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ABSTRACT Supply chain responsiveness and big data analytics (BDA) have garnered considerable interest
in academia and among practitioners. BDA helps researchers understand the current challenges in data
management, including the high volume, velocity, and variety of data. This study is concerned with
improving the responsiveness of supply chain networks to bike-sharing systems (BSS), which exhibit BDA
characteristics. To address the challenges of forecasting bike usage and accordingly optimizing repair shop
operations, we analyze multi-factor BSS data (Data from Washington D.C. BSS available to public), wherein
attributes, such as weather conditions, registration, humidity, date, and time, are present. We use machine
learning algorithms, such as neural networks, decision-tree-based regression, K-nearest neighbor, support
vectors, and ensemble random forest, to predict bike usage and repair. This work contests the results and
demonstrates the effectiveness of combining machine learning with supply chain network design. Supply
chain networks model bike repairs by means of capacity extensions, which entails a nonlinear problem.
In this study, we utilize a gradient search to solve a nonlinear supply chain network model. By enabling
capacity extension, bike repair shops within the BSS exhibit a promising 50 % reduction in lead repair time.
Furthermore, a 25 % overall throughput increase in BSS is achieved. Ultimately, this study demonstrates the
importance of operational flexibility in responding to big data challenges.

INDEX TERMS Big data, bike sharing, flexibility, machine leaning, supply chain network design.

1. INTRODUCTION non-motorized infrastructure, which can reduce road con-

Cities worldwide are faced with the challenge of combat-
ing pollution and greenhouse emissions. According to Barth
and Boriboonsomsin [7], approximately one-third of carbon
dioxide in the US has been generated by the movement of
goods and people. Numerous cities worldwide have built
bike routes to mitigate the negative environmental impact
caused by vehicle emissions, and are moving toward inte-
grating more state-of-the-art technologies to foster sustain-
able living [24]. Consequently, the popularity of bike sharing
has grown in recent years. Furthermore, smart cities place
significant emphasis on modern infrastructure, particularly
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gestion. Bike sharing is generally conducted by means of
bike stations (docking stations), where users can rent bikes
at a certain cost. The main benefit of Bike Sharing Systems
is environmental [64]. In contrast, dockless systems allow
users to pick bikes from their nearest location, and drop them
upon reaching their destination. In both systems, forecasting
the demand for bikes remains a challenge. For example,
the oversupply of dockless bikes creates issues in numer-
ous cities [54]. Another challenge in bike-sharing systems
is the maintenance and storage of bikes. The constant use,
and occasional misuse, of bikes, results in wear-and-tear and
failure. In colder climates, corrosion due to the use of salt
for de-icing roads exacerbates these problems. Additionally,
bikes may be vulnerable to theft and vandalism if left waiting
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for maintenance. All of these challenges call for a model
that can maintain and predict bike demand. For bike main-
tenance, bike-sharing systems (BSS) require a supply chain
network of repair shops and part suppliers. According to a
McGill University study [52], repair shops are important in
generating local jobs and performing maintenance on bikes.
Some bike-sharing programs may rely on warranty to out-
source maintenance, whereas others incur maintenance costs.
User data from different bike sharing systems can provide
information regarding upcoming scheduled maintenance and
urgent repairs. Therefore, an efficient maintenance system
would require a large variety of data (maintenance schedule,
usage, weather conditions, etc.).

The widespread use of data in supply chain management
(SCM) has resulted in drastic cost savings and improvements
in efficiency. Data are crucial for supply chain visibility,
lead-time assessment, and the sharing of demand information
among supply chain partners [51]. In a BSS, a tremendous
amount of data is generated minute-by-minute pertaining to
duration of use, location of bikes, date and time of use, bike
conditions, user information, weather conditions at time of
use, and several other variables. This constitutes a large flux,
wide variety, and high velocity of data: the three compo-
nents of big data [46]. However, access to big data does not
necessarily translate to more efficient supply chain opera-
tions, especially when supply chain entities are inflexible,
and hence unable to respond to the high volume and variety
of big data. Slack et al. [49] proposed the concept of supply
chain flexibility, defined as the ability to respond promptly to
customers’ needs.

The supply chain for BSS must encompass (see Fig. 8)
three tiers corresponding to bike dock stations, bike repair
shops, and part suppliers. The bike dock stations must provide
pull demand for the two back tiers of the supply chain. The
first challenge in this model is the forecasting of bike demand.
This study contests multiple machine learning models, such
as K-nearest neighborhood, decision trees, support vector
machines (SVM), random forest (RF), and artificial neural
networks (ANN). Forecasting bike usage is a challenge owing
to the high velocity (minute by minute), variety (different
usage durations and user profiles), and volume of data. Dur-
ing seasonal periods of turbulent demand, certain simple tech-
niques may mitigate the challenge of sporadic data, whereas
when stability in data is restored, more complex models,
such as ANNs and ensemble techniques (RF), might perform
better. Therefore, the first challenge of this study is to deliver
a time-period-sensitive forecast. The second challenge in the
model arises as a result of the short lead-time required for bike
repair. Although the model incorporates lead-time crashing
by extending capacity via resource augmentation, this results
in a nonlinear supply chain. Therefore, this study proposes
a gradient search procedure combined with a genetic-based
algorithm.

Big data analytics (BDA) refers to the merging of two
prominent fields: big data and business analytics. Big data
refers to high-volume, high-velocity, and high-variety sets
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of dynamic data that exceed the processing capabilities of
traditional data management approaches. Business analytics
(BA) is the study of skills, technologies, and practices used to
evaluate business strategies and operations to infer important
insights for business planning. Such evaluations range from
strategic management to product development and customer
service through evidence-based data, statistical and opera-
tional analyses, predictive modeling, forecasting, and opti-
mization techniques ([11], [46]).

To synthesize the motivation of the paper, we design a sup-
ply chain network consisting of demand nodes (bike docks),
repair shops, and suppliers for the procurement of bikes’
parts. At the demand side, we utilize multiple machine learn-
ing algorithms to predict the demand of bikes needing repair.
This translates to demand input in the supply chain network.
The repair shops are flexible and can extend their repair
capacities (see figure 9) by crashing operational resources.
Hence, the repair shops respond to the demanded repairs at
the bike docks. Further, the model integrates the transporta-
tion costs all through the supply chain. Since the repair of
bikes in a BSS is a must for sustaining acceptable service lev-
els, the model supplies decision makers (city planners) with
fundamental operational characteristics for optimal service
levels and operational costs.

The contribution of the work is highlighted by three impor-
tant elements. First, the introduction of flexible operations,
via the use of capacity extension, brings promising results
in overall responsiveness to the repair needs of the BSS.
Second, the artificial neural network algorithm tend to bring
the lowest prediction error when compared with the rest of the
algorithms, at a mean error of less than 1 percent of the actual
value. Third, the combination of demand analytics and supply
chain modeling produces 25% throughput improvement in
the overall model.

The study begins with a literature review (Section II)
that examines general BSS-related studies, supply chain net-
work design (SCND) models that investigate BSS or sim-
ilar systems, and SCND models that integrate flexibility.
Section III highlights and explains the paradigms of busi-
ness analytics and machine-learning techniques to practition-
ers, and subsequently introduces the SCND model, as well
as the procedure for addressing nonlinearity. Section IV
presents the mixed-integer nonlinear mathematical model,
and details the methodology for the capacity extension and
solution procedure. Section V presents the overall results
of this study, starting with machine learning. Additionally,
it provides examples of the effectiveness of flexible supply
chains. The final section presents closing statements and
recommendations.

II. LITERATURE REVIEW

Using Google Scholar, Science Direct, ProQuest, and Engi-
neering Village, we searched for Mixed-Integer Program-
ming (MIP) general models that address challenges in the
management of BSS. We initially reviewed general BSS,
without reference to maintenance, big data, machine learning
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in predictive demand analytics, supply chain management,
or flexible supply chain models.

The service level requirements of bike-docking stations
have been frequently explored in the literature. The general
allocation of bikes to dock stations is the most common
theme in existing studies ([2], [21], [37], [41], [44], [59],
[60], [66]). In a typical BSS service-level problem, there is a
trade-off between attaining a high customer level (availability
of bikes at any time), and the costs of allocating bikes to
stations and purchasing a large inventory of bikes. Generally,
optimally placing bike-docking stations and repositioning
bikes can reduce the routing costs for trucks, which replenish
and reposition bikes. In showcasing this theme, Freund et al.
[21] examined the number of docks used for each station,
bike rebalancing among stations, and expansion planning.
The authors applied mathematical programming to achieve
an optimal solution by relying on a careful statistical analysis
of the data. Collini et al. [13] introduce a predictive method-
ology and solution for short-term predictions, given available
BSS’s bikes, smart stations and three months data. They
utilize Ensemble and Deep Learning solutions. Ashqar et al.
[6] introduce a BSS model that applies machine learning at
the level of the network and stations. They use Random Forest
and Least-Squares Boosting as univariate regression to model
the number of available bike stations. Bustamante et al. [9]
employ multiple machine learning algorithms using proba-
bilistic programming through Bayesian inference. Their work
study the impact of COVID 19 or ridership. Ngo et al. [40] use
Random Forest (RF) and k-fold to predict the hourly demand
of bikes in the city of Seoul (Korea) using information related
to rental hour, temperature, humidity, visibility, wind speed,
dew-point, snowfall, solar radiation, and rainfall. Zhou et al.
[69] develop a novel approach of prediction and optimiza-
tion where optimization and branch-and-price algorithms are
used. Their method saves significant costs (operational costs)
and reduce the waste of resources.

Overall, studies pertaining to this theme are abundant;
however, when we supplemented repair/maintenance with
our search criteria, we discovered a noticeable gap in
research. Even though one of the important aspects of BSS
is maintenance, literature pertaining to that aspect is scarce.
This could be because numerous cities outsource mainte-
nance to third-party organizations. However, repair and main-
tenance are indirect costs that are eventually reflected in
BSS cost structures. Furthermore, some cities do manage the
repair and maintenance of bikes within their BSS [52].

Big data is intrinsic in BSS because the underlying data
structure features all three of its basic features: high volume,
high variety, and high velocity. Because BSS are typically
installed in large urban centers, data from BSS depositories
feature an immense amount of information [76] as the users
average in the thousands, if not the millions. Furthermore,
numerous attributes, such as user characteristics (registration
status, student status, gender, etc.), trip information (GPS
tracking, mileage, and maintenance issues), and external
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characteristics (weather, humidity, holidays, etc.), are highly
variable. In addition, high velocity is associated with rapid
changes in the data. Most available data structures provide
readings on an hourly, or occasionally per-minute, basis. The
BSS literature is rich in studies that emphasize big data ([21],
[34], [37], [41], [44], [59], [60], [62], [63], [68]). Zhao et al.
[68] examined weather variations to develop a comprehensive
model for inferring the relationship between weather variabil-
ity and cycling.

Alternatively, coupling BSS with machine learning has
provided a large volume of research. Ashqar et al. [5] studied
the availability of bikes at docking stations using random for-
est (RF) and least-squares boosting. Wang and Kim [55] pro-
posed short-term forecasting for docking stations in Suzhou,
China, by means of long short-term memory (LSTM) and
gated recurrent units (GRU). They used random forest as
a benchmark to test their performance. Singhvi et al. [50]
utilized a linear regression model to predict bike demand in
New York City. Arque [4] utilized random forest to forecast
bike demand. Liu et al. [35] introduced an LSTM model to
forecast the number of bikes over multiple time steps. All
authors in question reinforced their contributions based on
the significance of their practical implications. With the aid of
this research, bike-sharing agencies can make better decisions
regarding the distribution of bikes to docking stations.

Within the context of SCM, Raviv and Koka [43] con-
ducted a study that analyzes the inventory management of
bikes at each station, and proposed an inventory model for
the management of these stations, where a numerical solu-
tion was presented. Most importantly, they indicated that
fluctuations are the biggest challenge in the management
of bike-sharing systems. Li et al. [31] reviewed the impact
of important factors, such as price, traffic congestion, and
supply chain, on bike-sharing selection behavior. They uti-
lized big data to evaluate bike-sharing apps in Beijing over
a 4-d period. Unlike that on machine learning applications
and service-level bike allocations, research on SCM in the
context of BSS is scarce. Adding flexibility to the search cri-
terion yielded negative results. To the best of our knowledge,
no existing study considers flexible supply chain networks
within the context of BSS.

This study allows for flexibility in how supply chain
facilities (suppliers, repair shops, and bike-sharing stations)
respond to changes in demand. Although we found no
research pertaining to this idea in the context of BSS, sev-
eral studies have examined the flexibility of general supply
chains. According to Gunasekaran et al. [22], production
flexibility and responsiveness are important factors in sup-
ply chain flexibility. Chatzikontidou et al. [10] proposed
a flexible SCND model that uses generalized production/
warehousing nodes instead of individual production plants
to address uncertainty. Lim et al. [33] designed a supply
chain distribution network that accounts for agility, or the
ability to quickly respond to unexpected fluctuations in cus-
tomer demands. Shoja et al. [48] proposed a mixed-integer
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linear programming (MILP) model, wherein flexibility was
modeled using three different delivery modes. The main
aim of their study was to enable flexible delivery systems
to respond to variability in demand. Esmaeilikia et al. [18]
brought an important parallel to our study by considering
the expansion of tactical production capacity. Their work
numerates capacity expansion as a flexible option for meeting
demand. Conversely, our study explicitly extends the pro-
duction capacity of shops in response to production resource
augmentation.

In tying high-frequency data to supply chain network
design, we refer to the work of Chong et al. [12], who inves-
tigated strategies and sentiments from online user reviews.
The authors made a significant contribution to the introduc-
tion of big data architecture. Prasad et al. [42] developed
a resource dependence model linking big data analytics
to superior humanitarian results using a qualitative case
study. Zhang et al. [65] introduced a big-data architecture that
enables the availability and accessibility of data and informa-
tion pertaining to a given product. However, none of these
three studies can be categorized in the SCND domain, nor do
they examine supply chain flexibility. In contrast, Wang et al.
[58] proposed a SCND model with big data, including histor-
ical data recorded in databases, and updated behavioral data
collected from social media (LinkedIn, Facebook, Twitter,
and Google+), web clicks, comments, reviews, and com-
plaints. However, their study does not explicitly discuss any
algorithmic learning performed on the data.

Concerning the predictive analytics context of SCND,
Ma et al. [38] proposed a novel demand modeling tech-
nique called demand trend mining (DTM). The authors uti-
lized DTM for predictive life-cycle design, and introduced a
nonlinear mathematical programming model. However, this
model’s objective is product design, rather than supply chain
network design. Wang et al. [57] introduced a BDA model
to predict the cycle time of semiconductor wafer-fabrication
systems. Their work was founded upon data acquisition, pre-
processing, analysis, and prediction. However, the objec-
tive of their study was not to model or design a supply
chain.

We identified a large number of studies pertaining to
nonlinear mathematical modeling in supply chain network
design ([16], [17], [18], [19], [23], [25], [28], [29], [36], [38],
[45], [58]). However, studies that consider big data are limited
( [12], [38], [42], [57], [58], [65], [67]). Only two of these
studies integrated SCND or accounted for capacity extension
(production lead-time flexibility) ([18], [27]). Furthermore,
the studies that used predictive analytics are also scarce
([12], [38], [57]). However, general business analytics
(including descriptive, prescriptive, and predictive analytics),
are well-represented in the literature. Overall, the uniqueness
of our study is its focus on the supply chain of the BSS.
Accordingly, the study encompasses an SCND model, a non-
linearity objective function, BD, a learning neural network
algorithm, predictive analytics, and supply chain flexibility.
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IlIl. MACHINE LEARNING IN MULTI-FACTOR DATA

The main scope of this study is cutting-edge machine-
learning techniques combined with an optimization model
to better manage and coordinate supply chain operations
in response to demand fluctuations. It is important to first
discuss the nature of the data in question. The first part of
this section discusses the scope of this study. The rest is
devoted to machine learning algorithms — the algorithms used
to navigate and make sense of data.

Algorithms that navigate and interpret data are widely used
in everyday life. Some occur beneath our notice, such as
algorithms employed by our brains to differentiate between
images, whereas others have been designed by humans to
solve difficult problems. The main objective of machine
learning is to learn these algorithms. Machine learning com-
prises two phases: training (learning) and solving. Before
training, a model generally encompasses many parameters.
After training, the model is attached to the task at hand [1],
and can be used to predict the future behavior of the attributes
of interest. This study uses the K-nearest-neighbor, decision
tree, random forest, support vector machine, and artificial
neural network-based algorithms to predict patterns within
BSS datasets. The use of multiple algorithms is necessary
due to the erratic nature of BSS data, where weather patterns
and other elements may produce drastic changes. Accord-
ing to Stevenson et al. [51], unstable time series data with
abrupt changes, seasonality, and trends may impact overall
forecasting performance. To detect recent changes, less com-
plex models, consisting of fewer hidden layers and neurons,
may prove more efficient. Therefore, this study employed an
ensemble method (random forest) and deep learning (neural
networks).

The following section describes each technique in detail.

A. SCOPE OF RESEARCH

Hazen et al. [26] summarized three categories of busi-
ness analytics: descriptive, prescriptive, and predictive.
Wang et al. [57] defined two of these categories as follows:
descriptive analytics identifies problems and opportunities
within existing processes and functions, whereas predictive
analytics features the use of mathematical algorithms and
programming to discover explanatory and predictive patterns
within data. In this study, we employed descriptive analytical
tools to study the data before attempting to identify demand
patterns. We used a structured approach to prepare the data,
where a visual representation was used to investigate any
missing data, data interruptions, illogical outliers, mislabeled
data, and other potential errors. The contributions of this
study are threefold. First, machine-learning algorithms were
used to predict patterns in the data collected from users.
To achieve this, we contested different machine learning
algorithms: neural networks, decision-tree-based regression,
random forests, K-nearest neighbor, and support vectors.
Our input data comprised the date of use (hour, day, sea-
son, year, holiday or non-holiday, weekend or non-weekend),
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FIGURE 1. Big data paradigm.

weather pattern (temperature, perceived temperature, wind
speed), and user information. Second, the study introduced
flexible repair shops to meet the demands of repair. Third,
our model enabled repair shops to extend their capacity to
better address spikes in demand. The objective of this study
was to explicitly demonstrate the impact of state-of-the-art
machine learning on demand analytics accuracy in the con-
text of bike-sharing repair and support systems. This work
unambiguously demonstrates the impact of nonlinear func-
tions, which enables the extension of the facility’s operational
capacity. Excellent predictive analytics are rather limited if
the corresponding supply chain is not sufficiently flexible to
respond in real time to the signals coming from predictive
analytics. Therefore, an important contribution of this study
is the enabling of capacity extension, which allows the model
to responds effectively and efficiently to demand signals.
We integrated a nonlinear function that enables capacity
extension in a SCND. SCND is a modeling approach with
the goal of optimizing the use of operational resources, where
operational constraints and attributes, such as cost, location,
and functionality, are combined into an objective function that
must be maximized. Integrating flexibility into supply chain
modeling results in a nonlinear mathematical programming
model that is challenging to solve.

This study used data from BSS databases, which are
updated at least once per day. Fig. 1 illustrates the big data
paradigm with three fundamentals: velocity, variety, and vol-
ume. The data in question includes many attributes.

Fig. 2 illustrates the input and output characteristics of
the overall model. The SCND model integrates nonlinear
capacity functions that enable capacity extensions. The model
was solved by combining gradient search with genetic-based
search. The features in the dataset serve as key factors in
planning capacity, and are important in preparing repair shops
within the model for the required production capacity. This
in turn improves the planning of human resources, including
employees. We have in preliminary studies tested ARIMA,
which is an autoregressive integrated moving average model
([71], [72], [73], [74]) but gotten inferior results to those of
deep learning.
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Furthermore, this data can be shared with vendors to supply
the parts needed for repairs. As shown in the figure, repair
shops are enabled to extend their capacity, which produces
an overall reduction in repair costs. The cost behavior fol-
lows the behavior of the crash cost in Liao et al. [32] and
Alzaman et al. [3].

B. MACHINE LEARNING ALGORITHMS

1) K-NEAREST NEIGHBOR (KNN)

The K-nearest neighbor (KNN) algorithm is a non-parametric
algorithm [14] that has been used for classification and
regression problems. The algorithm contests neighboring val-
ues of x; in the proximity of x. Here, K observations are taken
for the respective x; neighbors:

3 (x) =% > x

X;i€Np x

where Ny  represents the K closest points in the neighbor-
hood of x. Therefore, the predictability of any x; depends
on the K-value (the number of neighbors that should be
included). A high K value may overshoot the real value of
v, whereas a low K value might also provide a high-error
prediction. To obtain optimal results, this study employed a
standard Euclidean metric.

2) DECISION TREES

As hierarchical decision orders, decision tree algorithms
employ tree-like structures that consist of root nodes, and a set
of internal and terminal (leaf) nodes. A binary classification
process generally starts at the root node and proceeds toward
the leaf nodes, thus splitting a complex decision into smaller
and less complex ones [61]. Each branch within the tree
represents the true and false possibilities for a given criterion.
The decision tree starts from the root node, also known as the
parent node. Then, each node can be split into left and right
child nodes. The splitting of each successive node into child
nodes recurs until a leaf node, which serves as a terminus,
is reached. Overall, the data are split in a way that maximizes
learning and minimizes MSE in the case of a regression
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problem.

1
MSE = 17 KZN: i — yi,target)2

3) RANDOM FORESTS
Random forests are ensemble techniques [75] that combine
multiple models. The two branches of ensemble techniques
are bagging (bootstrap aggregation) and boosting.
Bootstrapping, which samples n smaller datasets from an
original dataset M [8], is illustrated in Fig. 3. The sam-
pling here is replaced, which implies that there are some
repeated elements in each decision tree DT;. Thus, the
random forest utilizes numerous decision trees, where each
tree outputs a set of predictions. Subsequently, the predic-
tions are aggregated using the average values from each
tree. Consequently, this reduces variability in the overall
model.

4) SUPPORT VECTOR REGRESSION

The main distinct feature of a support vector machine (SVM)
is the use of a hyperplane that discriminates between classes
of data [75]. Support vector regression (SVR) is an extension
of the SVM, where training involves the construction of a
symmetrical loss function that penalizes overestimates and
underestimates (Fig. 4), thus creating a flexible tube with a
minimal radius. The tube is formed symmetrically around
the estimation function, and the estimates outside a given
threshold are discarded or ignored. Thus, points outside the
tube are penalized, whereas points inside the hyperplane are
not.

Fig. 4 illustrates the SVR model from a one-dimensional
geometric perspective. The SVR algorithm attempts to fetch
the narrowest tube around the surface by optimizing the
prediction error (difference between predicted and actual
values).

5) ARTIFICIAL NEURAL NETWORK

An artificial neural network (ANN), often simply referred to
as a neural network, is a simplified abstraction of the complex
network of neurons in the human brain. In an ANN, neurons
are processing units that perform predefined mathematical
operations [47], [75]. According to Chong et al. [12], neural
networks are an effective alternative to traditional statistical
techniques.

A neural network is composed of one or more neurons,
which serve as its basic building units. Each neuron contains
one or more inputs, and is associated with a weight applied
by the network. Additionally, each neuron produces one or
more outputs, which are also weighted when connected to
other neurons [53]. Fig. 5 presents an abstract schematic of
a neural network where the input nodes, denoted by i, are
coupled with weights w.

Therefore, the summation function can be written as:

n
(ijl ijwj) + wo
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6) DEEP LEARNING
The deep learning algorithm is a supervised learning algo-
rithm in which weights are adjusted with respect to a training
set. Each sample of the data is applied to the perceptron,
where a linear activation function is used. In our case, the
sigmoid function was used; however, the results were sub-
optimal. This is often the case in regression and time series
models, where the input and output of time series parameters
requires a continuous range of values, whereas the sigmoid
function restricts the output to a binary choice. Several hidden
layers are used in the deep learning algorithm (see Fig. 6).
A large number of hidden layers tends to increase the net-
work’s complexity. In our case, the use of two hidden layers
yielded optimal results. Some researchers have reported sim-
ilar results. Crone and Dhawan [15] cite that some authors
have noted the number of hidden nodes to have limited impact
on forecasting accuracy. Although they recommended the
use of the sigmoid activation function for hidden nodes, our
results show that using the sigmoid function, whether in the
hidden, input, or output nodes, tends to debilitate the results,
thus producing lower accuracy.

We refer to the previous steps as forward propagation as we
move forward through the network. Subsequently, the error
(difference between expected and actual results) was used to
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FIGURE 5. Abstract schematic of a neural network: Perceptron.

adjust the weights.

1
Error = 3 Z (A

Next, we applied backpropagation [79] to adjust the weights
proportionately to the calculated error. The deep learning
algorithm follows the schematic shown in Fig. 7.

2
i— outputi)

IV. METHOD

In the method, we shall first give a background on the supply
chain characteristics of BSS, repair shops, and suppliers.
Then, we shall discuss the model and its challenges.

A. SUPPLY CHAIN NETWORK DESIGN
We proposed a supply chain model (see Fig. 8) that enables
flexible bike repair services, where shop capacity can be
extended by supplementing production resources. Accord-
ingly, the network includes vendors that supply required parts
to the system. The optimal network selects the most cost-
and time-effective repair shops to connect to the network.
Whereas vendors are selected based only on cost, repair shops
are selected based on cost and the ability to extend capac-
ity. The integration of flexible capacity results in nonlinear
expressions in the objective function, and nonlinear entities
in the constraints. To address these challenges, we combined
a gradient search method with a genetic-based heuristic.
Note that repairs occur both at bike stations (on-site) and
at repair shops. Typically, smaller and more manageable
repairs are performed on-site, whereas more serious repairs
are performed at designated repair shops. However, on-site
repairs can cause major problems in practice. For example,
major repairs may be misclassified as minor. This has an
obvious effect on customer experience: having a bike break
down in the middle of the trip is displeasing for customers.
Furthermore, bikes left waiting for repairs at a station may be
mistaken for operational bicycles by the system operator [63].
Therefore, repairs in our model are performed solely at repair
shops, regardless of severity. Effectively, service flexibility
alleviates the issue of excessively time-consuming repairs.
Although our model predicts bike usage, we obtained infor-
mation concerning repair frequency by evaluating user report
data.
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FIGURE 6. Hidden layers in a neural network [20].

1. Assign Initial Random Weights

<

2. Propagate inputs forward using the summation functions

$

3. Input the summation product into the activation function
(linear function)

§

4, Repeat the propagation (step 2 and 3) to all remaining stages
of the network

<

5. Calculate the error of the output (actual — predicted)

N

6. Perform Backward propagation using the gradient search
method to propagate the error backward through the network

FIGURE 7. Deep learning perceptron algorithm.

This study encompassed a supply chain model that incor-
porates flexibility in terms of the ability to extend capacity.
This model exhibits nonlinearity in the objective function and
constraints. The following section introduces the model and
subsequently discusses the repair shop flexibility features,
where the capacity functions are explained thoroughly. Next,
we discuss the challenges arising from solving the model, and
provide proof of convexity to facilitate the use of a gradient
search. Pinnacle, a machine learning algorithm, was used to
predict bike usage.

B. MODEL
This model integrates nonlinear functions that allow for
greater flexibility in terms of output augmentation. At each
shop facility, capacity can be extended using additional
resources ([3], [32]). By allowing for the extension of capac-
ity, the repair lead time is reduced, and, specifically in the
context of this study, the bike output per time period is
increased.

Sets:

I = Group of Bike Part Suppliers.

J = Group of Repair Shops.

K = Set of Bike Stations.
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FIGURE 8. lllustration of a supply chain (vendors, repair shops, and bike
station docks).

R = Set of part types

T = Set of time periods

Parameters:

PCr; r,;: Procurement cost at vendor i, for one unit of part r,
during time period t;i €, r €R, t €T.

Rtoj ;. Average bike repair time at shop j if capacity is not
extended (no shortening) during period ¢, where j € J and
t el

Tr;j r,i: Cost of transporting part » from vendor i to shop
Jj at time period 7, where i €1, j €J, r € Randt €T.

IC; ;: Cost of inventory holding at repair shop j, per bike at
time period ¢, where j € J and t €T.

Tpj k.- Cost of transporting one bike from shop j to dock
station k at time period ¢, where j €J, k €K, and t €T.

SCap; ,,; Allowable capacity of part r at supplier i during
time period ¢, where i €I, r €R, and t €T.

Fj . : Fixed cost of opening repair shop j for operations
during time period ¢, where j € J and t €T.

PCapj; : Allowable capacity, maximum number of bikes
ed that can be repaired at shop j during time period ¢, where
jeJandt €T

By i: Number of bikes needing repairs at station k during
period ¢, where k € K and t €T.

n, : Number of parts r required for each bike repair, if any,
where r €R.

I; ;- Initial inventory level of bikes at shop j at time period
t, wherej € J andt €T.

C; : Parameter of overhead cost in repairing one bike at jh
shop, where j €J.

aj: Operational cost parameter, which depends on the oper-
ational setting for shop j, where o > O for each j, where j €J.

Bj: Exponential factor at shop j for bike repairs, where 8 €
[0, 1] for each j, where j J.

Decision Variables:

XP; r.+: Number of parts supplied from shop i, for part
during time period t; i€l, reR, teT.

X; ;- Number of bikes repaired at shop j during time period
t,wherej e Jandt €T.
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XTpj k.- Number of transported bikes from repair shop j to
station k during time period ¢, wherej €J, k €K, t € T.

XTr;j,r,r: Number of parts transported at time 7 from ven-
dor i to shop j for part r, where, i €I, j €J, r €R, andt € T.

XHj; : Number of bikes held at repair shop j during period
t,wherejeJandt €T.

S;.+- Time reduced from the original Rto; ( for shop j at time
period ¢, wherej € Jandt € T

Yj, : Assignment variable at repair shop j, set to 1 if the
repair shop is operating and 0 otherwise ; where j € J and
t el

Rt : Average bike repair time at repair shop j after reduc-
ing repair time by S; ; in time period ¢, where j € J and t €T.

PCFj; : Repair cost as a function of S for bikes repaired at
shop j during time period ¢, where j € J and t €T.

Model:

MinZ = Z Z Z PCri, XP;i

iel reR teT

+ Z Z Z Z Tri,j,r,lXTri,j,r,z

iel jeJ reR teT

+ Z Z IC;,XH,,

jeJ teT

+ > D XjPCF,,
jeJ teT

+ 22 2 T XTjs + D D YiuFi
jeJ keK teT jeJ teT

ey

Equation 1 highlights the minimization of the sum of the
following terms: total procurement costs for bike parts at
suppliers, shipping costs from suppliers to repair shops, total
holding costs at repair shops, total repair costs at repair shops,
and costs of transporting fully repaired bikes to docking
stations.
Ri;  is the average repair time, expressed as:

Rtj = Rtoj; — Sj; Vj,Vt 2)
Evidently, the repair cost term in (1), the objective function,
reduces the repair time and generates a capacity extension.
The inworking of the repair cost term is given by Equation 3,
which integrates the costs of time reduction with those of
normal day-to-day operations.

PCj, = ajePSis — C;S;; + CjRtoj,  ¥j, ¥t (3)

Subject to
Constraint 4 balances the stored and transported bikes from
repair shop j :

r

. =0
Xj+XH;, —XHj, 1 =0 Vj, Vt: =S XH =1,
@
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Constraint 5 equates the outbound transportation at supplier
to the actual produced.

> XTrijy=XPi,; ViVr. Vi (5)
jeJ
Constraint 6 makes sure parts made at vendor i do not exceed

its capacity limit.

XP;,, < SCap;,, Vi,Vr,Vi (6)

Constraint 7 ensures that the supply of vendors is balanced
with the demand for parts at shops.

D XTrijri=Xpne ¥j,Vr,vi )
iel
Constraint 8 guarantees that all bike repairs needed at a given
station k are met.

> XIp;i, =By Vk. Vi (8)
j

Constraint 9 equates the bikes transported to stations with
those repaired at shops.

Xjs— > XTpj, =0 VjVi ©)
keK

Constraint 10 limits the quantity of bikes repaired at a given
shop (i.e. opened repair shop) to the shop’s capacity. Here,
a reduced production lead time results in excess capacity.

Si;
Xi; <Y (PCap, J: Vi, Vt 10
SRS j,t( aP],, + ij,t) ] (10)

Constraint 11 enforces non-negative restrictions and binary
representations.

XTrijrt: XTpj i 1» XPir, XH; (1, X1, S,

j.t? Rtj,lv Yj,l = O

(11)

it

C. FLEXIBILITY IN SCND

Responding to the volume and variation in data requires
flexibility in the supply network, which was achieved by
incorporating nonlinear cost functions. These functions out-
put repair costs corresponding to the unique operational set-
tings of each shop. The settings allow for capacity extensions
by crushing resources (Constraint 4.9), commonly achieved
by increasing the direct operational resources (i.e., overtime,
better machining, and better tools). This process is illustrated
in Fig. 9, which shows that a reduction in the average repair
time (R;) results in an excess capacity.

Some challenges arise when solving this model. First, the
inclusion of operational flexibility results in nonlinearity in
the objective function and constraints. Furthermore, a robust
solution procedure must be designed to effectively solve
the model. Two decision variables — X; ,; and S, — are
multiplied, which further complicates the objective function.
In addition, the repair cost PCj p, ; at shops is a nonlinear func-
tion of S;, ;. Given these challenges, an effective heuristic
must be designed to produce near-optimal solutions.
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FIGURE 9. Repair time and extended capacity.

D. PROOF OF CONVEXITY PROPOSITION
Proposition: This proposition states that the objective func-
tion is convex.

PC denotes the total production cost, and can be expressed
as:

PCj; = aeP*S + C (Rt0j,-5;1)

For a function f (x) to be convex, its second derivative %

should be non-negative for every value of x ([39], [70]).
Acquiring the second derivative for the sole variable in func-
tion S generates the following expression.

aﬂzeﬁs >0

Because «, 8, and s are always positive, the overall expression
renders positive and is therefore convex.

In addition, the value of PC in the objective function is
multiplied by a decision variable X. The two partial deriva-
tives %and‘lg{(?) are both greater than or equal to zero,
making the overall expression convex. Given that the sum of
convex functions is convex, and because Y is a constant at
each iteration of (4.1), the overall objective function is also
convex. Further, Y is held constant in the gradient search
solution procedure and its value is obtained using a genetic-
based search. Both concepts are introduced later.

V. RESULTS
A. DATA CLEANING AND PREPARATION
The obtained data underwent numerous stages of cleaning
and preparation, performed using a set of Python libraries
geared towards big data (Pandas, Seaborn, matplotlib, SciKit-
Learn, and statsmodels). However, R does provide an alterna-
tive platform for statistical analysis [77].

Because the original data is raw, the following issues exist.

. Multiple entries within the same day

. Errors in dates

. Inconsistent time durations between dates
. Dates in non-compatible format

. N/A or null entries

0B AW =
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FIGURE 10. Squared error comparison between neural networks,
decision trees and random forest.
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FIGURE 11. Squared error comparison between neural networks, support
vector machine, and K-nearest neighbor.

All of these issues relate to preparatory data methodology.
Empty entries (denoted by N/A or null) can cause network
instability, large errors, and other problems upon being input.
Therefore, we identified and eliminated any flawed entries
using code from the panda—Python library. Subsequently,
we organized the data into a readable format using the Pandas
library. In the process, we sorted the data and identified
important insights such as missing dates, uneven time dura-
tions, and multiple entries within the same day. Using the
other Python libraries, we were able to sum multiple entries
within the same day, and place the data in a time series format
where the time duration between instances was universally
constant. Finally, we used matplotlib to plot the data.

B. PREDICTIVE ANALYTICS (MACHINE LEARNING
PERFORMANCE)

We employed the best-performing machine learning algo-
rithm to predict the number of bikes demanded by users.
Note that the predictive capabilities of rigid networks are far
less effective for supply chain networks. In contrast, flexible
networks can respond much more effectively to changing
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patterns in demand. In the following section, we examine
results obtained from the machine-learning algorithms.

To evaluate the effectiveness and performance of each
algorithm, we input the bike-sharing data from Washington
D.C. (130,644 data logs) into each of them. This dataset
includes attributes corresponding to weather, temperature,
perceived temperature, humidity level, wind speed, season,
registration status (binary), repair frequency, and holiday
status (binary). To evaluate each algorithm’s performance,
we hid 50 data logs, and subsequently used them to test
each algorithm by comparing predicted and actual values.
Fig. 10 presents a performance comparison between three
algorithms: neural network (NN), decision tree (DT), and
random forest (RF). We calculated the square error (SE;
squared difference between predicted and actual values) for
each prediction. These results illustrated the robustness of
the NN algorithm as it achieved an accuracy of approxi-
mately 100 % for this specific dataset. A further examination
revealed that the ensemble-based algorithm (RF) did not sig-
nificantly improve the results compared with simple decision
trees. RF exhibited higher variability, with a standard devi-
ation of approximately 11.7, compared to 10.8 for decision
trees. In contrast, NN exhibited a mean error of 0.0001 with
a standard deviation of 0.0002.

Fig. 11 compares the NN, K-nearest neighbor (KNN), and
support machine vector (SVM) algorithms. Here, both SVM
and NN outperformed KNN. Therefore, we can conclude that
KNN is not a suitable algorithm for predicting bike usage.
In contrast, the SVM algorithm exhibited a very low mean
SE of 0.005; next best performance compare to NN.

Overall, the NN algorithm produced the best results, with
a mean SE of less than 0.0001. Therefore, we used the NN
algorithm to predict bike-sharing behavior for all subsequent
computations.

C. SUPPLY CHAIN RESPONSIVENESS TO BSS

To manage the binary variables in the model (Y;,), we use a
genetic algorithm (GA) that selects the best-fitting solutions
(see Fig. 12). The GA starts with a group of chromosomes
known as the population in the form of an NpopxNbits
matrix with a population of Npop chromosomes, which rep-
resents the population of genes (number of random solutions
devised), with each chromosome having Nbits bits, which
represent the number of binary variables associated with the
opening and closing of repair shops (¥} ;). The Npop xNbits
matrix will be filled with random ones and zeros. Chromo-
somes are ranked in accordance to their corresponding cost
value, from lowest cost to highest cost. At each iteration,
a fraction of best chromosomes are selected for mating, while
the rest are discarded. A crossover point is randomly selected
between the first and last bits of the parents’ chromosomes
and two offsprings are created. Consequently each offspring
inherits portions of the binary codes of both parents. We then
perform random mutations on the population matrix at the
rate indicated in figure 12. We carry the procedure high-
lighted in figure 12, four multiple times (four generations).
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Procedure of GA
1. Initialization
1.1 Initiate random of zeros and ones;
1.2 Initiate selection rate (selection rate = 0.5)
1.3 Initiate mutation rate (mutation rate = 0.01)
1.4 Create population
1.5 Insure feasibility of Nyop chromosomes
If chromosome is infeasible, then
Replace by a new feasible chromosome
2.Do
2.1 Sort Chromosomes from most to least fit
2.2 Mate top of the population
2.3 Perform mutations
2.4 Check and insure feasibility of
2.6 Insure feasibility of the new Nyop chromosomes
If chromosome is infeasible, then
Replace by a new feasible chromosome
2.7 Sort from fittest to worst
3. Repeat Step 2 till fourth generations.

FIGURE 12. Genetic-based heuristic schematic.

Four generations tend to be optimal for our solution topogra-
phy, given preliminary runs.

The work employs a gradient search combined with a
genetic algorithm to arrive at a solution. The optimal values
of S;¢ were obtained effectively using the gradient search
approach because the model’s objective function was convex.
Therefore, the objective function f(x) was differentiable at
point x, and vector d € R" is a descent direction for f(x)
at point x if

—Vf ()T >0
As per the definition of derivative stated by Kolda [30]:
f@+ad)=f &) +aVfx)'d+ o)

If the variable d, which represents a descent direction with
a >0, is sufficiently small, then the equation x**! = x¥ +
a*dk decreases the objective function value f. This obser-
vation forms the basis of the line search approach. At the
k' iteration of x — that is, x¥— a descent direction d* is
selected at the iteration, and a search is carried out along this
direction for a point at x*T! = x*¥ + o*dk (with of >0),
with a smaller objective function value f [30]. The goal was
to move in the steepest direction, or the fastest path to the
global minimum. Accordingly, we applied a gradient search
to reach the global minimum. However, because the objective
function also includes binary variables, we employed a search
algorithm to arrive at the solution of the model.

The following questions are central to this study. Does the
extension of repair shop capacity improve the overall BSS
supply chain? Furthermore, how do such features relate to or
modulate the presence of high-velocity and high-frequency
data? To address these research questions, we must contrast
two operational scenarios at repair shops: extendable capac-
ity, and fixed capacity.
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TABLE 1. Model performance indices.

Instance RR TG PD RL

% (%) (%) (%)

Most 1 50.17 | 20.50 | 99.43 | 97.12

ga‘t‘r’l‘l’z:‘l‘]’rl: 2 51.30 | 23.01 | 99.85 | 97.85

3 39.56 | 14.52 | 65.74 | 96.78

4 5252 | 23.87 | 99.92 | 97.66

5 56.22 | 26.24 | 79.86  97.16

6 50.83 | 21.37 | 79.74 | 97.41

7 53.16 | 24.14 | 79.80 | 97.24

8 50.68 | 20.29 | 99.92 | 48.94

9 51.43 | 23.01 | 99.03 | 48.11

10 53.18 | 24.07 | 99.46 | 46.64

Favorable 11 50.62 | 23.22 | 99.99 | 49.27

S 12 51.78 | 20.09 | 99.38 | 47.75

13 52.15 | 2551 | 99.76 | 47.32

14 50.95 | 23.71 | 99.21 | 48.77

15 47.09 | 20.84 | 89.22 | 52.68

16 43.86 | 19.10 | 79.26 | 55.62

17 36.25 | 14.66 | 57.26 | 63.10

Least 18 21.88 | 5.99 | 28.13 | 77.44

favorable g 1611 401 | 1933 8323
structure

20 2337 | 6.08 | 30.68 | 76.28

21 23.07 | 555 | 29.89 | 76.64

22 2037 | 517 | 25.80 | 78.97

23 1732 | 457 | 21.03 | 82.41

24 22.96 | 658 | 29.97 | 76.66

25 19.54 | 478 | 24.34 | 79.65

26 2350 | 579 | 30.69 | 76.07

If the capacity is fixed, the model becomes simplified, as all
S ¢ terms become 0. Therefore, no gradient search is required
to solve the model. Table 1 shows the percentage differences
between the extendable-capacity and fixed-capacity cases.

Table 1 considers the different instances of capacity-
enabled repair shops. The first ten shops have a favorable oper-
ational structure. The next ten present a less favorable
structure. The last ten present the least favorable structure.
The percentage difference (PD) between the objective func-
tion values of the extendable- and fixed-capacity cases is

OV it — OV extension
Ovnull
where OV is the objective value for each case. Along with
PD, we considered three improvement metrics: TG, PL, and

PRD. TG embodies the throughput percent improvement for
the capacity extension case as opposed to the null case,

PD =100 x
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FIGURE 13. Network responsiveness to spikes in demand.

RL encompasses the percentage reduction in lead time, and
RR represents the percentage reduction in the average repair
duration at shops.

This study presented two important insights in terms of
capacity extendibility. First, favorable repair shops enable
cost savings, lead-time reduction, and throughput improve-
ment. For instance, we observed a repair lead-time reduction
higher than 50%. This had a profound impact on the overall
BSS. As observed in the data, spikes in demand owing to
weather changes required the supply chain to react quickly.
The throughput improvement supported this trend with an
increase of approximately 25%, which implied that bikes
would be rolled out faster from repair to docking stations.

Referring to the very left column in Table 1, the results are
categorized in the range of most favorable to least favorable
operational structure, which relates to the values of o and
in equation 3. Herein, favorable characteristics imply that the
repair shops have access to additional resources at a favorable
cost structure for extending capacity. So extending capacity
is more cost-effective and hence advantageous at repair shops
with favorable characteristics. Thus, favorable repair shops
have equipment, machines, and tools that are readily available
to extend their capacity.

Overall, the model exhibited significant improvements
when flexibility was adopted. Furthermore, with higher
throughput, the need to hold a high number of bikes in the
shops was relieved. We observed a higher inventory turnover
owing to the high throughput. Note that bike shops tend to
largely cluster in urban areas, where property is relatively
expensive. Therefore, holding a large number of bikes for
repairs is economically impractical for shops.

Second, fluctuations in demand are better met by the flex-
ibility model than the null model. In Fig. 13, we captured
points in the data that exhibited a spike in bike-sharing usage.
In the extension case, the supply chain could quickly absorb
the increment, whereas in the null case, it trailed. We observed
this throughout the data. Whenever there was a spike in repair
demand, shops were able to respond more quickly.

VI. CONCLUSION AND RECOMMENDATION
Bike-sharing systems are growing in importance, and are
being implemented in most cities with high urban densities.
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These systems may financially exhaust cities owing to the
costs of bike maintenance and repositioning. This study illus-
trated the effectiveness of flexible repair services in managing
the maintenance of bikes. High usage of bikes in BSS results
in wear-and-tear and possible misuse of bikes. Repair and
general maintenance are therefore necessary to control the
overall operating cost of a BSS. Our model demonstrated that
flexible repair plants can respond quickly to demand spikes.
In contrast, in the parallel nonflexible model, this reaction
was slower.

The accurate prediction of bike usage is a challenging task.
Some latent factors are present in BSS because of consumer
behavioral changes. This study investigated these factors
and demonstrated the effectiveness of neural networks. Deep
learning tends to extract patterns that are latent and unidentifi-
able using classical algorithms. The coupling of demand data
analytics and supply chain modeling produces higher syn-
chronization between maintenance and usage. Repair shops
that can quickly extend their capacity can serve as playbooks
for best practices. Our results show unique operational char-
acteristics that contrast certain repair shops, which in turn can
be imitated and implemented.

For practitioners, demand analytics provides accurate pre-
dictions based on given weather conditions. The data used
in this study provide multiple relevant features, such as tem-
perature, humidity, wind speed, and season. Given specific
temperature, wind speed, and humidity dynamics, our model
can predict the bike demand with good accuracy. This is quite
important as decision makers have access to reliable weather
forecasts. Therefore, demand prediction can be relayed to
repair facilities so that operational adjustments can be carried
out. Naturally, flexible shops that can quickly extend opera-
tional capacity would benefit most from these predictions.

The work incorporates flexible operations, via the use
of capacity extension. Our results supply a repair lead-
time reduction higher than 50%. While the coupling of
demand analytics and supply chain modeling produces a 25%
throughput improvement in the overall model. On the demand
analytics side, we see a huge advantage of the neural network
algorithm, which delivered predictions that are higher than
99% in accuracy.

Given some limitations of this work, there are some impor-
tant future research opportunities. First, this study focused
on docked BSS’s, wherein designated stations are built and
maintained. Because dockless BSS’s are predominant and
growing in popularity, future studies could examine mainte-
nance issues with respect to dockless bikes. Furthermore, the
demand behavior becomes more cumbersome for dockless
systems, and it may be interesting to evaluate the perfor-
mance of the proposed machine-learning algorithms in such
a setting. On the supply chain side, we can look at location-
allocation problem [78] in the context of BSS.
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