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ABSTRACT The integration of Artificial Intelligence techniques into Decision Support Systems yields
effective solutions to decision problems, especially when complex scenarios are at hand. However, the
use of intelligent black-box models can hinder the decision support system’s potential to be fully adopted
because opaque processes raise suspicions and doubts among careful decisionmakers.Moreover, appropriate
and comprehensible explanations may foster trustworthiness and allow for reasonable adjustments or even
corrections. This work proposed an approach that incorporates three reasonability aspects into Decision
Systems: feasibility, rationality, and plausibility. Thus, by providing decision makers with reasonable
candidate solutions for a complex problem, they are expected to perform their tasks more effectively
(i.e. decide with more efficiency as well as efficacy). The new approach is accompanied by two proofs of
concept in the health and public security areas. Comparative results using random and rational approaches,
including the simulation of distinct user profiles, are presented. The proposed approach achieved superior
metrics with regard to feasibility and plausibility, suggesting that this proposition can be applied to real-world
applications.

INDEX TERMS Decision support systems, machine learning, explainable artificial intelligence,
reasonability.

I. INTRODUCTION
Artificial Intelligence (AI) models have been applied in many
areas, such as manufacturing [1], B2B enterprises [2], digital
forensics [3], transportation planning [4], and health sci-
ences [5], [6]. Despite the immense potential gains generated
by the hybridization of AI and Information Systems (IS),
primarily the augmentation of user cognitive capabilities [7],
some relevant challenges may also arise.

Among the chief limitations, when intelligent opaque-box
models are employed in Decision Support Systems (DSS)
to handle high-impact problems [8], for example, decisions
involving human lives or high financial value, the lack of
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transparency is a central concern [9]. On one hand, there is
a growing trend regarding regulatory measures [10] to ensure
system transparency among different purposes and contexts
of use [11]. However, it is difficult to accept that a Decision
Maker (DM) might properly trust a DSS based on opaque
model inferences [12].

The eXplainable Artificial Intelligence (XAI) area [13]
has emerged in recent years with the aim of increas-
ing the transparency of opaque-box models. Among other
aims, XAI techniques are geared towards mitigating user
doubts about the inner functioning of models. However,
higher aspects concerning explanations [14], such as com-
prehensibility and proper treatment of human factors, are
still mostly absent [15] in the vast majority of XAI
studies.
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Since most XAI explanations seem to leave the DM out
of explanation generation [16], it would not be uncommon to
face situations when the generated explanation is not fully
comprehended (by the DM). Even when the explanation
is comprehended, the proposed solution obtained from the
intelligent models might not seem plausible or appropriate.
The main concern here is that inappropriate pairs of solution-
explanations may hinder the proper use of DSS. Our hypothe-
sis is that it is possible to obtain appropriate and user-centered
solutions (i.e. qualitative) with adequate explanations from
Intelligent DSS without excessively compromising the objec-
tive metrics of decisions.

The key objective of this study is to address the existing
gap in the XAI literature, approximating system explanations
to the DM, while allowing DM preferences to be considered
in the DSS solution generation. So, this research article pro-
poses a method to generate more reasonable solutions accom-
panied by explanations within the scope of an Intelligent
DSS. The reasonability of such envisioned solutions derives
from the combination of aspects related to: (i) feasibility–
how much the solution considers problem constraints;
(ii) rationality – how well the proposed solution is aligned
with the decision utility; and (iii) plausibility – howmuch this
solution seems to be appropriate, with respect to DM prefer-
ences and/or mental model of problem resolution. In short,
the proposed approach comprises the characterization of what
a reasonable decision is, how to produce these decisions, and
how to obtain explanations about them.

The remainder of this article is structured as follows:
Section II contains background comments and concepts,
comprising DSS, main XAI concepts, and work related to
user-centered decisions and explanations. Section III con-
tains the proposed method, encompassing an approach for
reasonable decision-making and an explanation of how it is
computationally supported. Section IV describes the relevant
details of two proofs of concept regarding a model-based
DSS [17] and a compound DSS, each of which is created in
response to real-world problems in health and public security
areas, respectively. Both included comments regarding the
experimental results. Finally, in Section V, the conclusion,
discussion, and future work are presented.

II. BACKGROUND
This section introduces relevant concepts used as a theoretical
foundation for this study. Subsection II-A deals specifically
with DSS, whereas subsection II-B deals with the XAI field
and some connections with DSS. Finally, subsection II-C
presents the main influencing concepts and approaches.

A. DECISION SUPPORT SYSTEMS
Semi-structured problems [18] are characterized by having
many options to be analyzed, typically within a short period
of time, and by having a relatively high impact on the imple-
mented decision. This category of problems used to be solved
by combining the expertise of a DM with the processing
and analytical capabilities of computers. The Information

System used inmany of these tasks is called Decision Support
Systems, as information and suggestions/hints are provided to
the DM.

A classical architecture of DSS, such as that proposed by
Sprague andWatson [19], comprises: (i) a DatabaseManager,
to deal with available raw or processed data; (ii) a Deci-
sion Model Manager (DMM), aimed at dealing with avail-
able techniques or methods to solve problems; and finally,
(iii) a User Interface Manager, responsible for mediating the
inputs and outputs from and to DMs. This architecture was
later improved by Watson [20] to encompass new technolo-
gies, such as Artificial Intelligence and Data Lakes, among
other available options to improve DSSs. This work contri-
bution is focused on boosting the Database Manager to create
intelligent models mediated by a special type of DMM,which
is detailed in Section III.

Aqel et al. [8] synthesized a broad categorization of DSS
by mode of assistance, orientation, user relationship, scope
of use, focus area, type, and frequency of decision-making,
showing how diverse and consolidated DSS are. According
to Hasan et al. [21], DSS is summarized in three categories
when observing the focus area: model focus, data focus,
and knowledge focus. By observing this categorization, it is
possible to infer that each type of DSS might have different
explanatory needs, especially those that employ black-box
models. In Section IV, two proofs of concept are presented
to illustrate the applicability of this work proposal to address
different types of DSS.

B. EXPLAINABLE ARTIFICIAL INTELLIGENCE
Although XAI is an area with a growing volume of contribu-
tions, it is possible to identify in the literature [22] at least
two major approaches to explain opaque intelligent mod-
els: intrinsic and post-hoc. The post-hoc approach aims to
increase the transparency of an intelligent opaque-box model
trained to minimize error and is not concerned with the expla-
nation capability. The intrinsic approach, on the other hand,
consists of designing natively explainable models, addressing
different needs and ways of providing explanations.

Arrieta et al. [23] categorized black-boxmodel explanation
methods into six main types. These explanation methods are:
(i) attribute impact over model inference, (ii) relevance of
attributes in model inference, (iii) supporting examples and
counterexamples, (iv) explainable texts, (v) simplification of
complex models, and (vi) explanation by data visualization.
Although these explanation methods are mostly focused on
single models, in the scope of this work, they were used as
part of higher-level explanations, as detailed in Section III.
Evenwith the wide range of approaches and types of expla-

nations found in the literature, there is a growing concern
regarding how much XAI focus is put into explaining and
how individual decisions are reached by solely considering
the black-box inference. Liao et al. [15] explained that there
are few shared practices regarding the design of user-friendly
XAI applications and that the suitability of explanations
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depends on user-specific questions for the application.
Carvalho et al. [24] also suggested that the explainability of
AI systems must be considered in the context of the expla-
nation needs, problem domain, and user types. Shneider and
Handali [25] addressed the need to bring together explana-
tions and receptors of explanations, proposing a conceptu-
alization of explanation personalization. This work proposal
is based on the premise that good solutions suggested by
a DSS must consider both objective and subjective mea-
sures. In addition, these solutions must be accompanied by
explanations suitable for the specific DM operating the DSS.
Dikmen and Burns [26] explored a human-centered approach
to XAI that integrates domain knowledge. It was shown that,
especially for less experienced users, when domain knowl-
edge was available, there was less reliance on AI, especially
when it was incorrect.

To conclude this brief account, Coussement and
Benoit [27] introduced the concept of an Interpretable DSS.
The Interpretable DSS is proposed as a combination of
interpretable data science and improved decision making.
The five properties of Interpretable DSS are: (i) performance,
(ii) scalability, (iii) comprehensibility, (iv) justifiability, and
(v) actionability. This work is aligned with the proposal of
an Interpretable DSS as one possible approach to build such
systems.

C. MAIN INFLUENCING CONCEPTS AND APPROACHES
Complementing DSS functionality with explanations is a
relevant research topic with a broad spectrum of applications,
ranging from agriculture [28] to medical systems [29] and
information security [30]. As each application scenario has
specific explanation requirements and processing strategies,
the works closest to our proposal are presented next.

As shown in Figure 1, Gunning and Aha [31] presented
an ontology comprising a given user, receiving an explana-
tion, and the XAI process and actions that might lead to
the appropriate use of an XAI system. The main concepts
contained in this ontology which influenced this work are the
‘Test of Understanding’, ‘Test of Performance’ and ‘Test of
Satisfaction’. In the scope of this work, a reasonable decision
must: (i) pass the ‘Test of Performance’, being a good solution
with regard objective perspective (e.g. decision utility and
problem restrictions), and (ii) must pass the ‘Test of Compre-
hension’, as well as the ‘Test of Satisfaction’. This means that
being comprehensible and considered adequate according to
subjective DM preferences about solutions and/or methods
for problem resolution. The characterization of reasonable
decisions that is going to be detailed in subsection III-A,
is related to these three tests.

Other studies have addressed explainability in the context
of DSS. The work of Buron Brarda et al. [32] proposed an
approach to supply argument-based multicriteria DSS with
conditional preferences and explainable answers. In Brarda’s
work, graphs are simultaneously the solution and its expla-
nation and are generated by a rule-based reasoning process.

This contrasts with this work, as graphs are used to perform
inferences and assessments about these inferences, which are
collected to create an auxiliary structure used to explain the
decision. Thus, in this proposal, there is a clear separation
between the solution and its explanation, allowing them to be
applied to more types of DSS, even those that do not employ
graphs or rules, in the inference engine.

FIGURE 1. Ontology of how explanations might lead to appropriate DSS
use. Source: [31].

The work of Dazeley et al. [16] states that explanations
might be used in different levels of abstraction, aiming to pro-
vide human-aligned conversational explanations and, thus,
trying to overcome some current XAI limitations. This work
can also be considered an instantiation of Dazeley’s work,
which is primarily theoretical in the sense that the structure
used to explain solutions has multiple levels. These multiple
levels and aspects can be used to derive graphical or textual
explanations to address multiple levels of decision explana-
tion dialogues.

III. REASONABLE DECISION - CONCEPTS AND
PROPOSED APPROACH
The proposed reasonable decision-making method involves
the generation of reasonable solutions accompanied by
auxiliary data structures used to explain each of these
solutions. The following subsections discuss and present:
(subsection III-A) conceptual characterization of reasonable
solutions; (subsection III-B) overview of the proposed rea-
sonable decision method; (subsection III-C) the generation
mechanism of reasonable solutions and (subsection III-D)
mechanisms for obtaining reasonable decision structures and
explanations.

A. CONCEPTUAL CHARACTERIZATION OF REASONABLE
SOLUTIONS
Reasonability, as proposed in this study, is a property that can
be attributed to a given solution for a decision problem. It is
characterized by three aspects: (i) feasibility, (ii) rationality,
and (iii) plausibility, which together are deemed to ascribe
much-needed qualitative value to final users.
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The feasibility aspect is related to how much a given
solution considers available resources and/or how much it
follows the limits imposed by the problem itself or inherent
context restrictions. The rationality aspect is related to the
direct connection of a given solution when observing its
capability of solving the problem as posed with respect to
any appropriate metric or indicator that can objectively assess
it. Finally, the plausibility aspect is related to how much a
decision explanation can be comprehended by the specific
DM as well as how much a given solution is aligned with the
DM preferences and/or mental model of problem resolution.
These three aspects were partially drawn from the work of
Gunning and Aha [31] regarding proper use and trust in XAI
systems, as discussed in subsection II-C.

In Figure 2, a Venn diagram is provided so that various
degrees of reasonability (RS), as proposed here, are repre-
sented as intersections of these three concepts. Some adjacent
interpretations are: (R+P) When a solution is Rational and
Plausible but not Feasible, it will likely seem to have adequate
utility (R) and will make sense to the DM (P), but it will not
be doable, possibly due to not respecting problem restrictions
or constraints (not F); (F+R) When a solution is Feasible
and Rational but not Plausible, it will likely seem to be
doable (F) and having adequate utility (R) but the DM
will probably not comprehend its explanation and/or trust it
enough to select it (not P); and, (F+P) when a solution is
Feasible and Plausible but not Rational, it will likely seem a
good pick that makes sense to the DM (P) and could be imple-
mented (F) but lacks quantitative evidence for adequately
solving the problem (not R).

FIGURE 2. Venn diagram composed of the three constituent aspects of
proposed reasonability (RS), and examples of real-world interpretations
that could emerge given by intersections.

Here, it is proposed that a reasonable decision-making
process must consider all three aspects in a balanced
manner. Subsection III-B provides details on how a rea-
sonable decision-making approach can be implemented
computationally.

B. OVERVIEW OF THE COMPUTATION OF REASONABLE
DECISION-MAKING APPROACH
To balance the three conceptual reasonability aspects, it is
proposed that the process of finding adequate reasonable
solutions be conducted as a constrained multi-objective
optimization process [33]. In the context of the pro-
posed approach, this optimization process aims to find
non-dominated solutions when considering the feasibility,
rationality, and plausibility aspects (all as independent opti-
mization objectives) while dealing with any hard constraints
imposed by the decision problem. Despite many similarities
between search and optimization processes, the choice for the
latter is motivated by the following reasons: (i) the evaluation
of each aspect can be performed by a continuous number
instead of crisp pertinency (e.g. is rational or is not rational),
and (ii) this allows rankings of solutions with finer granularity
instead of simply attributing solutions as being contained/not
in each of the three reasonability proposed aspects. Figure 3
presents an overview of the proposed computations for a
reasonable decision-making approach.

As can be seen in the three steps in Figure 3, after the col-
lection of any relevant Decision Inputs, the Internal DSS Pro-
cessing takes place to ultimately produce satisfactory (Rea-
sonable) decisions. The three conceived steps are: Step-1, the
Inference Graph (IG) extracts the Decision Inputs, producing
multiple and potentially diverse candidate reasonable solu-
tions to the problem; Step-2: each of these candidate solutions
can be used to assemble a Reasonable Decision Structure
(RDS) that might be useful for two purposes: (i) calculating
each of the three aspect scores (i.e. feasibility, rationality,
and plausibility scores) and (ii) being the raw material to
generate explanations about the decision process; Step-3: a
reasonability Pareto containing non-dominated Reasonable
Decision Structures is produced, with respect to each aspect
score, which is pre-selected to be presented for DM’s evalu-
ation and selection for implementation.

Because the approach here subscribes to the human-in-
the-loop, a DM is asked to inspect each RDS contained in
the pareto. The number is not likely to be high (owing to
the performed optimization) and is accompanied by explana-
tions. Both are helpful for selecting the most appropriate for
actual implementation. If an appropriate solution is deemed
satisfactory, the decision process ends. Otherwise, another
processing cycle is initiated using the DM feedback for future
improvement.

It is worth mentioning that the proposed decision approach
is inspired by Simon’s Bounded Rationality Decision Model
(SBRDM) [34], which contributes to the Design Phase and
aids in the Selection Phase. IG processing generates diverse
candidate solutions to be instantiated further in the SBRDM
Design Phase. The RDS Pareto construction, based on aspect
scores, followed by DM evaluation, aided by explanations,
is an improvement to the SBRDM’s Choice Phase.

Subsections III-C and III-D delves into (i) the generation
of reasonable solutions and (ii) evaluations of RDS.
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C. GENERATION OF REASONABLE SOLUTIONS
To generate reasonable solution alternatives, two conceptual
elements of this proposal must be instantiated: IG and RDS
architectures. IG defines the inner DSS inference alternatives
that are potentially composed of different layers and internal
instances. Both are instrumental in generating reasonable
solution alternatives, which are appropriate for each type of
DSS and the problem being addressed. The RDS architecture
detailed in the next subsection, defines the data and/or facts
that must be collected during the processing of the IG so that
all three reasonability aspects can be measured and used to
construct the reasonability pareto.

The following steps are proposed to setup the IG and RDS
architecture:

1) Define what is the DSS most relevant task and specify
which processing stages must be performed during an
inference. For example, for a DSS whose main task is to
prioritize entities to be inspected based on predictions
about these entities, the following processing stages
should be conducted: (i) collecting historical data and
training predictor models, (ii) predicting the relevant
events for the next day, and (iii) grouping these predic-
tions into a priority set of entities.

2) Define for the specific problem what must be measured
about a solution for each of the reasonability aspects
suggested in this approach, namely, feasibility, rational-
ity, and plausibility.

3) Define DSS explanation requirements. In addition,
define which data and/or facts must be stored and how
to obtain low-level explanations about each processing
step.

4) Define how to quantify each explanation or fact and how
they might be mapped into Aspect Scores. For complex
problems with multiple low-level facts and/or explana-
tions, it is valuable to use intermediate Key Performance
Indicators (KPI), which are later combined into Aspect
Scores.

5) Define the IG, considering different approaches to
accomplish each processing step and how the RDS infor-
mation will be collected.

6) Instantiate IG and RDS in distinct pipelines, receiv-
ing the Decision Inputs, and yield the assembled RDS
to pareto formation and pre-selection, as described
in Figure 3.

An abstract view of IG processing and the generation of
Reasonable Decision Structures is shown in Figure 4.
The practical result of processing an Inference Graph is

the generation of different and possibly diverse solutions.
An Inference Engine instance might be any intelligent tech-
nique used to generate a part or complete solution. Such
techniques can include, for example, a trained Artificial Neu-
ral Network [35], a parameterized Particle Swarm Optimiza-
tion [36] instance, or even a combination of techniques. This
is when the problem resolution requires it, as in the case of a
compoundDSS. It is worth emphasizing that nomathematical

formulas were supplied here regarding the training of each
Inference Engine instance, because this aspect is dependent
on the problem being solved.

In Figure 4, after the input data are transformed in the
first layer, their transformed forms are used as inputs for
an Inference Engine instance. Inference Engines can also be
dynamically created when appropriate for cases in which a
previous instance is not adequate to be reused.

The processing result of each Inference Engine instance is
then stored as part of the Reasonable Decision Solution set as
a candidate solution to the problem.

This work proposes the use of a graph instead of fixed
optimized pipelines for three main reasons: (i) the possibility
of exploring different paths in the graph to generate diversity
in the pool of candidate solutions, (ii) tomaximize the number
of points where relevant data or facts can be selected to
generate explanations, and (iii) to allow the evolution of this
graph, taking profit from the feedback of the DM. Regarding
the latter, it is worth mentioning that over time, an IG might
be optimized by omitting connections that tend to produce
low-quality solutions as means to foster system scalability
even in problems with high computational training cost, mul-
tiple layers in the graph, or a large number of solutions
to be evaluated. IG evolution is also expected to occur in
cases when the pool of candidate solutions is not sufficiently
diverse, compromising the quality of the decision alternative
generation. This kind of diversity-increasing evolution is also
triggered by DM feedback.

D. INSPECTING AND EVALUATING REASONABLE
DECISION STRUCTURES
After IG processing is performed, according to Figure 4, all
evidence necessary to explain each RDS will be collected so
that each solution alternative can be explained later, if needed.
The RDS was assembled in a bottom-up manner, as shown in
Figure 5. To interpret the explanation of a given RDS, the DM
might want to inspect it top-down, first verifying the aspect
scores, if needed, drilling down to the KPI level, and finally,
drill down to the facts level.

As stated in the previous subsection, during the setup of
the RDS architecture, the quantification of facts/explanations
in KPIs and the aggregation of KPIs into aspect scores is
problem dependent. Therefore, it must be defined as ad hoc.
The idea of assembling a multilevel structure is aligned with
the work of Dazeley et al. [16]. The existence of multiple
levels in the RDS might imply explanations with different
abstraction levels and allow for a broad overview at the top
level and a low granularity view at the facts level.

It is worth mentioning that the facts level is where expla-
nations generated by other stablished XAI techniques such as
LIME [37] will be stored.

Figure 6 depicts an example of the inspection flow of a
RDS, which is part of a hypothetical Pareto result of the
proposed approach. The aspect scores level allows for a
possible simple way to perceive how pre-selected solutions
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FIGURE 3. Overview of reasonable decision-making approach. Rectangles represent information used as input
and/or produced in each step. Rounded rectangles represent system or human processing activities.

FIGURE 4. Example of processing over an abstract Inference Graph, leading to
Reasonable Decision Structures. Solid arrows are related to Inference Engine 1 while
dashed arrows are related to Inference Engine 2. Circles represent trained instances of
data transformers or machine learning models. Squares represent candidate solutions
or reasonable decision structures.

relate to each other. The inspection of the KPI level provides
a contextualized overview of the inspected solution, possibly
allowing a better comprehension of the properties of each
specific decision with respect to each reasonability aspect.
The fact level can also be inspected in cases where a lower-
level view must be checked to ensure that the DM can trust
a decision and/or will be able to adequately use it. For a
graphical representation of the possibilities offered by the
proposed approach, please refer to Figure 6, items 1–4.

It is worth emphasizing that the RDS is a data structure
that might be inspected directly, for example, by AI experts
improving the DSS or experienced DMs. However, the RDS
may also be used to generate derived graphical or textual
explanations geared toward simplifying its inspection and/or

aiming at less experienced DMs. The next section describes
two proofs of concept employing the proposed approach.

IV. EXPERIMENTS AND RESULTS
In this section, further emphasis is given to the application
of the approach in model-based and compound DSS. The
former is rather frequent in the literature, while the latter has
been less studied by the XAI community. The two proofs
of concept presented show not only the proposal’s applica-
bility but also its features for covering the three aspects of
reasonability. All experiments were coded using the Python
version 3.8 programming language and Scikit Learn API,
version 1.0 [38], and on purpose, used a regular personal
computer.
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FIGURE 5. Example of an abstract Reasonable Decision Structure. From the bottom-up, each low-level explanation and/or fact is
collected to assemble the RDS. From the top-down, the different levels of RDS and explanation paths can be inspected and
interpreted to comprehend each reasonability aspect score.

FIGURE 6. Example of DM interacting with pareto and RDS structure. Items 1 to 4 show different levels of inspection available
to a DM when using the proposed approach.

A. PROOF OF CONCEPT 1 – MODEL-BASED DSS
A medical classification problem was selected as the first
proof of concept. For this hypothetical scenario, a given
medic intends to confirm the diagnosis of a patient with
a heart disease. In a broader sense, this proof of concept
is generalizable to the class of model-based DSS with the
capability of automatic feature selection.

This problem is suitable for application of an AI pow-
ered DSS because it allows a data driven approach as well
as it can also take profit of medic’s expertise. In addition,
the system was formulated to deal with time and budget
restrictions, making it more realistic. Incorporating the ben-
efits of the proposed approach allows for the delivery of

reasonable decisions with comprehensible and justifiable
explanations.

To implement the reasonable and explainable DSS used in
this proof of concept, the following steps were conducted,
as proposed in subsection III-C
1. The main objective of DSS is to confirm the diagnosis of

a patient with possible heart disease. The main processing
tasks consisted of a feature selection task followed by
a classification task. The classification task consisted of
classifying the patient as sick or not sick, considering the
attributes selected for use. Information about the attributes
used with cost and type considered during the experiments
is shown in Table 1. The cost and type assigned to each
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TABLE 1. Attributes used in proof of concept 1, along with cost and type.

attribute are hypothetical and are used only to enrich the
employed dataset for this proof of concept.

2. For this problem, the following characteristics were
selected as relevant and presented as part of each reason-
ability aspect:
a. With respect to the feasibility aspect, the diagnosis

must be performed under a maximum amount of time
and under a maximum cost, respecting possible con-
straints over both dimensions.

b. With respect to the rationality aspect, the diagnosis
must be performed with models containing the highest
overall accuracy and with the highest accuracy among
a certain number of most similar previous cases, com-
bining global and specific performance.

c. With respect to the plausibility aspect, the diagnostic
must employ the maximum number of DM preferred
attributes (i.e. exams) and the maximum number of
DM-preferred types of attributes (i.e. categories of
exams), allowing it to explore different strategies com-
prised in the problem-solving models.

3. The DSS is meant to provide explanations about com-
plying with cost and time limits while considering: the
selected exams, model accuracy, and DM preferences. For
this matter, the following facts or low-level explanations
were stored:
a. List of used attributes and cost.
b. List of used attributes – it was considered that each used

attribute required the use of one time unit.
c. List of patterns used in model testing, highlight-

ing whether correct or incorrect classifications are
received.

d. List of most similar test patterns, highlighting if
received correct or incorrect classification.

e. List of preferred attributes used in the model.
f. List of preferred types of attributes used in the model.

4. For this proof of concept, each reasonability aspect
contained two KPIs as intermediate RDS levels. Each
aspect score was quantified as the arithmetic mean
of the corresponding aspect KPIs. The aspect KPIs
were calculated as follows: The considered Rationality

KPIs are R-KPI1 and R-KPI2, where S is the
number of training samples, SS is the number of similar
training samples, SC and SSC are the number of training
samples correctly classified, and the number of training
similar samples correctly classified, respectively. The
Plausibility KPIs are P-KPI1 and P-KPI2 where PAS is
the number of preferred attributes used for inference, PA is
the number of DM preferred attributes, PTS is the number
of preferred types of attributes used for inference, and PT
is the number of DM preferred types of attributes. The
considered Feasibility KPIs are F-KPI1 and F-KPI2 where
TR is the ratio of the attributes used by the maximum
number of attributes and CR is the ratio of the cost used
over the maximum cost allowed. The abstract RDS is
shown in Figure 7.

R− KPI1 = 100 ∗
SC
S

(1)

R− KPI2 = 100 ∗
SSC
SS

(2)

P− KPI1 = min(100, 100 ∗
PAS
PA

) (3)

P− KPI2 = min(100, 100 ∗
PTS
PT

) (4)

F − KPI1 =


0, for TR>1.5
100, for TR≤0.50
100−100 ∗ (TR−0.5) , c.c.

(5)

F − KPI2 =


0, for CR>1.5
100, for CR≤0.50
100−100 ∗ (CR−0.5) , c.c.

(6)

5. Considering the DSS processing task contained in Step 1,
abstract IG was defined as the graph contained in
Figure 8. For this implementation, in accordance with
Step 1, IG contains two layers. The feature selection and
classification layers contain instances obtained by an opti-
mization meta-heuristic, the goal of which is to maximize
the test accuracy. A sample of the feature selection masks
and classifiers is presented in Table 2.

6. The abstracts RDS and IG were implemented and inte-
grated into a pipeline, as shown in Figure 3.

The data used to train the IG classifier instances were
obtained from the UCI Heart Disease dataset [39]. After
removal of duplicates and patterns containing missing or null
values, this dataset contained 297 patterns and 13 attributes
and was adjusted to be a binary classification signaling the
presence or absence of heart disease. Figure 9 depicts the
pseudocode of the simulations performed using this proof of
concept.

Two DM profiles were simulated considering the max-
imum amounts of time and cost and different preferences
regarding attributes and types of attributes. The following
user profiles were evaluated in the simulations: User profile 1
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FIGURE 7. Abstract RDS build considering the model based DSS explanatory requirements.

FIGURE 8. Abstract view of IG composed of layers for feature selection
and classification as required by the model based DSS.

TABLE 2. Excerpt of feature selection and classification instances.

preferred to use some of the cheapest attributes, emulating
a medic with restricted access to diagnostic resources. User

profile 2 preferred using some of the attributes with a higher
impact on the classification, emulating a more experienced
medic.

• User Profile 1:

⃝ Preferred attributes: ‘age’, ‘sex’, ‘cp’, ‘trestbps’,
‘chol’;

⃝ Preferred types of exams: t1 and t4.

• User Profile 2:

⃝ Preferred attributes: ‘sex’, ‘restecg’, ‘thalach’,
‘slope’, ‘ca’;

⃝ Preferred types of exams: t2 and t3.

For this proof of concept, the following items will be ana-
lyzed: (i) how was the general behavior regarding each aspect
score, and (ii) how could this approach comprising reason-
ability and explanations aid in this kind of decision?

The ProposedApproachwas comparedwith two other DSS
approaches to evaluate the general behavior of each aspect
score. The first, which is referred to as the RandomApproach,
was performed by randomly selecting a model contained in
the Model Database, not considering the aspect scores. This
approach was used as a sanity check to evaluate whether an
extremely simple strategy could adequately solve this prob-
lem. The second, mentioned as the Rational Approach, was
performed by selecting predictions with a higher Rationality
Score. ARational Approachwas included to evaluate whether
a strict decision utility strategy could adequately solve this
problem. It can be seen in Table 3 that the results of the
experiments run over the first proof of concept with all three
approaches.

It is possible to observe that for both user profiles simu-
lated, the Random Approach achieved inferior results when
compared with other approaches, except for the Plausibility
of User Profile 2. On the other hand, as expected, the Rational
Approach achieved the highest results for the Rationality
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TABLE 3. Aspect scores (mean and standard deviation) for proof of concept 1, concerning each user profile with different approaches. Bold values are
the highest among all three approaches, for each aspect score.

FIGURE 9. Overview of usage scenario, comprising (upper part) the three selected RDS to be inspected and (lower
part) two levels of RDS created according to solution C.

FIGURE 10. Pseudocode of simulations performed over Proof of
Concept 1.

Aspect, being above 94.00% for both users. Finally, the
Proposed Approach achieved the best results for Feasibility

and Plausibility, and second-best values for rationality. These
results are strongly related to the assembly of the Database
Model, which optimizes features to obtain the best accuracy.
In this specific case, the selected features were more aligned
with the preferences of User Profile 1.

To evaluate how this approach, comprising reasonability
and explanations, could aid in this kind of decision, the
description of one case is provided next, based on Figure 10.
The decision inputs for this scenario are displayed at the top
of the figure. The three selected solutions to be inspected by
the DM are presented below. As shown in the radar chart and
table, solutions A and B are equal with respect to all three
aspects. Solution C is better when considering Rationality
and Feasibility, but inferior when considering plausibility.
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Considering that Solution C was selected to be inspected,
follows a closer look at its corresponding RDS – it is worth
mentioning that patient ID 0 had a classification of having a
heart disease.

The DM could ask, ‘Why is the Feasibility Score 96.15%?’
and, in this case, both Feasibility KPIs had the same value.
The answer to the question ‘Why F-KPI1 is 96.15%?’ is that
the maximum cost allowed is 10, and this solution requires
a total of 10 cost units. If the DM inspected the Rationality
KPIs, it could check the global and similar accuracy of the
model, and if required, it could check what patterns were
correctly and incorrectly classified during model evaluation.
Finally, when evaluating the Plausibility Score, the lowest
value among all three solutions, it can be seen that Plausibility
KPI 1 is only 30%. The answer to the question ‘Why P-KPI1
is 30%?’ would be a list of the preferred attributes used by
the model – only ‘sex’ and ‘ca’ from the list of 5 preferred
attributes. If the user decides not to use this solution, because
User Profile 2 emulates a more experienced user, he/she
would avoid an error because Patient ID 0 is in fact not sick.

B. PROOF OF CONCEPT 2 – COMPOUND DSS
For the second proof of concept, a real-world problem and a
dataset were selected. This problem is faced by the Brazilian
Federal Highway Police and is related to the creation of
optimized patrolling routes. As will be presented later, the
proposed solution concerns compound DSS. Nevertheless,
this proof of concept is generalizable to the class of DSS com-
posed of classifiers, followed by combinatorial optimizers.

This problem requires the use of an AI-powered DSS
because it deals with data that change over time, and whose
solution is not trivial. Since each police precinct must patrol
a large length of roads, it is not easy to make sense of all
historical data and details to come up with an optimized route
for the whole day, and not all officers create patrolling routes
in the same way. Some lean more on their past experiences
and knowledge of road interest points, while others present
a more analytical posture, using more intensively historical
accident information. It would be desirable to use histori-
cal data primarily as well as to profit from the DM’s tacit
knowledge.

To implement the reasonable and explainable DSS used in
this proof of concept, the following steps were conducted,
as proposed in subsection III.C:
1. The main task of this DSS is to suggest reasonable

patrolling routes for a given operational unit, in this case,
a local precinct. The main processing task can be decom-
posed into a classification task, followed by a combina-
torial optimization task. The classification task consists
of predicting the occurrence of road accidents per road
segment of 10 km, considering every three-hour time
frame of a given day. The options for tree-hour windows
and 10 km segments were selected after exploratory stud-
ies and were in accordance with the current PRF prac-
tices. After the predictions for each km and each time
frame, combinatorial optimization takes place, selecting

reasonable routes for the latter inspection of the police
officer acting as the DM.

2. For this problem, the following characteristics were
selected as relevant and presented as part of each reason-
ability aspect:
a. For feasibility aspect: respect the maximum number of

kilometers required by the route.
b. For rationality aspect: maximize the number of proba-

ble accidents covered according to the prediction.
c. For the plausibility aspect: the route must contain the

maximum number of preferred KM segments proposed
by the DM, allowing it to incorporate tacit knowledge.

3. The DSS is meant to provide explanations about respect-
ing the maximum KM limit, the selected KM to be
patrolled, and how much the proposed route is aligned
with the preferences of the DM police officer. For this
matter, the following facts or low-level explanations must
be stored:
a. List of km to be patrolled.
b. List of km selected or not to be patrolled with predicted

number of accidents.
c. List of km matching DM preferences.

4. For this proof of concept, each reasonability aspect con-
tained only one KPI as an intermediate RDS level. Each
aspect score was quantified directly from the correspond-
ing aspect KPI, as explained below. The F-KPI, R-KPI,
and P-KPI are related to feasibility, rationality, and plau-
sibility aspects, respectively. In Equation 7, TKM is the
total km in the route and MKM is the maximum allowed
km. In Equation 8, PAR is the total number of predicted
accidents in the route, and TAP is the total number of
predicted accidents. Finally, in Equation 9, NPR is the
number of DM preferred km in the route, whereas NP is
the number of DM preferred km. Equation 10 describes
the calculation of the Feasibility Score, while Rationality
and Plausibility scores are equal to their respective KPIs.
The abstract RDS is shown in Figure 11.B.

F − KPI = 100 ∗
TKM
MKM

(7)

R− KPI = 100 ∗
PAR
TAP

(8)

P− KPI = 100 ∗
NPR
NP

(9)

F − score =



0, for F − KPI > 150
or F − KPI < 50

100, for F − KPI ≥ 50
or F − KPI ≤ 100

200 − F − KPI , c.c.

(10)

5. Considering the description of the DSS processing task
contained in step 1, the abstract IG was defined as the
graph contained in Figure 11.A. For this specific imple-
mentation, in accordance with step 1, the IG contains
two layers: one for the classification task and the other
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FIGURE 11. (A) IG composed of layers for classification and for combinatorial optimization. (B) Abstract RDS build considering the
DSS explanatory requirements, matching the highlighted RDS in (A).

for the combinatorial optimization task. The classification
layer contains optimized instances of an XGBoost [40]
and a Decision Tree [41]. The optimization layer contains
instances of a parameterized Genetic Algorithm [35] and
combinatorial PSO [42].

6. The abstracts RDS and IG were implemented and inte-
grated into a pipeline, as shown in Figure 3.

The original dataset contained data on 354,192 accidents
collected from 2017 to 2021. After exploratory analysis of
all available data, the following information was selected for
use with classifiers: date of prediction, time of prediction,
and km range to predict. For this experiment, data on BR101
from km 0 to 211 were selected because of its wide range,
encompassing rural and city stretches, and having diverse
landscape characteristics and road conditions. The number
of samples containing accidents was 395, and that with no
accidents was 1504. We used SMOTE [43] to deal with
class imbalance, synthetically generating 1109 more samples
containing accidents to better train classifiers, for a total of
3008 samples used in the experiments.

As described in step 1, the first part of the inference graph
comprises a classification task. Different techniques were
evaluated to select model instances to add to the Classi-
fication Layer. Logistic Regression, K Nearest Neighbors,
DT, Artificial Neural Networks, Support Vector machines,
Random Forests and XGBoost were evaluated and compared.
The best-performing instances of classifiers were selected,
in this case XGBoost and DT were obtained after optimizing
the hyperparameters using a grid search over the training
set. For this experiment, 80% of the data were used as the
training set, and 20% were used as the test set to evaluate
the generalization performance of the classifiers. A whole
week was used as simulated decision problems, evaluating
individually from Monday to Sunday.

FIGURE 12. Pseudocode of simulations performed over Proof of
Concept 2.

Figure 12 depicts the pseudocode of the simulations per-
formed over this proof of concept.

The following three user profiles were evaluated in the sim-
ulations, each of which explored different human strategies
for generating patrolling routes:

•– User Profile 1: Focused preferred KM in areas with the
most past accidents. The preferred km were the ranges
from to 50-59, 60-69 e 70-79;

• User Profile 2: Spread the preferred KM to areas with
intermediate historical values. The preferred KM were
in the ranges 30-39, 70-79 e 180-189;

•– User Profile 3: Did not consider the number of past
accidents and focused on the second part of BR-101
(i.e., above KM 100), forcing more coverage of the
patrols. The preferred km were the ranges 100-109,
160-169, 200-209.

For this proof of concept, the following items will be
analyzed: (i) What was the general behavior regarding each
aspect score? and (ii) how does this approach comprising
reasonability and explanations aid in this kind of decision?

The Proposed Approach was compared with two other
DSS approaches to evaluate the general behavior of each
aspect score. The first, referred to as the Random Approach,
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FIGURE 13. (A) Example of decision screen, containing all RDS selected for DM inspection.
(B) RDS for solution A. (C) Questions and Answers extracted from RDS of solution A.

was performed by randomly selecting the accident predic-
tions produced by XGBoost or DT and randomly selecting
KM to patrol. The Random Approach was included as a
dummy to evaluate whether an extremely simple strategy
could adequately solve the problem. The second, mentioned
as the Rational Approach, was performed by selecting pre-
dictions with higher accuracy, and after employing a greedy
selection mechanism, striving to cover the maximum number
of predicted accidents, despite other characteristics, such as
respecting the maximum number of KM or preferred KM

to inspect. A Rational Approach was included to evaluate
whether a strict decision utility strategy could adequately
solve this problem. It can be seen in Table 4 that the results
of the experiments run over the first proof of concept with all
three approaches.

It can be observed that for all three simulated user profiles,
the Random Approach achieved results for each aspect, infe-
rior to those of the Proposed Approach. In addition, in most
cases, the aspect results were inferior to those of the Rational
Approach, suggesting that the problem could not be solved
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TABLE 4. Aspect scores (mean and standard deviation) for proof of concept 2, concerning each user profile with different approaches. Bold values are
the highest among all three approaches, for each aspect score.

by chance or by a simple and not optimized heuristic. On the
other hand, as expected, the Rational Approach achieved the
highest results for the Rationality Aspect, above 99.00%.
Finally, the Proposed Approach achieved the second-best
results for rationality, between 74 and 80% among all user
profiles. However, it achieved the best results for Feasibility
and Plausibility aspects for all user profiles, being above 93%.

To evaluate how this approach, comprising reasonability
and explanations, could aid in this kind of decision, the
description of one case is provided next, based on Figure 13.
The decision inputs for this scenario are displayed at the top
of the figure. All three selected solutions to be inspected by
the DM are presented, with close values for all three aspects,
as can be seen in the radar chart and table. At this high level
of abstraction, it is possible to perceive differences among
all three solutions. Considering that Solution B was selected
for inspection, it follows a closer look at its corresponding
RDS. The multiple levels contained in the RDS allow for
the inspection and understanding of the characteristics of the
solution, going to the lowest fact level only if needed. The
hierarchical RDS structure allows for the possible saving
of cognitive resources, going to the lowest levels only if
needed. In addition, it allows the identification of possible
problems with a given solution regarding a specific aspect or
level. For example, to understand why the Plausibility Score
is 100%, it is possible to check its KPI level and see that
all preferences were fulfilled. When in doubt, the Facts level
display these preferences contained in the solution. Finally,
there is a textual view of the RDS that can be generated using
templating and presenting all questions and answers that can
be extracted from this RDS. It is worth mentioning that a
textual view of the RDS could contribute to a more human-
centered inspection, allowing a broader audience to interact
and profit from DSS explanations.

V. CONCLUSION
This work has proposed a method to obtain reasonable solu-
tions with explanations by means of a decision approach
that encompasses how to generate solutions that are rational,
feasible, and plausible.

Moreover, this approach details how to obtain compre-
hensible and justifiable explanations. Two proofs of concept
were presented regarding a medical problem, instantiated as a

model-based DSS, and a public security problem, instantiated
as a compound-oriented DSS.

Both proofs of concept explored how the approach can
be used and their simulation results, suggesting that they
could be employed even in real-world problems. Some of the
KPIs employed in each proof of concept could be reused as
evaluation indexes in other studies, considering their practical
value. When compared to a purely rational approach, the
reasonable approach put forward here delivered solutions
that are not as good in terms of decision utility but are
much more comprehensive in tackling problem restrictions
and user preferences. In the first proof of concept, as shown
in Table 3, for both simulated user profiles, the proposed
approach achieved results up to 4% better for feasibility and
5% better for plausibility, while being worse by at most 2%
for rationality score. In the second proof of concept, as shown
in Table 4, the proposed approach achieved results that were
more than 60% better for feasibility and at least 10% better
for plausibility for all the simulated profiles. On the other
hand, the results for rationality were 25% lower in the worst
case. Evenwith themodels optimized for accuracy, the results
suggest that the solutions selected for DM inspection were
adequate for each simulated user profile.

Despite the proofs of concept dealt with common types of
Intelligent DSS, signaling the applicability of the approach,
more experiments and instantiations are required to properly
explore the boundaries of its application. Another concern
may arise about scalability, because in real applications, the
number of alternatives to be evaluated tends to be much larger
than that used in the proof of concepts. Thus, new mech-
anisms should be integrated into this approach to address
such challenges. One highlight of this approach is its flex-
ibility in using various intelligent algorithms, such as opti-
mizers, regressors, classifiers, or data transformers in the
respective IG layers. Another concern might be the need for
more results regarding the use of decision structures, such
as those proposed here, and the need for more applications
of the method. Because the method application and use of
the decision structure are specific to each decision problem,
two proofs of concept were provided as applications of the
method, and instantiated decision structures were presented.
Nevertheless, more studies are needed to derive the best
practices for method and decision structure employment.
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Future works are in the direction of investigating mecha-
nisms to allow the dynamic optimization of IG connections,
tackling more challenging personalization or dynamic sce-
narios, and developing new pre-hoc explainability algorithms
to be incorporated in the proposal. Further studies on the
use of the proposed decision structures will be conducted,
along with more application scenarios. In addition to these
investigation paths, the relation of how to better assemble the
IG in terms of instance diversity is also to be investigated.
Another improvement to be made on the road is to investigate
more evaluation indexes than those used as KPI in both proofs
of concept.
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