99.83
7 94.98 92.71 71.51 75.22 95.72 91.80 96.52 88.40 99.60
8 96.89 93.96 80.06 88.30 88.88 98.37 74.33 68.88 98.59
9 71.45 99.55 93.80 94.34 68.91 95.76 72.15 56.25 98.26
Precision(%)  96.45+0.53 97.69+0.39 87.53+0.90 94.31+0.56 95.74+0.93 97.81+0.42 90.51+2.54 92.47+0.85 98.95+0.07
Recall/lOA(%) 96.45+0.53 97.58+0.37 87.67+0.99 94.23+0.67 95.69+0.95 97.71+£0.42 90.20+2.81 92.17+0.79 98.92+0.06
Fl-score(%) 96.40+0.52 97.55+0.37 87.00+1.14 94.20+0.64 95.56+0.97 97.70+0.43 89.99+2.89 91.98+0.85 98.92+0.06
AA(%) 92.70+1.05 95.83+0.55 82.01+1.32 89.90+1.63 90.45+2.24 95.72+1.18 85.81+4.30 85.09+1.92 98.11+0.04
Kappax100  95.29+0.70 96.79+0.49 83.31£1.40 92.33+0.89 94.26+1.27 96.97+0.56 86.88+3.77 89.57+1.07 98.56+0.08
TABLE 6. Classification results of algorithms applied to SV dataset.
No. DFFN SSRN MSDN BAM-CM HybridSN MSRN-A MSR-3DCNN MDAN Proposed
1 99.89 99.77 94.09 99.44 99.71 99.71 98.16 99.94 100
2 99.95 99.99 98.56 99.52 100 100 99.98 99.99 100
3 98.97 99.94 95.99 99.34 99.93 100 99.99 99.91 100
4 99.13 99.74 98.16 97.57 98.81 98.89 99.20 98.18 98.94
5 98.72 95.93 94.57 97.13 99.91 96.76 96.82 99.04 99.08
6 99.77 100 99.77 99.98 99.61 99.98 99.89 99.65 100
7 98.70 99.97 99.09 99.03 99.95 99.87 99.96 99.98 99.97
8 98.11 92.76 78.89 92.25 96.92 97.62 95.35 96.79 99.41
9 99.93 99.98 98.88 99.74 99.99 100 99.62 99.84 100
10 99.68 98.84 93.44 97.76 99.03 99.11 98.34 97.40 99.83
11 96.65 97.83 91.40 94.57 95.26 100 99.77 97.73 99.79
12 99.04 100 99.23 99.68 99.33 99.95 96.99 99.31 99.85
13 99.05 99.34 96.67 94.83 97.13 99.55 92.56 99.26 98.02
14 93.60 95.64 92.94 99.10 93.04 98.84 98.79 99.27 99.11
15 96.55 89.00 44.71 92.25 98.11 99.72 88.09 94.43 99.98
16 99.34 97.70 95.79 95.83 99.31 98.44 97.85 98.80 100
Precision(%)  98.66+0.49 96.66+0.42 86.26+1.18 96.53+0.64 98.68+0.61 99.14+0.18 96.76+0.57 98.19+0.50 99.74+0.25
Recall/OA(%) 98.62+0.51 96.50+0.45 86.26+1.24 96.47+0.66 98.64+0.62 99.12+0.19 96.71+0.60 98.14+0.46 99.73+0.26
Fl-score(%) 98.61+0.51 96.49+0.50 85.73+1.27 96.48+0.66 98.64+0.62 99.12+0.19 96.69+0.61 98.14+0.47 99.73+0.26
AA(%) 98.57+0.63 97.90+0.47 92.01+£1.11 97.38+0.26 98.50+0.63 99.28+0.19 97.61+0.81 98.72+0.33 99.62+0.28
Kappax100  98.46+0.56 96.11+0.51 84.67+1.37 96.07+0.73 98.49+0.69 99.02+0.21 96.33+0.66 97.93+0.51 99.70+0.29

the internal noise of each class area. The classification result
map is visually closest to the ground truth value.

2) PAVIA UNIVERSITY DATASET

Table 5 shows the classification accuracy of each method on
the PU dataset. It can be seen that the proposed model exhibits
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the best performance, and the overall accuracy and F1-score
are equal to 98.92%. Compared with the proposed model, the
OA of MSRN-A and SSRN decreased by 1.21% and 1.34%,
respectively, and DFFN decreased by 2.47%. Compared with
the other remaining methods, the performance of the pro-
posed model is significantly improved. Observing the data
in the table, it can be found that the accuracy of all classes
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FIGURE 7. Classification map of each algorithm applied to IP dataset. (a) Ground Truth; (b) DFFN; (c) SSRN; (d) MSDN; (e) BAM-CM;

(f) HybridSN; (g) MSRN-A; (h) MSR-3DCNN; (i) MDAN; (j) Proposed.
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FIGURE 8. Classification map of each algorithm applied to PU dataset. (a) Ground Truth; (b) DFFN; (c) SSRN; (d) MSDN; (e) BAM-CM;

(f) HybridSN; (g) MSRN-A; (h) MSR-3DCNN; (i) MDAN; (j) Proposed.

on the PU dataset is above 90%, while other methods always
have the accuracy of one or some classes below 90%. This
again proves the stability of the proposed model. In addition,
the gap between OA and AA of each method on the PU
dataset is significantly reduced, mainly because there is no
class with few samples on the PU dataset. It should be noted
that the accuracy of different methods on the PU dataset is
generally improved relative to the IP dataset, but the accu-
racy of the MSR-3DCNN (—3.13%) model is reduced. This
indicates that the application stability of MSR-3DCNN for
different data still needs to be further improved. Figure 8 is the
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classification maps of each method on the PU dataset. As can
be seen from the annotations in the figure, MSR-3DCNN
and MSDN have obvious misclassifications, while MSRN-A
and others have misclassification on “Gravel” and “‘Self-
Blocking Bricks”. DFFN performs well, but there are still
misclassifications on “Asphalt”. In contrast, the proposed
model shows better visual effects in the above regions.

3) SALINAS VALLEY DATASET
Table 6 shows the quantitative results on the SV dataset. It can
be seen that each method on the SV dataset has achieved high
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FIGURE 9. Classification map of each algorithm applied to SV dataset. (a) Ground Truth; (b) DFFN; (c) SSRN; (d) MSDN; (e) BAM-CM;

(f) HybridSN; (g) MSRN-A; (h) MSR-3DCNN; (i) MDAN; (j) Proposed.
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FIGURE 10. Visualization of different algorithm confusion matrices on IP datasets. (a) Chroma bar; (b) DFFN; (c) SSRN; (d) MSDN; (e) BAM-CM;

(f) HybridSN; (g) MSRN-A; (h) MSR-3DCNN; (i) MDAN; (j) Proposed.

accuracy, which is due to the relatively good sample quality
of the SV data (compared with the IP dataset, the samples of
the SV data are more balanced, and compared with the PU
dataset, the SV data has higher spatial homogeneity). But in
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terms of overall accuracy, the proposed model showed the
best results, with an OA of 99.73 %. Although the accuracy
of some classes was slightly lower (<99%), the overall trend
was still the highest, and the accuracy of each class remained
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FIGURE 11. Visualization of different algorithm confusion matrices on PU datasets. (a) Chroma bar; (b) DFFN; (c) SSRN; (d) MSDN; (e) BAM-CM;

(f) HybridSN; (g) MSRN-A; (h) MSR-3DCNN; (i) MDAN; (j) Proposed.
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FIGURE 12. Visualization of different algorithm confusion matrices on SV datasets. (a) Chroma bar; (b) DFFN; (c) SSRN; (d) MSDN; (e) BAM-CM;

(f) HybridSN; (g) MSRN-A; (h) MSR-3DCNN; (i) MDAN; (j) Proposed.

relatively stable at over 98%. Figure 9 shows the classification
maps for each method on the SV dataset. The proposed
method is obviously superior to other models, especially
in the misclassification between ‘‘Grapes_untrained” and
“Vinyard_untrained”. The misclassification of each class of
the proposed model is basically eliminated, and the boundary
is smoother, which is closest to the ground truth image as a
whole.

Figure 10-12 shows the confusion matrix visualization
results of different methods on three datasets. It can be
found that the main diagonal color of the proposed model is
more consistent than other methods, which indicates that the
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classification accuracy of the model is higher. Overall, the
quantitative and qualitative results on the three datasets lead
to several conclusions: 1) The proposed model produces the
highest accuracy on all three datasets, and the accuracy for
each class is above 90%. This shows that the feature optimiza-
tion strategy in the model can not only improve the accuracy
of small sample classes, but also ensure the stability of other
classes. 2) In addition to the method proposed in this paper,
MSRN-A also shows good results. It can be noted that both
MSRN-A and the proposed model use 3D-2D hybrid network
to extract features, and introduce multi-scale and attention
structure, which may be the key to extracting discriminative
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FIGURE 13. Overall classification accuracy of each method for different numbers of balanced samples. (a) IP dataset; (b) PU dataset; (c) SV dataset.
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FIGURE 14. Overall classification accuracy of each method for different numbers of unbalanced samples. (a) IP dataset; (b) PU dataset; (c) SV dataset.

features in image classification. 3) By observing the results
of the remaining other methods (such as MSR-3DCNN,
MDAN, etc.) on three datasets, it can be found that the results
of each method on different datasets are unstable and slightly
lack the generalization of different data.

E. SAMPLE SIZE ANALYSIS

Evaluating the performance of models under different sample
sizes is an important manifestation of model quality. Deep
learning usually requires a large number of training samples
to enable the model to obtain advanced learning capabilities.
However, it is not easy to obtain a large number of samples
in real life. Figure 10 and Figure 11 are small sample tests
under balanced and unbalanced training sets, respectively.
The balanced sample selection rule is the same across all three
datasets, with 5, 10, 20, and 30 training samples randomly
selected from each class for analysis. When the sample size
is greater than or equal to half of the class, half of the class is
used as the training sample. For unbalanced training sets, the
training proportion of IP data is 3%, 5%, 7% and 10%, and
each class retains at least one training sample. PU and SV
datasets select 0.5%, 0.7%, 1% and 3% as training samples,
respectively.

From Figures 10 and 11, it can be seen that the overall
accuracy of all methods increases as the number of train-
ing samples increases, indicating that it makes more sense
to ensure that different models are evaluated at the same
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sample size. In addition, the proposed model has obvious
advantages in the balanced training set state, and the gap with
other methods is small in the unbalanced training set state.
When testing on balanced training sets, classes with fewer
total samples are easier to learn, while classes with more
total samples are not easy to learn because of the smaller
training set. In the unbalanced training set test, different
classes determine the number of training samples in the same
proportion. At this time, the classes with more total sample
size have sufficient training sets, while the classes with less
total sample size will produce small samples or even very few
samples. Therefore, the two experiments reflect the robust-
ness of the model to different classes of feature extraction
from different aspects. As shown in Figure 10, in the case
of balanced training set, the proposed model is significantly
higher than other methods, which indicates that when each
class selects the same number of samples for training, the
proposed model has the best ability to extract different classes
of features. The performance of MSRN-A is slightly inferior
to the proposed method, but it lacks robustness to different
data and different training sample sizes. Other methods are
significantly affected by sample size on IP and PU datasets,
but perform better on SV datasets. MSDN performed poorly,
which may be due to the small sample size in the experiment
of the balanced training set. In the unbalanced sample state,
as shown in Figure 11, the proposed model has obvious
advantages when the proportion of training samples is the
smallest. As the proportion increases, the gap between the
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TABLE 7. The training and testing time of each method on three datasets.

DFFN SSRN MSDN  BAM-CM __ HybridSN _MSRN-A MSR-3DCNN__MDAN __Proposed

Parameters 424K 353K 2581K 834K 5122K 298K 3088K 460K 209K

FLOPS 522M 112M 5069M 499M 495M 4845M 1568M 48M 274M

\p  Training Time(s) ~ 238.98 235.80 460.74 149.85 106.44 531.84 415.01 70.99 406.84

Test Time(s) 3.66 7.97 20.50 227 3.72 14.86 22.46 7.47 14.27

py  Training Time(s)  265.50 22131 591.99 106.33 103.36 272.81 355.77 60.11 272.54

Test Time(s) 10.37 2251 194.73 7.62 21.92 75.36 96.82 34.29 45.69

gy Training Time(s) ~ 251.33 266.36  1187.47 169.00 139.49 425.21 437.42 94.60 346.92

Test Time(s) 13.14 34.08 257.52 14.82 30.43 92.94 119.54 44.18 77.36

results of different methods decreases rapidly. In particular, 100 | MMEDSUIA BT 5 9047 5952
when the proportion of training samples on the PU dataset gg | RMPESMIA 9892 :

is the highest, all methods produce excellent results. In sum-
mary, the experimental results under the two training sample
selection schemes show that the features extracted by the
proposed model have stronger robustness and the resulting
results have higher accuracy.

F. EFFICIENCY ANALYSIS

Table 7 lists the number of parameters and floating point
operations (FLOPs) of each algorithm model, and the training
and testing time on three datasets. From Table 7, The num-
ber of model parameters and FLOPs is not directly related
to the time consumption in the model operation process.
This is because convolution grouping, depth separability and
computer equipment are all important factors affecting the
running speed. Therefore, the parameters and FLOP of the
proposed model are lower than those of SSRN and HybridSN,
but the time consumption is higher than that of the two.
In addition, MDAN always takes the least time. On the IP
dataset, MSRN-A has the longest training time. On PU and
SV datasets, MSDN takes the most time. In contrast, the pro-
posed model performs moderately in training time on three
datasets. The proposed model increases the network width
and depth, and introduces the multi-scale interactive attention
mechanism, which is the main reason for the increase in
time consumption. But correspondingly, it is these structures
that extract more robust features. Compared with the results
of other methods on different data, the model in this paper
performs best and most stable on three data. Therefore, con-
sidering the efficiency, accuracy and generalization, the time
consumption of the proposed model is acceptable.

G. ABLATION EXPERIMENTS

In this section, different ablation experiments are carried
out to further analyze the effectiveness of MFB and SMIA
modules. Firstly, the proposed model is denoted as “MFB-
SMIA” for ease of observation; secondly, to verify the effec-
tiveness of multi-level feature extraction, the branch with
dilated convolution in the multi-level feature extraction block
is removed, and only the branch that can extract high-
level abstract features is retained, denoted as “SFB-SMIA”.
In addition, to demonstrate the effectiveness of dilated convo-
lution, the dilated convolution kernel in the MFB is replaced
by a regular convolution kernel with the same receptive field

28276

m MFB-SMC 9852 98.42

98 97.84

9g8.19 9831

97.16 97-28

96.99
96.57

P PU sV

FIGURE 15. Effectiveness analysis of MFB and SMIA modules on these
datasets.

size, denoted as “RMFB-SMIA”. After that, to verify the
effectiveness of the spatial multi-scale interactive attention
module, the multi-scale and attention mechanism in SMIA
are ablated respectively. The former transforms the spa-
tial multi-scale interactive attention into the spatial single-
scale attention, which is expressed as ‘MFB-SSA’. The latter
deletes the attention interaction mechanism and retains the
spatial multi-scale feature extraction, which is expressed as
‘MFB-SMC’.

Figure 12 shows the overall accuracy of ablation experi-
ments on three datasets. It can be found from the analysis
of MFB that the three datasets have a unified trend, which
shows that MFB-SMIA has the best performance, followed
by RMFB-SMIA, and SFB-SMIA has the lowest accuracy.
Therefore, two conclusions can be drawn: 1) Feature opti-
mization of single-scale features can significantly improve
classification accuracy; 2) Dilated convolution also has a
beneficial effect on improving classification performance.
Analysis of the impact of SMIA reveals that the spatial multi-
scale interactive attention module leads to significant perfor-
mance gains on all three datasets. In contrast, single-scale
attention without scale interaction (MFB-SSA) and multi-
scale features without attention mechanism (MFB-SMC)
perform slightly worse. This suggests that refinement of inter-
action features between spatial multi-scales contributes to
improved classification performance. Furthermore, the mod-
ule can be arbitrarily inserted into different convolutional net-
works without incurring a significant increase in the number
of parameters, and is therefore extremely generalizable.

H. EXPERIMENTAL RESULTS OF OTHER DATASETS
To verify the generalization of the proposed model to different
datasets, in this section, we selected three datasets obtained
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TABLE 8. The training and testing time of each method on three datasets.

WHU-Hi-LongKou MUUFL Trento
AA OA AA OA AA OA
DFFN 97.51 99.08 75.48 89.69 96.47 99.08
SSRN 96.88 99.24 82.00 93.52 97.85 98.39
MSDN 97.92 99.22 74.72 90.38 95.33 97.95

BAM-CM 94.48 98.44 78.36 92.96 95.16 98.36
HybridSN 95.92 98.90 81.36 94.16 94.32 98.67
MSRN-A 97.49 99.14 81.97 94.33 97.35 98.68
MSR-3DCNN  97.86 99.18 83.50 93.51 96.41 97.93
MDAN 96.97 98.69 75.21 91.78 95.01 97.95
Proposed 98.68 99.50 87.38 95.37 98.36 99.25

by other different sensors for supplementary verification.
Specifically, the WHU-Hi-LongKou dataset was collected
by the Headwall Nano-Hyperspec sensor in Longkou Town,
Hubei Province, China. The MUUFL dataset was collected
by the (CASI)-1500 sensor over the University of Southern
Mississippi Bay Park campus in Long Beach, Mississippi.
The Trento dataset was taken by the AISA Eagle sensor in a
rural area in southern Trento, Italy. Table 8 shows the average
classification accuracy and overall classification accuracy of
the three datasets on each algorithm. Obviously, the pro-
posed model still produces the best results, with the highest
accuracy on all three datasets. However, the sub-optimal
results on the three datasets are shown in different algo-
rithms, which also proves that the proposed model has a more
robust feature extraction ability and strong generalization for
different data.

IV. CONCLUSION

To improve the feature quality of small sample classes
of hyperspectral images and improve the robustness of
the model for feature extraction of different classes, we
propose a hyperspectral image classification model with
multi-correlation and spatial multi-scale interactive feature
refinement. The model takes 3D-2D hybrid convolutional
neural network as the basic framework. In the 3D struc-
ture, multi-scale features are extracted by multi-level feature
extraction blocks, and a spatial multi-scale interactive atten-
tion module is designed in the 2D structure to refine multi-
scale features. The proposed model can effectively extract
the features of various classes on different data and solve the
problem of difficult classification of unbalanced sample data.
Experiments were conducted on three commonly used pub-
licly available datasets, and the overall accuracies of 97.84%,
98.92% and 99.73% were obtained using 5%(P), 1%(PU)
and 1%(SV) training samples. Compared with other methods,
the proposed model can adapt well to small sample image
classification and has more stable and more accurate classifi-
cation results. In addition, ablation experiments on MFB and
SMIA show that they are of great significance to improve the
performance of the model. This paper fully considers the spa-
tial and spatial-spectral information, but ignores the influence
of spectral dimension information. The next step will fully
consider the multi-dimensional information of hyperspec-
tral images for learning and classification, and combine the

VOLUME 11, 2023

adaptive feature extraction module to optimize the informa-
tion of multiple dimensions. In addition, lightweight network
models have become the trend of the future, so design-
ing highly versatile and pervasive lightweight models is the
next priority.
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