
Received 31 January 2023, accepted 14 February 2023, date of publication 28 February 2023, date of current version 7 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3250251

IRS-Assisted Physical Layer Security for 5G
Enabled Industrial Internet of Things
BAKHTIAR ALI 1, JAWAD MIRZA 1, (Senior Member, IEEE), SAJID HUSSAIN ALVI 2,
MOHAMMAD ZUBAIR KHAN 3, MUHAMMAD AWAIS JAVED 1, (Senior Member, IEEE),
AND ABDULFATTAH NOORWALI 4
1Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 45550, Pakistan
2Department of Physics, COMSATS University Islamabad, Islamabad 45550, Pakistan
3Department of Computer Science and Information, Taibah University, Medina 42353, Saudi Arabia
4Department of Electrical Engineering, Umm Al-Qura University, Mecca 21961, Saudi Arabia

Corresponding author: Jawad Mirza (jaydee.mirza@gmail.com)

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia
for funding this research work through the project number : IFP22UQU4290235DSR257.

ABSTRACT 5G is a key enabler of Industrial Internet of Things (IIoT) that provides seamless connectivity
between machines, sensors and computing servers. Security and privacy are major concerns for 5G enabled
IIoT. Physical Layer Security (PLS) is a promising technique that can enhance the security of 5G enabled
IIoT. In this paper, we present an IRS-assisted PLS scheme for 5G enabled IIoT that improves the weighted
secrecy sum-rate (WSSR) of the industrial wireless network, where eavesdroppers are present around the
facility. The key idea is to jointly optimize active and passive beamforming vectors to increase the secrecy
rate at the user. To maximize WSSR, we use the stable matching algorithm that optimally assigns IRSs for
secure data sharing between industrial units. Simulation results show that the proposed scheme enhances the
WSSR performance by 40% and minimum secrecy rate by 25% as compared to the random and maximum
weight matching schemes, respectively.

INDEX TERMS Omni-IRS, MISO, secrecy rate, stable matching.

I. INTRODUCTION
Reliable and secure connectivity of sensor devices, industrial
machines and cloud servers is a major component of Industry
4.0 [1], [2], [3]. Industrial Internet of Things (IIoT) will
provide robust wireless communications among industrial
units, thus a fully automated and smart factory concept can
be realized [4], [5], [6], [7]. This has many applications for
process control, machine health monitoring, predictive main-
tenance, and enhanced decision making based on real-time
machine data.

There are twomain ingredients of a reliable and secure IIoT
system. The first one is the error free data sharing among the
IIoT nodes. This means that data is shared with extremely
high reliability under different wireless channel and network
load conditions [7]. The second one is the secure and privacy
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aware communication mechanism for the IIoT network. This
refers to meeting confidentiality, integrity and availability
security requirements of data communications [8], [9], [10].

To achieve the above two requirements of a reliable IIoT
system, 5G standard provides many advanced features such
as high data rate transmission using massive Multiple-Input
Multiple-Output (MIMO), enhanced throughput using intel-
ligent beamforming, improved coverage using Device-to-
Device (D2D) communications, and better use of available
spectrum using full-duplex communications [11].

While the above features of 5G technology can improve the
overall system performance, they may fail to provide extreme
reliability needed for many applications such as autonomous
driving, and industrial process control [7]. As an example,
temperature control in a heat exchanger is critical for many
industries. An error in control signal information transmis-
sion to heat exchanges from a central server in a 5G enabled
IIoT can cause major loss.
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Similarly, privacy and security of data is a vital requirement
for 5G enabled IIoT [12], [13], [14]. Internet connected indus-
trial machines are susceptible to cyber attacks by malicious
users. For example, attackers can jeopardize an industrial
process by eavesdropping critical information share among
machines. Malicious nodes can also send jamming signals to
capture the network bandwidth, thus not allowing other crit-
ical information to be shared among machines. Finally, data
integrity attacks can also be carried out by attackers, shar-
ing wrong information about process control, and machine
operations.

To mitigate the above challenges, two upcoming technolo-
gies can be used by 5G enabled IIoT. The first technology
is the Physical Layer Security (PLS) to enhance security
and privacy of IIoT. The second technology is Intelligent
Reflecting Surfaces (IRS) that can enhance network capacity
and also assist in efficient PLS.

PLS is a technique that uses wireless transmission char-
acteristics such as noise and channel conditions, to achieve
secure transmission at the intended receiver and reduce the
shared information at the eavesdropper [15], [16]. As com-
pared to traditional cryptographic schemes, PLS do not
require any security keys and also do not incur delays required
for signing and verification of digital signatures [17].

IRS is considered to be a game changing technology
which is driven by the growing demands of future wireless
networks [18]. IRSs are artificial 2-D planar metasurfaces
which are intelligently constructed and have reconfigurable
features implemented through electronic circuits. A typical
IRS consists of large number of passive-radio antennas also
known as reflective-radio elements. With the help of these
reconfigurable IRS elements, an impinging electromagnetic
wave can be reflected towards the desired direction [19].
This steering of the transmitted signal by programming the
reflective elements makes the communication environment
smart and controllable. Therefore, an IRS can be used to
assist the communication between two nodes to improve the
received signal quality and reduce co-channel interference,
which in turn increases the spectral efficiency of the network.

Due to its attractive features, IRS has been widely
investigated in single-user communication, multi-user com-
munication, wireless power transfer systems, cognitive radio
networks, PLS and many other applications. Recently,
researchers are investigating the usefulness of IRS tech-
nology in challenging environments, such as underwater,
underground, industrial and disaster [18]. In industrial envi-
ronment, IRS can be used to guarantee reliable and low
latency communication to achieve massive connectivity
requirement set by industry 4.0. Both indoor and outdoor
deployment of IRSs can assist industrial communication
network. The indoor deployment of IRS in industrial environ-
ment and its advantages are explained in [18]. For outdoor
industrial environment, IRSs can assist the users which are
blocked due to some large obstacles between the commu-
nication link. In addition to that, IRS can also provide an

efficient PLS solution for security concerns of industrial wire-
less communication systems, which are raised due to massive
connectivity among the densely deployed sensor devices.

Recently, security of IIoT networks has attracted a lot of
research attention. It is expected that a significant amount of
industrial data and information will flow across 5G networks
with high quality (i.e., increased bandwidth and reduced
latency) [20]. To enable efficient industrial operations, secu-
rity of IIoT links is essential. As, IIoT devices are lightweight
they are unable to support upper layer cryptographic proto-
cols with large communication overheads. Therefore, PLS
and cross-layer security techniques with low communication
overheads are more suitable for the deployment of massive
IIoT devices.

In this study, we propose the use of multiple omni-IRSs for
PLS in an outdoor industrial wireless communication system,
where active eavesdroppers are present near the receiving
devices. Unlike traditional IRS, omni-IRS is capable of not
only reflecting but transmitting the signals to their opposite
direction. This feature of omni-IRSs enhances their coverage
range as compared to the tradition (reflect only) IRSs [21],
[22]. Moreover, we consider multiple-antenna transmitter in
order to achieve beamforming gains which are not available
in Single-Input Single-Output (SISO) communication links.
More precisely, we consider a Multiple-Input Single-Output
(MISO) communication system, where each user has single
antenna. Due to the presence of an eavesdropper (attacker),
we employ efficient active beamforming at the transmitter
and passive beamforming at the omni-IRS to maximize the
secrecy rate of the user (also referred as Bob). The main
idea is to assign each Bob a single IRS, such that the over-
all Weighted Secrecy Sum Rate (WSSR) of the network is
maximized. As the studied problem is one-to-one bipartite
matching, we rely on the stable matching algorithm known as
Gale-Shapley algorithm for IRS-Bob assignment. The useful-
ness of the stable matching in our studied problem is that once
the assignment process completes, there is no IRS-Bob pair
which is better off, if they are allowed to change their assigned
partners. The IRS assisted PLS method proposed in this
study is not limited to 5G enabled IIoT networks, but it can
be employed in IRS aided multiuser MISO communication
systems. The main contributions of the work are summarized
below:
• We consider multiuser MISO wireless communications
for IIoT networks in the presence of multiple eaves-
droppers. We propose to use multiple omni-IRSs in
the network for PLS. These omni-IRSs are deployed in
the surrounding areas which are capable of reflecting the
signals in front of the IRS and transmitting the signals
to the region behind the IRS. The omni-IRSs are more
beneficial than the traditional reflect only IRSs as the
network coverage can be improved.

• To secure the communication links from the eavesdrop-
pers, we employ a PLS technique where phase shifts of
the omni-IRS are configured to null out the signal at
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the eavesdropper. For this purpose, an IRSs assignment
problem is formulated as an optimization problemwhich
maximizes the weighted sum secrecy rate (WSSR) of the
network.

The paper is organized as follows. Section II provides an
overview of recent work in the areas of PLS and IRS-assisted
PLS. Section III describes the system model used in the
paper. Section IV explains the active and passive beamform-
ing optimization algorithm for PLS. Section V explains the
proposed IRS assignment algorithm for PLS in 5G enabled
IIoT. Section VI provides a discussion on the simulation
results. Section VII presents the conclusions of the paper.

II. RELATED WORKS
In this section, we review the PLS techniques for different
IoT networks. We also discuss the recent work related to IRS-
assisted PLS.

In [23], authors propose an optimal authentication signal
(also known as tag) power algorithm for Physical Layer
Authentication (PLA) in IIoT networks. While a high tag
transmit power reduces the tag error probability, it also
increases message error probability. Therefore, a tradeoff
exists in the tag transmit power selection. The proposed
technique minimizes the tag error probability under system
power constraints. An iterative point based technique is used
to select the optimal tag transmit power. Results show that the
proposed technique maintains the tag error rate and system
power below the required thresholds.

The work in [24] proposes an energy efficient PLS tech-
nique for Simultaneous Wireless Information and Power
Transfer (SWIPT) and virtual MIMO based IoT. The key
idea of the proposal is to achieve PLS using beamforming
and jamming. An optimization problem is developed which
includes beamforming vector, power and time splitting ratios.
Iterative optimization with penalty function is used to solve
the above problem. The proposed technique improves the
secrecy rate as shown by the results.

The authors in [25] present a learning algorithm for
dynamic selection of physical layer attributes for PLS.
Attributes are selected using authentication performance his-
tory of each attribute. The goal is to select those attributes
that reduce false alarms and miss detection rates. A learning
algorithm is developed to optimally select the attributes. Sim-
ulation results show reduced miss detection rate.

The work in [26] presents an IRS-assisted PLS tech-
nique for NOMA users which are out of the coverage range
of the Base Station (BS) due to some obstruction. These
users are known as dead-zone users. Thus, IRS facilitates
the dead-zone NOMA users to communicate with the BS.
An Alternate Optimization (AO) algorithm is used to select
beamforming and power allocation. The proposed technique
maximizes the secrecy rate as highlighted by the simulation
results.

To improve the working of PLS for MISO systems,
Simultaneously Transmitting and Reflecting Intelligent

Reconfigurable Surface (STAR-IRS) is used in [27].
As STAR-IRS can transmit and reflect at the same time,
it offers better performance as compared to the simple IRS.
For the proposed work, the authors consider three different
modes of transmission, i.e., energy splitting, time splitting
and mode selection. The proposed technique jointly opti-
mizes the beamforming, transmit and reflection coefficients
of IRS. Results show improved secrecy rate when using the
proposed technique.

In [28], the secrecy performance of IRS-assisted PLS is
investigated. Authors first evaluate the Cumulative Distribu-
tion Function (CDF) and Probability Density Function (PDF)
of Signal-to-Noise Ratio (SNR) in the presence of IRS. Using
these distribution functions, analytical derivations of secu-
rity metrics such as secrecy outage probability and secrecy
rate are provided using stochastic geometry techniques. With
IRS-assisted PLS, the secrecy rate is shown to improve as
compared to non-IRS based PLS.

The work in [29] investigates the use of Artificial Noise
(AN) for PLS. The proposed technique optimizes the transmit
precoding matrix at the BS, co-variance matrix for the AN
and IRS phase shift values. Block Coordinate Descent (BCD)
algorithm is used to maximize the secrecy rate. Results high-
light the gain achieved by the proposed BCD algorithm in
terms of secrecy rate as compared to other techniques.

III. SYSTEM MODEL
Consider an IIoT network as shown in Fig. 1 where an indus-
trial plant is connected with its industrial processing units.
The IIoT connectivity is established using omni-IRSs and a
MISO communication system is considered. The transmitter
is equipped with M antennas and there are total of L omni-
IRSs deployed in the surrounding area. Furthermore, there
are K number of total users (also referred as Bob), where
each user has single antenna and one active eavesdropper
(Eve) is present in its close proximity. The transmitter uses
IRSs to serve each user at each time slot based on a Time
Division Multiple Access (TDMA). Each omni-IRS consists
of N number of passive reflecting/transmitting elements. The
omni-IRSs are capable of switching between two modes:
transmitting and reflecting [27]. This allows the IRSs to serve
users on both sides of the surfaces. In this paper, we assume
that the omni-IRS uses time splitting protocol in which it
can work in either transmitting mode or reflecting mode
at any given time instance. The transmitting or reflecting
coefficients of the l th omni-IRS can be expressed as 8l =

Diag{ejφ1,l , ejφ2,l , . . . ., ejφN ,l }.
The direct link between the transmitter and the users

(Bobs) is assumed to be in deep fade, and therefore,
absent. The channel between the transmitter and the l th

IRS is modeled as Rician fading channel which is given
as [27]

Fl =
√

κl

κl + 1
FLoS
l +

√
1

κl + 1
FNLoS
l , (1)
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TABLE 1. Recent work related to PLS and IRS-assisted PLS (SWIPT: Simultaneous Wireless Information and Power Transfer, MIMO: Multiple Input Multiple
Output, FDD: Frequency Division Duplex, NOMA: Non-Orthogonal Multiple Access, AO: Alternate Optimization, MISO: Multiple Input Single Output,
STAR-IRS: Simultaneously Transmitting and Reflecting Intelligent Reconfigurable Surface, BCD: Block Coordinate Descent, AN: Artificial Noise.

where, κl is the Rician factor. We represent FLoS
l ∈ CN×M

and FNLoS
l ∈ CN×M as the LoS and NLoS components of the

channel between the transmitter and the l th IRS, respectively.
Furthermore, we denote hk,l ∈ CN×1 as the channel between
the l th IRS and the k th Bob. Similarly, gk,l ∈ CN×1 is the
channel between the l th IRS and the k th Eve (which is closer
to the k th Bob). Here, we assume that both Bob and Eve
channels experience Rician fading propagation conditions,
and therefore, these channels are also modeled as (1). It is
furthermore assumed that channel state information (CSI) of
all links is known to the transmitter i.e., perfect global CSI is
available at the transmitter. A controller is used at each IRS
to manage it from the transmitter [30], which is commonly
implemented by a field programmable gate array.

The transmitter sends an independent signal to each user
(or Bob) in a TDMA manner. Let us denote sk as the signal
for the k th Bob, with E[|sk |2] = 1. Then, the signals received
at the k th Bob and associated Eve through the l th omni-IRS
can be expressed as

ybk,l = hHk,l8
H
l Flwksk + nbk , (2a)

yek,l = gHk,l8
H
l Flwksk + nek , (2b)

where, wk ∈ CM×1 is the beamforming vector for the k th

Bob. The transmit/reflect passive beamforming vector at the
l th omni-IRS is given by 8l ∈ CN×N . The additive white
Gaussian noise (AWGN) at the k th Bob and Eve, served by

the l th IRS, are given by nbk and nek , respectively, having
variances σ 2

b,k and σ 2
e,k . Using the transformation in [27],

we also define a phase vector as θ l = diag(8l). Now denoting
Hk,l = Diag(hHk,l)Fl and Gk,l = Diag(gHk,l)Fl , we can
re-write (2a) and (2b) as

ybk,l = θHl Hk,lwksk + nbk , (3a)

yek,l = θHl Gk,lwksk + nek . (3b)

The SNRs for the k th Bob-Eve pair, served through the l th

omni-IRS, using (3a) and (3b), can be expressed as

SNRb
k,l =

∣∣θHl Hk,lwk
∣∣2

σ 2
b,k

, (4a)

SNRe
k,l =

∣∣θHl Gk,lwk
∣∣2

σ 2
e,k

. (4b)

Using above SNR expressions for the k th Bob and Eve pair,
we can define the associated secrecy rate as

Rk,l = ln

(
1+

∣∣θHl Hk,lwk
∣∣2

σ 2
b,k

)
− ln

(
1+

∣∣θHl Gk,lwk
∣∣2

σ 2
e,k

)
(5)

The main objective of this study is to leverage omni-IRSs to
achieve PLS such that the WSSR performance is maximized.
There are two main challenges to this problem. Firstly, the
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FIGURE 1. Illustration of system model for omni-IRSs assisted IIoT network.

transmitter needs to optimize the active beamforming vector,
wk , and phase shift matrix, 8l , for the k th Bob-Eve pair
assigned with the l th omni-IRS, such that the secrecy rate is
maximized. Secrecy rates for the k th Bob-Eve pair are calcu-
lated by assigning it with all the IRSs in an iterative manner.
This process is repeated for all theK Bob-Eve pairs present in
the network. Secondly, an optimal IRS-Bob-Eve assignment
is required, where each omni-IRS is allotted to a single Bob-
Eve pair, such that WSSR of the system is maximized. In this
work, we assume perfect CSI at the transmitter. However, the
beamforming optimization and proposed IRS assignment can
be employed with imperfect CSI as well but this will result in
the degradation of the secrecy performance. This degrade will
depend on the mismatch between the channel and its estimate
version.

IV. ACTIVE AND PASSIVE BEAMFORMING
OPTIMIZATION
In this section, we present the framework for the joint opti-
mization of active and passive beamforming that maximizes
WSSR, which is based on an AO approach presented in [27].
The joint optimization problem to maximize WSSR can be
written as [27]

(P1): max
wk ,θ l

∑
k

αkRk,l (6a)

s.t.
∑
k

∥wk∥
2
≤ Pmax, (6b)

[θl]n = ejφn,l , ∀n, (6c)

φn,l ∈ [0, 2π ), ∀n, (6d)

where, αk ∈ [0, 1] is the weight for the k th Bob secrecy
rate. The weight of the link refers to the priority of the
link, i.e., higher the value of the weight, higher will be
the priority of that link. Pmax is the total transmission power
at the transmitter. Here, omni-IRS index l represents the
index of the omni-IRS which is assigned to the k th Bob. The
matching of omni-IRSs and Bobs are presented in Section V.
The problem (P1) presented above for the WSSR maxi-
mization has coupled variables. Therefore, it needs to be
decoupled using path-following method [27] around given
points {w̃k , θ̃ l}. Using the problem (P1) transformation given
in [27], we can re-formulate the WSSR maximization prob-
lem (P1) as problem (P2), as shown at the bottom of the page.
In problem (P2), we relax the unit modulus constraint (6c)
and (6d) on the phases. As the problem (P2) is convex with
a linear constraint, it can be solved using the interior-point
method with the help of optimization toolbox CVX. In par-
ticular, the resultant phase values obtained by solving the
problem (P2) are mapped to the nearest discrete value in the
vector ϑ , where ϑ = [1, ej2π/Q, . . . , ej2π (Q−1)/Q] consists
of total Q quantized coefficients for the elements of the
omni-IRS.

The optimization of active and passive beamforming vec-
tors using the problem (P2) is outlined in Algorithm 1. First,
the given points {w̃k , θ̃ l} are set along with the stopping crite-
ria ϵ. In the first iteration (i.e., t = 0), the active beamforming
vector for the k th Bob, given by wk , is determined using
the problem (P2), while keeping the phase shift vector, θk ,
fixed. In the next step, the active beamforming vector wk at
t = 0 is used to obtain the phase shift vector, θ l , by solving the

(P2): min
wk ,θ l

∑
k

−
2αk
σ 2
b,k

R
{
wH
k H

H
k,lθ l θ̃

H
l Hk,lw̃k

}
+

αk

∣∣∣̃θHl Hk,lw̃k

∣∣∣2 ∣∣θHl Hk,lwk
∣∣2(

σ 2
b,k

∣∣∣̃θHl Hk,lw̃k

∣∣∣2+ σ 4
b,k

) + αk
∣∣θHl Gk,lwk

∣∣2∣∣∣̃θHl Gk,lw̃k

∣∣∣2+ σ 2
e,k

(7a)

s.t.
∑
k

∥wk∥
2
≤ Pmax, (7b)
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Algorithm 1 Optimization of Active and Passive
Beamforming Using Problem (P2) Given by (7)

Initialization t = 0, w̃k , θ̃ l , Pmax, ϵ
Repeat
1) Obtain w(t)

k from problem (P2) for fixed θ
(t)
l .

2) Use w(t)
k from (1) to obtain θ

(t)
l from problem (P2).

3) t → t + 1.
4) Update w(t+1)

k = w(t)
k and θ

(t+1)
l = θ

(t)
l .

Until R(t+1)k,l − R
(t)
k,l ≤ ϵ

Output
(
w(t+1)
k , θ

(t+1)
l

)
.

problem (P2). For the next iteration (t = 1), wk is computed
using the θ l obtained in the previous iteration. The process
continues till the stopping criteria is satisfied, i.e., there is
a small difference between the WSSR values of successive
iterations. Note that once the algorithm stops, the entries of
the output phase shift vector is mapped to quantized values
of ϑ .

V. IRSs ASSIGNMENT PROBLEM
In this section, we present omni-IRSs assignment to Bob-Eve
pairs which is based on a popular one-to-one stable matching
algorithm known as Gale-Shapley. We assume that the total
number of IRSs in the network is equal to the total number of
Bob-Eve pairs, i.e., L = K . Denoting, B = {b1, b2, . . . , bK }
and O = {o1, o2, . . . , oK } as the set of Bobs and IRSs,
respectively, the aim of this work is to obtain a stable IRS-Bob
matchingµ : B→ L that maximizes theWSSR performance
of the network, such that

max
µ

∑
k

αkRk,µ(k), s.t. µ is a matching, (8)

where µ(k) denotes the index of the IRS which is matched to
the k th user. As the studied problem is one-to-one matching,
each Bob will be matched with only one IRS.

It is assumed that the transmitter has perfect CSI available
for all the links, therefore, the transmitter computes all the
possible Bob-IRS permutations and creates a preference list
of each IRS, which is based on secrecy rate of Bobs in
descending order. For any given matching µ, the secrecy rate
of the k th Bob-Eve pair is given by R(µ)k,µ(k). The secrecy rate

can be expressed with respect to the l th IRS as R(µ)µ(l),l , where
µ(l) denotes the index of the Bob-Eve pair which is matched
to the l th IRS. Note that in this stage, active and passive
beamforming vectors are computed using Algorithm 1 at the
transmitter, for all the permutations. Once the calculations
are completed for all the possible IRS-Bob permutations,
the preference list created by the transmitter for the l th IRS
is denoted by PL_IRSl . Unlike the transmitter, the Bob has
knowledge of its own local channel only. Therefore, each Bob
generates its preference list based on the offered rates from
IRSs, which is given by Ck,l = ln

(
1+

∣∣θHl Hk,lwk
∣∣2 /σ 2

b,k

)

Algorithm 2 Gale-Shapley Based IRS Assignment
Input: Set of all Bobs B and IRSs L, Bob preference

lists PL_Bobk ∀ k , IRS preference lists
PL_IRSl ∀ l

1 Initialize Each IRS ∈ L to be free, µ = ∅
2 while IRS ol ∈ L is free and PL_IRSl ̸= ∅ do
3 bk = Bob on the top of ol’s list to whom ol has

not proposed yet
4 if (bk is not assigned)
5 Assign bk and ol to be allocated to each other
6 µ← µ ∪ (bk , ol)
7 else if (bk prefers ol over previously assigned oj)
8 Assign oj to be free µ← µ/(bk , oj)
9 Assign bk and ol to be allocated to each other

µ← µ ∪ (bk , ol)
10 else
11 bk rejects ol and (ol remains unassigned)
12 end if
13 end
14 Output µ: matched IRS-Bob pairs

∀ l. The preference list at the Bob consists of IRSs indices,
which are ranked in a descending order based on their
offered rate. We denote the preference list of the k th Bob
as PL_Bobk .

A. GALE-SHAPLEY
The BS performs the IRS-Bob assignment based on Gale-
Shapley algorithm, such that the resultant matching is IRS
optimal. The pseudocode of the proposed IRS-Bob matching
with Gale-Shapley algorithm is presented in Algorithm 2.
If the Bob (which is on the top of the IRS preference list) is not
already matched with another IRS, the transmitter allocates
this most favoured Bob to the IRS. If the preferred Bob has
already been assigned to one of the other IRS, it is only
reassigned to the proposing IRS if the Bob also prefers it to
the assigned IRS. The same procedure is followed until all
IRSs have been matched. There is no alternative matching in
which any IRS is better off than others, resulting in a stable
matching. After the matching procedure is complete, the
transmitter uses Algorithm 1 to compute active and passive
beamforming vectors, so that IRSs can reflect or transmit the
signal to their assigned Bob-Eve pairs. The complexity of the
Gale-Shapley scheme is O(L2).
The complexity of the whole algorithm is divided into two

parts. The first part is obtaining the active and passive beam-
forming power via the AO algorithm provided inAlgorithm 1.
The optimization of active and passive beamforming compo-
nents in Algorithm 1 has the complexity ofO(M2) andO(N 2),
respectively. The second part is the IRS assignment process
given in Algorithm 2, which has the complexity of O(L2).
For the convergence of the AO algorithm, we refer the reader
to [27], where the convergence of Algorithm 1 is numerically
validated.
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B. MAXIMUM WEIGHT MATCHING
For comparison purposes in Section VI, we use maximum
weight matching algorithm. In the maximum weight match-
ing problem, the main objective is to achieve a matching
in which the sum of weights (here, WSSR) is maximized.
This is achieved by assigning the best Weighted Secrecy Rate
(WSR) to the corresponding IRS-Bob pair. Then the next best
WSR is selected and associated IRS-Bob pair are matched.
This process continues until all the IRSs are matched. The
disadvantage of maximum weight matching algorithm is that
the Bobs who are assigned with the IRSs near the end of the
allocation process will have much lower WSR as compared
to the Bobs who were assigned IRSs in the beginning.

C. EXHAUSTIVE SEARCH MATCHING
In exhaustive search, all the IRS-Bob permutations are com-
puted and the best matching is selected in terms of WSSR.
This method is computationally complex when the total num-
ber of IRS-Bob pairs are large, however, it provides upper
bound on the WSSR performace of the network.

D. RANDOM MATCHING
In random matching, the IRS is randomly assigned to the
Bob. The WSR are ignored in this matching algorithm, and
therefore, it gives a lower bound on the performance of the
network.

VI. RESULTS AND DISCUSSION
In this section, we present the numerical results to evaluate
the performance of the omni-IRSs assisted industrial com-
munication network for various matching schemes discussed
in Section V. We perform MATLAB based Monty Carlo
simulation of various algorithms to show the performance
comparison. We use MATLAB based CVX tool for solving
the joint optimization problem of Algorithm 1. In the simu-
lations we assumed that the transmitter is fixed at the origin
(0, 0). The maximum distance between the transmitter and
the Bob is denoted by dmax, which is selected to be equal
to 200 meters. At each channel realization, the location of
the Bobs are selected randomly and their distances with the
transmitter are restricted within the range of dmax. On the
other hand, IRSs are deployed uniformly over the y-axis but
restricted to be closer to the transmitter.

Each Bob is known to be accompanied by an eavesdropper
which is deployed randomly on a circle centered around the
Bob with radius ranging from 2 − 5 meters. The number of
transmit antenna is set to M = 8, the transmission power
is fixed to Pmax = 10 dB, the number of IRSs is fixed at
L = 5, with each IRS consists of N = 50 passive elements.
The number of Bob-Eve pairs are also selected to be K = 5.
For fairness, we consider the weights of all the links to be
same, i.e., αk = 1 ∀k . All the parameter defined here are
fixed until and unless specified otherwise. We provide results
for Rician factor of κ = 3 dB and κ = 10 dB for all the
channels, while σ 2

b,k = σ 2
e,k = −80 dBm. The path loss is

FIGURE 2. The WSSR performance versus total transmission power.

given by Cr (d/d0)−α , where Cr = 10−3 is the path loss at
the reference distance of d0 = 1 m and d is the link distance.
The path loss exponent is set to α = 2. For the Algorithm 1,
w̃k is generated randomly as a complex Gaussian vector, such
that ∥w̃k∥ = 1 ∀k . Similarly each element of the vector θ̃ l ,
given by ejθ̃n ∀n, are generated using random phase from the
range (0, 2π ]. The stopping criteria, ϵ, for the Algorithm 1 is
set to 0.01.

The WSSR performance is shown in Fig. 2 against the
range of transmission power values. The WSSR is the sum of
all the secrecy rates of the Bobs obtained after the IRS-Bob
matching. The transmission power ranges from 0dB to 25dB.
Results are evaluated with two different values of the rician
factor κ = 3 and κ = 10. It can be seen that as the
transmission power increases, the WSSR performance also
improves. Here, we compare the WSSR performance of the
Gale-Shapley based stable matching algorithm with other
schemes: exhaustive search, maximum weight matching and
random matching. The performance of Gale-Shapley based
stable matching algorithm is very close to the upper bounded
exhaustive search matching. It is interesting to note that the
Gale-Shapley and maximum weight matching schemes give
same performance given that the latter does not yield a sta-
ble matching. Furthermore, the random matching algorithm
performs the worst among all the plotted algorithms.

To further investigate the performance of Gale-Shapley and
maximum weight matching algorithms, in Fig. 3 we plot the
minimum secrecy rate results against Pmax values. This rate
corresponds to the secrecy rate of Bob-Eve pair which is the
minimum rate among all other pairs. As the Gale-Shapley
algorithm yields the stable matching where no IRS-Bob pair
is worst off, therefore, it gives better minimum secrecy rate
performance as compared to the maximum weight matching
algorithm. In fact, the minimum secrecy rate performance
with Gale-Shapley is very close to the exhaustive search
method. This result justifies the use of stable matching based
Gale-Shapley algorithm for IRS-Bob matching.

In Fig. 4, we plot the WSSR results by varying the number
of passive elements N in each IRS. Once again, it can be
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FIGURE 3. The minimum secrecy rate in the network versus total
transmission power.

FIGURE 4. The WSSR performance versus the number of elements, N ,
in the IRS.

seen that the Gale-Shapley and maximum weight matching
algorithms have similar WSSR performance. Furthermore,
both the schemes perform close to the exhaustive search
method. The effect of increasing the number of elements in
the IRS on the WSSR is also evident in Fig. 4. This suggests
that overall network security can be improved by increasing
the number of IRS elements in the IRS (i.e., large N values).
However, the WSSR performance increasing trend seems to
slowly fade as the number of elements becomes too large.
It can be seen from the figure, that if the number of elements
in the IRS are increased 10 times, the WSSR performance or
security of the network will be doubled.

The WSSR performance of the network is plotted in Fig. 5
against the number of transmit antennas,M . It is noticed that
as the number of antennas at the transmitter is increased, the
WSSR performance also improves gradually for all the plot-
ted schemes. This improvement is due to the fact that the large
number of antennas at the transmitter will result in efficient
beamforming towards the Bob, while reducing any signal
leakage towards the Eve. In Fig. 6, we vary the maximum

FIGURE 5. The WSSR performance versus the number antennas, M, at the
transmitter.

FIGURE 6. The WSSR performance versus the maximum network
coverage distance, dmax.

distance, dmax, between the transmitter and Bobs, and record
its effect on the WSSR performance of the network. It can be
seen that as the value of dmax increases,WSSR decreases. The
reason for this decrease is the higher path loss values at large
distances, which in turn decreases the WSSR performance.

VII. CONCLUSION
Smart and connectedmachines empowered by 5G technology
can enhance the level of automation and monitoring of vari-
ous processes in the industry. This network of machines, sen-
sors and computing servers known as IIoT will significantly
improve the industrial productivity. In this paper, we propose
a PLS scheme that uses omni-IRS to improve the WSSR
performance. We solve the problem of designing active
and passive beamforming vectors by using AO technique,
such that WSSR of the network is maximized. Furthermore,
we provide a stable solution for omni-IRS selection using
Gale-Shapley stable matching algorithm. We evaluate the
performance of the proposed scheme using detailed simula-
tions, and show that it can enhance the WSSR performance
of machines by 40% as compared to random matching. The
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minimum secrecy rate achieved through the Gale-Shapley
algorithm is superior than the one achieved via maximum
weight matching. Through simulations, we also observed that
PLS of the outdoor IIoT can be improved by increasing the
number of passive elements in the omni-IRSs, i.e., to use large
size IRSs.
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