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ABSTRACT This work discusses the production of a novel hybrid algorithm by combining the gorilla
troops optimizer (GTO) with the gradient-based optimizers (GBO) approach. The novel approach is called
GTO-GBO, it is offered as a useful tool for optimizing the power system stabilizer (PSS) used in the
IEEE four-generator, two-area multi-machine power system subjected to a three-phase short-circuit fault.
MATLAB/Simulink software was utilized to carry out the assessments. The suggested approach is initially
evaluated usingmultiple benchmark functions with unimodal andmultimodal properties. The results are then
compared to other competing algorithms (artificial ecosystem optimizer, artificial rabbits optimizer, Coati
Optimization Algorithm, and northern goshawk optimization). The comparisons with various algorithms
reveal the developed hybrid GTO-GBO algorithm’s considerable promise. This demonstrates the GTO-
GBO algorithm’s improved balance of global and local search stages. The proposed GTO-GBO algorithm’s
performance is also evaluated by developing an optimum performing PSS for further examination, allowing
observation of its capabilities for difficult real-world engineering challenges. To illustrate the applicability
and superior performance of the suggested hybrid algorithm for such a complicated real-world engineering
problem, the PSS damping controller is formulated as an optimization problem, and the developed GTO-
GBO algorithm is used to search for optimal controller parameters. The latter case’s findings are compared
to the competitive optimization algorithms where the GTO-GBO demonstrates the efficiency and robustness
of this suggested optimization algorithm to enhance power system stability.

INDEX TERMS Low-frequency oscillations, multi-machine power system, power system stabilizer, GTO-
GBO.

NOMENCLATURE
PSS: Power system stabilizer.
CPSS: Conventional PSS (i.e., lead-lag PSS).
AVR: Automatic voltage regulator.
σ : The real part of the eigenvalues.
T1,2,3,4: Stabilizer time constants.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Li .

GTO: Artificial Gorilla Troops Optimizer.
GBO: Gradient-based optimizer.
FF : Fitness function.
ω: The imaginary part of the eigenvalues.
KPSS : PSS gain.

I. INTRODUCTION
A. BACKGROUND
Because of the indispensability of this type of energy,
the rising demand for electrical energy poses a significant
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difficulty. As a result of power interchanges across differ-
ent zones of these networks, power systems grow increas-
ingly complicated and huge in scale. Underdamped low-
frequency oscillations may appear to impact the entire system
in this condition. Therefore, power system engineers must
accept responsibility for providing consumers with consis-
tent, high-quality power. Furthermore, the integration of var-
ious power systems may result in rotor oscillations in the
0.2-3 Hz range [1]. If these oscillations are not effectively
managed, they may increase, impact the entire system, and
restrict power transmission capabilities. Damping controllers
are thus necessary to dampen these oscillations and enhance
the electrical system’s dynamic performance. PSSs are often
employed to offer supplemental control action via the exci-
tation system. However, these controllers use local measure-
ments as inputs, which are insufficient to dampen inter-area
oscillations [2].

B. LITERATURE REVIEW
The primary method for improving PSS resilience is to
deploy new tactics to provide adequate dampening of elec-
tromechanical oscillations. Traditional control and meta-
heuristic optimization approaches are among these strate-
gies. Traditional control methods include optimum adap-
tive and intelligent control. There are several unique intel-
ligent control design approaches, such as artificial neural
networks [3] and fuzzy logic [4], [5], have been researched.
As per literature there are so many used metaheuristic
optimization algorithms for the optimum tuning of PSS
like Particle Swarm Optimization [6], [7], JAYA Algorithm
[8], Improved Moth Flame [9], whale optimization algo-
rithm [10], sine cosine algorithm [11], A hybrid modified
grey wolf optimization-sine cosine algorithm [12], modi-
fied Sperm Swarm Optimization [13], Improved Salp Swarm
Optimization Algorithm [14], Adaptive Rat Swarm Opti-
mization [15], improved particle swarm optimization [16],
Bat Algorithm [17], Runge Kutta optimizer [18], Quantum
Artificial Gorilla Troops Optimizer [19], Cuckoo Search
Optimization Algorithm [20], slime mould algorithm [21],
honey bee mating optimization [22], Backtracking Search
Algorithm [23], kidney-inspired algorithm [24], henry gas
solubility optimization algorithm [25], modified arithmetic
optimization algorithm [26],Water Cycle-Moth Flame Opti-
mization [27], modified sine cosine algorithm [28], non-
dominated sorting genetic algorithm [29], Improved Har-
ris Hawk Optimizer [30], genetic algorithm-neural network
techniques [31].

As an alternative approach, the researchers presented
numerous innovative PSS structures to increase power system
stability, such as multi-input PSS [32], fuzzy logic-based
PID PSS [33],multi-band PSS [34], Decentralized nonlin-
ear model predictive control [35], a nonlinear autoregressive
model with exogenous input neural network [36]. In compari-
son to the power system stabilizer, these proposed approaches

have proved the ability to dampen power system oscillations.
Furthermore, these techniques enable the construction of
a PSS while accounting for the power system’s parameter
uncertainty and non-linearity, as well as providing the great-
est signal efficiency for a wide range of loading situations
[30]. Despite the presence of numerous PSS structures, most
power utilities still choose the traditional fixed structure lead-
lag PSS (CPSS). It might be related to the simplicity of online
adjustment and the lack of certainty about the stability of
particular variables [37].

A linearized power system model is used to tackle
the traditional PSS parameter selection issue. The damp-
ing of electromechanical oscillations, particularly inter-area
modes, is heavily influenced by changes in loading circum-
stances and the topology of the power system. PSS can-
not give good damping properties under these conditions.
Numerous research works have concentrated on resilient
PSS using innovative design methodologies or various PSS
architectures [38].

C. MOTIVATION
In the last few periods, hybrid techniques have been applied
by numerous researchers to solve many optimization prob-
lems. These hybrid techniques have presented a superior
performance in comparison to their counterparts in solving
several complex problems. In [39], a genetic algorithm (GA)
has been hybridized with a particle swarm optimizer (PSO)
for global optimization. In this article, the researchers have
employed the GAPSO to produce individuals not only from
the crossover and mutation operators but also by global and
local search operators of PSO. In [40], the greywolf optimizer
(GWO) is hybridized with the hybrid differential evolution
(DE) algorithm to improve the convergence characteristics of
the hybrid GWODE algorithm for solving continuous global
optimization problems. Tawhid and Ali [41] proposed a novel
method that hybridized the GWO and GA algorithms and
applied the proposed technique to decrease the energy func-
tion of a simplified model of the molecule. In another paper,
the exploration ability of GWO is hybridizedwith the capabil-
ity of exploitation in PSO in order to enhance the strength of
the hybrid GWOPSO algorithm [42]. Newly, to improve the
performance of complex optimization problems, the GWO
algorithm is hybridized with an artificial bee colony (ABC)
and used to optimize the parameters [43]. This article focused
on applying the bee’s information-sharing strategy of the
ABC technique to achieve exploration as well as the exploita-
tion ability of the GWO algorithm. In [44], BBO and GWO
algorithms are hybridized composed of stability exploration
and exploitation and to attain better performance than BBO
and GWO individually. Hassanein et al. proposed hybridized
CSA algorithm with a rough searching scheme to handle
the impreciseness and roughness of the present information
concerning the global optimum solution and finally enhance
the performance of CSA [45]. These studies approve that the
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hybrid techniques prove the best performance in comparison
to local or global search techniques.

D. CONTRIBUTION
The Artificial Gorilla Troops Optimizer (GTO) algorithm is
considered a metaheuristic optimization algorithm inspired
by gorilla troops’ social intelligence in nature [46]. The
GTO algorithm has the benefits of rapid convergence and
high performance. Moreover, GTO is characterized by its
simplicity, easy implementation, and speed convergence but
it still stagnated in local optima [47]. In order to decrease
the probability of escaping from local optima and improve
the accuracy of the results, the hybrid GTO with Gradient-
based optimizer (GBO) algorithm which is one of the more
effective algorithms is proposed in this article. The hybrid
GTO-GBO technique is an enhancement to the GTO algo-
rithm to enhance the balance between global search or explo-
ration and increase the strength of the proposed GTO-GBO
technique for several high-dimensional optimization prob-
lems. The main contribution of this paper can be summarized
as follows:

1) The introduction of a novel hybrid optimization algo-
rithm GTO-GBO.

2) Validation of the proposed optimizer with the
well-known benchmark functions.

3) Proofing the efficiency of the GTO-GBO optimization
algorithm when employed to the well-known bench-
mark functions.

4) Utilizing the GTO-GBO optimization algorithm for the
optimum tuning of power system stabilizer of multima-
chine power systems.

E. PAPER ORGANIZATION
The rest of this work is structured as follows: Section II
presents the mathematical formulation of the PSS optimum
tuning as well as the model of a multi-machine power system.
Section III explains the GTO-GBO optimization algorithm.
Section IV illustrates the GTO-GBO performance character-
istics on the well-known benchmark function and PSS opti-
mum tuning as a real-world optimization problem. Finally,
Section V summarizes the study’s findings and future work

II. MATHEMATICAL MODELING AND FORMULATIONS
In power systems, synchronous generators are the primary
source of electric energy. The main issue with power system
stability is keeping networked synchronous machinery in
synchronism. As a result, reliable modeling of the dynamic
characteristics of these generators is critical for studying
power system stability. The ith machine’s model differential
equations are expressed as follows [48]:

δ̇i = ωb (ωi − 1) (1)

ω̇i =
1
Mi

(Tmi − Tei − Di (ωi − 1)) (2)

Ė ′
qi =

1
T ′
doi

[
Efdi − E ′

qi −
(
xdi − x ′

di
)
idi

]
(3)

FIGURE 1. Power system stabilizer structure.

where δ, ω denotes the rotor angle and angular speed, respec-
tively, the mechanical torque is Tm, the electrical torque is Te,
and the damping coefficient is D. T ′

do is the open circuit time
constant of the d-axis, xd is the d-axis transient reactance.

Exciters are commonly found in synchronous generators.
An excitation system’s main role is to supply the DC current
to the synchronous machine field winding. Furthermore, the
excitation system controls the field voltage and hence the
field current, which is critical to the power system’s oper-
ation. Control functions include voltage and reactive power
flow regulation, as well as system stability enhancement. The
protection functions ensure that the synchronous machines,
excitation systems, and other equipment’s capability limits
are not exceeded. Figure 1 shows the conventional IEEE type-
ST1 exciter model utilized in this research which can be
described as:

Ėfdi =
1
TAi

[
KAi

(
vref−i − vti + uPSS

)
− E fdi

]
(4)

where vref−i is the steady-state value of the terminal voltage
vti of machine-i, Efdi represents the e.m.f. owing to d-axis flux
and KAi,TAi represents the regulator gain and time constant
respectively. The PSS stabilization signal is expressed by
uPSS
A power system stabilizer’s primary duty is to dampen the

oscillations of the generator rotor by managing its excitation
with auxiliary stabilizing impulses. The automatic voltage
regulator (AVR), which controls the generator stator terminal
voltage, is enhanced with a PSS that modifies the AVR input
signal by using stabilizing feedback signals such as shaft
speed. PSS must generate an electrical torque component
that is in phase with the rotor speed variations to damp low-
frequency oscillations.

An eigenvalue-based fitness function FF is suggested
below to increase system damping to electromechanical
modes oscillation. The variable ζ represents the minimum
damping ratio. The optimum tuning problem can be math-
ematically defined as follows:

FF = Max. (ζ ) ; ζ = −
σ

√
σ 2 + ω2

Subjected to : KPSSmin ≤ KPSS ≤ KPSSmax
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T1min ≤ T1 ≤ T1max
T2min ≤ T2 ≤ T2max
T3min ≤ T3 ≤ T3max
T4min ≤ T4 ≤ T4max (5)

III. THE PROPOSED OPTIMIZATION ALGORITHM
This section presents the process of the hybrid GTO-GBO
technique. The proposed GTO-GBO algorithm

A. ARTIFICIAL GORILLA TROOPS OPTIMIZER (GTO)
B. EXPLORATION PHASE
Three different operators were used in the exploration phase:
Move to an unknown location to further explore the GTO
algorithm [46]. The second factor, the transition to other
gorillas, increases the balance between exploration and
exploitation. The third factor is in the exploration phase,
that is, migrating to a known position significantly rises the
capability of the GTO algorithm to search for different devel-
opment spaces. These different operators can be represented
using the following equation:

GX (t + 1)

=


(ub− lb) × r1 + lb, rand < z

(r2 − C) × Xr (t) + D× B, rand ≥ 0.5
X (i) − D× (D× (X (t) − GXr (t))

+ r3 × (X (t) − GXr (t))), rand < 0.5

C = (cos(2×r4) + 1) ×

(
1 −

it
Maxit

)
D = C × k

B = E × X (t)

E = [−C,C] (6)

where,GX (t + 1) is the gorilla candidate position in the next
iteration. lb and ub denote the lower and upper bounds of
the variables, respectively. r1, rand, r2, r3, and r4 are random
values ranging from 0 to 1. z represents a parameter that
has a range from 0 to 1. X (t) denotes the current vector of
the gorilla position while Xr (t) is a member of the gorillas
randomly chosen from the entire gorillas and also GXr (t) .k
denotes a random value ranging from -1 to 1.

C. EXPLOITATION PHASE
Two behaviors are applied in the exploitation phase. Two
strategies are applied in the exploitation phase. the first strat-
egy is Follow the silverback and it is applied when C ≥ W .
W denotes a parameter to be set before the optimization
operation. The first strategy can be mathematically calculated
as follows [19]:

GX (t + 1) = D×M × (X (t) − Xsilverback) + X (t)

M =

∣∣∣∣∣ 1N
N∑
i=1

GXi (t)

∣∣∣∣∣
g

1
g

g = 2D (7)

where Xsilverback denotes the best solution, N is the total
number of gorillas.

The second mechanism is the Competition for adult
females, and it is applied when C < W . This mechanism
is calculated using the following equation:

GX (i) = Xsilverback − (Xsilverback × Q− X (t) × Q) × A

Q = 2 × r5 − 1

A = β × H

H =

{
N1, rand ≥ 0.5
N2, rand < 0.5

(8)

where β is a parameter to be given value before the optimiza-
tion operation. r5 is a random value ranging from 0 to 1.

D. GRADIENT BASED OPTIMIZER (GBO)
The conventional GBO algorithm [49], combines gradi-
ent and population-based approaches, it employs Newton’s
method that requires the search direction to observe the search
domain with the use of a collection of vectors and two main
operators, namely gradient search rule (GSR) and local escap-
ing operators (LEO).

1) GRADIENT SEARCH RULE (GSR) PROCESS
In the GBO technique, GSR is according to the gradient-
based method where the target of using the GSR is explo-
ration tendency development and increasing the convergence
rate. Therefore, the new position Xn+1 can be defined as [50]:

Xn+1 = Xn −
21x × f (Xn)

f (Xn + 1x) − f (Xn − 1x)
(9)

Eq. (9) will be adjusted to contain the population-based
search theory that is presented by Eq. (10).

GSR = randn×
21xXn

(xworst − xbest + ε)
(10)

where randn denotes a random number with a normal distri-
bution, xworst , xbest are the worst and best solutions attained
through the procedure of optimization, ε is a small number
within the interval [0, 0.1], and 1x denotes the change in
location at each iteration. From the previous Eqs., the GSR
is defined as:

GSR = randn× ρ1 ×
21xXn

(xworst − xbest + ε)
(11)

where ρ1 is the randomly produced parameter and it can be
calculated as below:

ρ1 = (2 × rand × α) − α (12)

α =

∣∣∣∣β sin
(
3π
2

+ sin
(

β
3π
2

))∣∣∣∣ (13)

β = βmin + (βmin − βmin)

(
1 −

( m
M

)3)2

(14)

where α is a sine function for the transference from explo-
ration to exploitation, βmin and βmax represent constant values
0.2 and 1.2, respectively, m denotes the current number of
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FIGURE 2. Flowchart of hybrid GTO-GBO algorithm.
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iterations, andM refers to the total number of iterations. The
change 1x between the best solution xbest and a randomly
selected location xmr1 can be given by [51]:

1x = rand (1 : N ) × |step| (15)

step =

(
xbest − xmr1

)
+ δ

2
(15-1)

δ = 2 × rand × (

∣∣∣∣xmr1 + xmr2 + xmr3 + xmr4
4

∣∣∣∣ − xmn ) (15-2)

where rand(1:N ) is a random vector with N dimensions,
r1, r2, r3, and r4(r1 ̸= r2 ̸= r3 ̸= r4 ̸= n) represent
different integers randomly selected from [1, N], step is a step
size. The new location Xn+1 is updated based on the GSR
from the following equation:

Xn+1 = Xn − GSR (16)

The direction of movement (DM) is added for better exploita-
tion of the nearby area of Xn which is calculated as follows:

DM = rand × ρ2 × (xbest − xn) (17)

ρ2 = (2 × rand × α) − α (17-1)

Consequently, the new location X1mn can be calculated after
considering the GSR and DM from the following equation:

X1mn = xmn − GSR + DM (18)

X1mn = xmn − randn× ρ1 ×
21x × xmn

(xworst − xbest + ε)
+ rand × ρ2 × (xbest − xmn ) (19)

TheGBOused another location to increase the local search by
putting the best-so-far solution (xbest) rather than the location
xmn . The new location (X2mn ) can be calculated as below:

X2mn = xbest − randn× ρ1 ×
21x × xmn

(ypmn − yqmn + ε)
+ rand × ρ2 × (xmr1 − xmr2) (20)

where

ypn = rand × (
[zn+1+xn]

2
+ rand × 1x) (21)

yqn = rand × (
[zn+1+xn]

2
− rand × 1x) (22)

Based on the locations X1mn ,X2mn , and the current location
(Xmn ), the new location at the next iteration (xm+1

n ) is formu-
lated as:

xm+1
n = ra ×

(
rb × X1mn + (1 − rb) × X2mn

)
+ (1 − ra) ×X3mn (23)

X3mn = Xmn − ρ1 × (X2mn − X1mn ) (23-1)

2) LOCAL ESCAPING OPERATOR (LEO)
The LEO is applied to improve the performance of the GBO
algorithm and to escape the local solutions for solving com-
plex problems. The LEO produces a suitable solution (XmLEO)
by using numerous solutions that include xbest, the solutions
X1mn , and X2

m
n , two random solutions xmr1 and x

m
r2, and a new

randomly generated solution (xmk ). The solution X
m
LEO is given

as:

if rand < pr

if rand < 0.5

XmLEO = Xm+1
n + f1 ×

(
u1 × xbest − u2 × xmk

)
+ f2 × ρ1 ×

(
u3 × (X2mn − X1mn

)
+ u2 × (xmr1 − xmr2))/2

Xm+1
n = XmLEO

Else

XmLEO = xbest + f1 ×
(
u1 × xbest − u2 × xmk

)
+ f2 × ρ1 ×

(
u3 × (X2mn − X1mn

)
+ u2 × (xmr1 − xmr2))/2

Xm+1
n = XmLEO

End

End (24)

where f1 is a uniformly distributed random number in the
range of [−1, 1], f2 denotes a random number from a normal
distribution with a mean of 0 and a standard deviation of 1, pr
refers to the probability, and u1, u2, and u3 are random values
produced as below [52]:

u1 =

{
2 × rand if µ1 < 0.5
1 otherwise

(25)

u2 =

{
rand if µ1 < 0.5
1 otherwise

(26)

u3 =

{
rand if µ1 < 0.5
1 otherwise

(27)

where rand is a random number in the range of [0, 1], and
µ1 represents a number in the range of [0, 1]. The above
equations are simply clarified as follows:

u1 = L1 × 2 × rand + (1 − L1) (28)

u2 = L1 × rand + (1 − L1) (29)

u3 = L1 × rand + (1 − L1) (30)

where L1 is a binary parameter with a value of 0 or 1.
If parameter µ1 < 0.5, the value of L1 = 1, otherwise, L1
= 0. The solution xmk is created as below:

xmk =

{
xrand if µ2 < 0.5
xmp otherwise

(31)

xrand = Xmin + rand (0, 1) × (Xmax − Xmin) (32)

where xrand refers to a randomly generated solution, xmp
is a randomly selected solution of the population (p ∈
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FIGURE 3. The convergence curves of all algorithms for 23 benchmark functions.

[1, 2, . . . ,N ]), and µ2 denotes a random number in the range
of [0, 1]. Eq. (31) is simplified as:

xmk = L2 × xmp + (1 − L2) × xrand (33)

where L2 refers to a binary parameter with a value of 0 or 1.
If µ2 < 0.5, the value of L2 = 1, otherwise, L2 = 0. The

flowchart of the hybrid GTO-GBO algorithm is shown in
Figure 2.

IV. SIMULATION RESULTS AND DISCUSSION
A. BENCHMARK FUNCTIONS VALIDATION
In this subsection, the supremacy of the hybrid GTO-
GBO technique is demonstrated using 23 benchmark
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FIGURE 3. (Continued.) The convergence curves of all algorithms for 23 benchmark functions.

functions [53]. All the experiments of the 23 benchmark func-
tions are implemented by MATLAB (R2016a) on a computer
with Intel(R) Core i5-4210U CPU 2.40 GHz with an 8GB

RAM environment. In this study, 23 well-known benchmark
test functions have been used to evaluate the proposed GTO-
GBO technique’s performance. The maximum number of

VOLUME 11, 2023 27175
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FIGURE 4. Boxplots for all algorithms for 23 benchmark functions.

iterations considered for all applied techniques is 200 and the
number of populations is 50. In this subsection, the hybrid
GTO-GBO algorithm is compared with several recent algo-

rithms such as conventional GTO, GBO, artificial rabbits
optimization (ARO) [54], and northern goshawk optimization
(NGO) [55], [56] and the superiority of the achieved solution
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FIGURE 4. (Continued.) Boxplots for all algorithms for 23 benchmark functions.

is tested using mean value and standard deviation (std). The
technique with a lesser mean value and std can be considered
a technique with strong global optimization competence and
more stability. the statistical results achieved by the hybrid

GTO-GBO algorithm and these recent techniques for solving
23 benchmark functions in terms of mean value and std are
shown in Table 1. From this table, the GTO-GBO algorithm
is superior to the compared algorithms in 16 benchmark
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TABLE 1. The statistical Results of benchmark functions using the proposed GTO-GBO algorithm and other recent algorithms.
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TABLE 1. (Continued.) The statistical Results of benchmark functions using the proposed GTO-GBO algorithm and other recent algorithms.
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TABLE 1. (Continued.) The statistical Results of benchmark functions using the proposed GTO-GBO algorithm and other recent algorithms.
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FIGURE 5. Single-line diagram of Four-machine power system.

FIGURE 6. Convergence curves of twenty distinct runs.

functions in terms of the average value (F1, F3, F5, F7, F8,
F9, F10, F11, F13, F14, F16, F17, F19, F21, F22, F23). It is
clear from these results that the GTO-GBO algorithm can
attain better solutions compared to several newly proposed
algorithms in solving numerous of the benchmark functions.
This discussion proves that the hybrid GTO-GBO technique
is very effective. Also from this table, the GTO and GBO
display strong efficiency, which are the second and third best.
It is concluded that the hybrid GTO-GBO technique is an
effective algorithm for solving these types of problems.

Furthermore, the convergence curves of these algorithms
for each of the 23 benchmark functions are shown in Fig.3.
Each benchmark function is implemented over 20 indepen-
dent trials. It is also seen from Fig.3 that the proposed

GTO-GBO technique has a much better convergence curve
comparedwith the original GTO,GBO,ARO, andNGOalgo-
rithms. From this figure, the GTO-GBO technique is superior
to the compared algorithms in 20 benchmark functions in
terms of the convergence characteristics (F1, F3, F4, F5, F6,
F7, F8, F9, F10, F11, F13, F14, F15, F16, F17, F18, F19,
F21, F22, F23). It is shown that it can be analyzed that the
proposed GTO-GBO algorithm tends to demonstrate a faster
convergence rate in comparison to other algorithms in the
first quarter of optimization. This fast convergence capability
makes the GTO-GBO algorithm a capable and promising
algorithm to solve several real-world optimization problems.
The underlying reason for the superior performance of the
proposed algorithm is that it is able to locate high-performing
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FIGURE 7. Bar plot for the attained fitness function using various optimization algorithms.

FIGURE 8. Generators rotor angle under a 6-cycle, 3-phase fault disturbance at bus 7.

regions in the search space of the function optimization prob-
lem at hand. The box plot of numerical data represents the
pattern of different optimal values obtained in different runs
corresponding to an algorithm. To investigate the attained
results, the boxplot for 23 benchmark functions with the
numerical data obtained from the considered algorithms for
30 individual runs is presented in Figure 10. Since boxplots
represent the data distribution, they are outstanding plots to
highlight the accord between data. From Fig.4, it is clear that
the boxplots of the proposed GTO-GBO technique for most
of the functions are narrow and amongst the lowest values.

These figures are the graphical tool for the performance
analysis of the nonlinear system and give a clear comparison
between different techniques, and the proposed algorithm
outperforms the other algorithms.

B. OPTIMUM TUNING OF PSS
The two-area weakly-connected multi-machine power sys-
tem is the subject of this research. Figure 5 depicts the sys-
tem’s one-line diagram. The information about the system
data used, as well as load flow findings, can be found in
[10]. This system is made up of two identical regions. Each
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FIGURE 9. Machine-1 angular speed under a 6-cycle, 3-phase fault disturbance at bus 7.

FIGURE 10. Machine-2 angular speed under a 6-cycle, 3-phase fault disturbance at bus 7.

FIGURE 11. Machine-3 angular speed under a 6-cycle, 3-phase fault disturbance at bus 7.

zone has two generating units each rated 900 MVA with
rapid static exciters. The same dynamic model represents

all four generating units. Power is transferred from Area
2 to Area 1 through a single tie line. At time t = 1.5s,
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FIGURE 12. Machine-4 angular speed under a 6-cycle, 3-phase fault disturbance at bus 7.

FIGURE 13. PSS control signal of machine-1 under a 6-cycle, 3-phase fault disturbance at bus 7.

a 6-cycle, 3-phase fault disturbance at bus 7 is applied
to the system to evaluate the effectiveness of the opti-
mized stabilizer parameters. The simulation findings for
GTO-GBO-based PSS were compared to those for GTO,
GBO, AEO, COA-based PSS, and conventional PSS. The
population size and the maximum number of iterations
for both GTO-GBO and other competitive algorithms are
set to 50, and 1000, respectively. The washout time con-
stant is set to 10s. The optimum parameter ranges were
[0.0 to 50.0] for KPSS and [0.01 to 1.00] for T1,T2,T3
and T4.

The changes in the goal function (maximizing damping
ratio) for twenty distinct runs regarding a predefined num-
ber of iterations while improving lead-lag PSS are shown
in Fig. 6. The graph shows the level of confidence in the
proposed GTO-GBO strategy when each run ends at a cer-
tain value (0.86935) of the objective function. As a result,

despite the beginning population, the GTO-GBO optimizer
was able to locate the global optimal solution, proving the
robustness of the suggested technique which is supported by
Fig. 7.Figure 8 depicts the fluctuations in rotor angles of
generators 2,3, and 4 concerning the reference angle of G-1
for the same fault. This figure demonstrates that the GTO-
GBO-based optimized PSS stabilizes the oscillations whereas
the traditional PSS requires more time. Also, the settling time
for GTO-GBO is substantially shorter than for CPSS. For
GTO-GBO-based PSS, the percentage of overshoot is also
lower.

Figures 9, 10, 11, and 12 show the angular frequency of
all generators. According to all figures, the settling time for
GTO-GBO-based tuned PSS is less than for others. Also, the
control signal concerning the time of G1 and G4 is shown in
Figs 13,14. The size of the control signals is likewise less for
the GTO-GBO-based optimizers, indicating that it performs
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FIGURE 14. PSS control signal of machine-4 under a 6-cycle, 3-phase fault disturbance at bus 7.

TABLE 2. Optimum parameters of all machines PSS.

TABLE 3. Maximum attained cost function using various optimization algorithms.

better for multi-machine power system networks than the
competitive optimization techniques.

Table 2 tabulates the optimum attained parameter values,
whereas Table 3 shows the maximum damping ratio for con-
ventional, COA, AEO, GTO, GBO, and GTO-GBO-based
improved PSS.

V. CONCLUSION
A deviation in the electrical power system can have several
negative consequences for its stability. As a result, maintain-
ing its stability under such operating conditions has been a
continual concern for power engineers. Power system stabi-
lizers (PSSs) are one of the suggested solutions that operate
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as auxiliary controllers to alleviate the instabilities induced
by disturbances. This research paper presents a thorough
study of optimum parameter tuning of PSS utilizing unique
hybrid gorilla troops and gradient-based optimizers. The sug-
gested algorithm’s validity is demonstrated using well-known
benchmark functions. The suggested innovative optimization
technique outperforms the gorilla troops optimizer, gradient-
based optimizer, and compatible optimization algorithms.
As a future work, the optimum coordination between PSS
and a series compensated series capacitor will be consid-
ered. Moreover, the obtained results of GTO-GBO motivate
the application of it in complex power system optimization
problems like energy management, optimum reactive power
dispatch, and optimum power flow.
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